Transcriptomic Profiling of Burkholderia Phymatum STM815

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptomic Profiling of Burkholderia Phymatum STM815 Klonowska et al. BMC Genomics (2018) 19:105 DOI 10.1186/s12864-018-4487-2 RESEARCHARTICLE Open Access Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history Agnieszka Klonowska1†, Rémy Melkonian2†, Lucie Miché2,3, Pierre Tisseyre2 and Lionel Moulin1*† Abstract Background: Rhizobial symbionts belong to the classes Alphaproteobacteria and Betaproteobacteria (called “alpha” and “beta”-rhizobia). Most knowledge on the genetic basis of symbiosis is based on model strains belonging to alpha-rhizobia. Mimosa pudica is a legume that offers an excellent opportunity to study the adaptation toward symbiotic nitrogen fixation in beta-rhizobia compared to alpha-rhizobia. In a previous study (Melkonian et al., Environ Microbiol 16:2099–111, 2014) we described the symbiotic competitiveness of M. pudica symbionts belonging to Burkholderia, Cupriavidus and Rhizobium species. Results: In this article we present a comparative analysis of the transcriptomes (by RNAseq) of B. phymatum STM815 (BP), C. taiwanensis LMG19424 (CT) and R. mesoamericanum STM3625 (RM) in conditions mimicking the early steps of symbiosis (i.e. perception of root exudates). BP exhibited the strongest transcriptome shift both quantitatively and qualitatively, which mirrors its high competitiveness in the early steps of symbiosis and its ancient evolutionary history as a symbiont, while CT had a minimal response which correlates with its status as a younger symbiont (probably via acquisition of symbiotic genes from a Burkholderia ancestor) and RM had a typical response of Alphaproteobacterial rhizospheric bacteria. Interestingly, the upregulation of nodulation genes was the only common response among the three strains; the exception was an up-regulated gene encoding a putative fatty acid hydroxylase, which appears to be a novel symbiotic gene specific to Mimosa symbionts. Conclusion: The transcriptional response to root exudates was correlated to each strain nodulation competitiveness, with Burkholderia phymatum appearing as the best specialised symbiont of Mimosa pudica. Keywords: Symbiosis, Transcriptome, Beta-rhizobia, Alpha-rhizobia, RNA-seq * Correspondence: [email protected] †Equal contributors 1IRD, Cirad, University of Montpellier, IPME, Montpellier, France Full list of author information is available at the end of the article © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Klonowska et al. BMC Genomics (2018) 19:105 Page 2 of 22 Background scenario seems to be different as their nod gene phyloge- Rhizobia are a functional group of bacteria able to develop nies mirror that of the Burkholderia species (based on a nitrogen-fixing symbiosis with legumes. Symbiotic asso- their 16S rRNA and housekeeping genes), which has led ciations between legumes and rhizobia usually begin with several authors to hypothesise an ancient transfer of an exchange of diffusible signals among which (iso)flavo- nodulation genes to a burkholderia ancestor followed by noids present in the root exudates are responsible for the vertical transmission and coevolution with endemic host production and secretion of bacterial lipochitooligosac- species [30]. In the case of Cupriavidus, the nodulating charides (LCOs), known as Nod factors (NF). The recog- species were proposed to be recent symbionts compared nition of NF by the roots leads to the formation of the to Burkholderia based on phylogenetic and genomic root nodule, wherein bacteria are able to fix atmospheric analyses [31], but in the light of recent findings and nitrogen to sustain plant growth in exchange for carbon – analyses (nodC gene phylogeny, symbiotic specificity) its containing metabolites [1]. The biosynthesis of NF and origin and evolution may be more complex [5]. nitrogen fixation enzymes are encoded by nod and nif Mimosa pudica is a legume that has the rare ability to genes respectively [2]. be nodulated naturally by both alpha (Rhizobium spp.) Rhizobial species are mainly distributed among four and beta-rhizobia (Burkholderia, Cupriavidus). Diversity genera of Alphaproteobacteria (Rhizobium, Sinorhizobium, studies showed that proportions between beta- and alpha- Mesorhizobium, Bradyrhizobium; and a few species in rhizobia hosted in nodules of M. pudica vary significantly seven other genera) and two genera of Betaproteobacteria in different geographical locations. For example, Burkhol- (Burkholderia, Cupriavidus) leading to the proposal of the deria were found to be predominant in nodules of M. terms alpha- and beta-rhizobia to distinguish both classes pudica in Barro Colorado Island and in French Guiana of symbionts [3]. The discovery of beta-rhizobia in 2001 [ 10, 32], whereas the proportions of Burkholderia and changed dramatically our perspectives on the genetic Cupriavidus symbionts were more equal in Costa Rica, backgrounds required to host the ability to form symbi- China and India [18, 20, 24], and finally Cupriavidus was oses with legumes by extending this possibility to a new found to be predominant in nodules of M. pudica in subclass of Proteobacteria. If beta-rhizobia appeared Taiwan and in New Caledonia [23, 33]. Several parameters controversial at the time of their discovery, it is now well can help explain the proportions of symbionts in nodules established that Burkholderia species are the main symbi- of M. pudica in worldwide diversity studies, but soil char- onts of several endemic species of the Mimosoideae and acteristics, especially the presence of combined nitrogen Papilinoideae legume subfamilies in Brazil and South affect strain competitiveness [34]. In a previous study [35], Africa [4–7], which raises questions about the origin of we made a large survey of strain nodulation competitive- symbiosis and performance of these new symbionts ness between Burkholderia, Cupriavidus and Rhizobium compared to alpha-rhizobia. Many symbiotic species of species and showed that B. phymatum and B. tuberum sv. Burkholderia (recently rearranged in the Paraburkholderia mimosae are the most competitive species on Mimosa genus [8]) have been described from mimosoids: B. phy- pudica,butCupriavidus taiwanensis could compete with matum [9], B. tuberum [10], B. mimosarum [11], B. Burkholderia when tested on specific M. pudica genotypes nodosa [12, 13], B. sabiae [14], B. symbiotica [15], B. dia- (on variety unijuga from Taiwan where Cupriavidus domi- zotrophica [16], B. piptadeniae and B. ribeironis [17], nates in nodules of this variety). In the case of Rhizobium while Cupriavidus symbionts (C. taiwanensis, C. necator, species, all species were poorly competitive, despite the C. pinatubonensis) were detected mostly in invasive fact that R. mesoamericanum are frequently found in Mimosa species (M. pudica, M. pigra, M. diplotricha)in diversity studies, although in small proportions, such as in South, Central and North America [10, 18, 19], in Asia Costa Rica [18], Mexico [36], New Caledonia [23]and (China, India, Taiwan, Philippines, New Caledonia, Papua French Guiana [10], which raises questions about their New Guinea) [20–24], but also in native Mimosa and capacity to be maintained as M. pudica symbionts. The Parapiptadenia species in Uruguay [25, 26]. only case of a Rhizobium species dominating in the nod- Diversity studies of alpha-rhizobia showed incongru- ules of M. pudica is R. altiplani in central Brazil [37]. ence between rhizobial house-keeping genes and symbi- Several molecular factors linked to nodulation com- otic nod genes phylogenies. Phylogenetic analyses have petitiveness have been described in rhizobia, including i) shown that the different rhizobial lineages diverged well the nodulation gene set [38], ii) rhizobial motility [39] before the appearance of legumes [27], so that their bac- and specific adhesiveness to the plant roots [40], iii) terial nodulation capacity would have been acquired sub- adjustment of rhizobial cell-surface characteristics (EPS stantially after the diversification of rhizobia in one or and LPS) [41], iv) induction of type III or type IV secre- several lineages, and was then spread by lateral gene tion system expression [42] and v) induction of pSym transfer among the different genera and species [28, 29]. conjugal transfer genes [43]. Until now, all these studies For the Mimosoid Burkholderia legume symbionts, the have been performed on alpha rhizobia, which leaves Klonowska et al. BMC Genomics (2018) 19:105 Page 3 of 22 many questions about the specific adaptations that genes compared to the other two strains. The symbiotic might be found in beta-rhizobia which could explain plasmids in all three rhizobia shared poor syntenies their competitiveness superiority over alpha-rhizobia in (Additional file 1: Figure S2), with almost only the nod Mimosa species. Beyond the activation of nod and nif and nif gene regions
Recommended publications
  • Candidatus Xiphinematincola Pachtaicus' Gen
    TAXONOMIC DESCRIPTION Palomares- Rius et al., Int. J. Syst. Evol. Microbiol. 2021;71:004888 DOI 10.1099/ijsem.0.004888 OPEN ACCESS ‘Candidatus Xiphinematincola pachtaicus' gen. nov., sp. nov., an endosymbiotic bacterium associated with nematode species of the genus Xiphinema (Nematoda, Longidoridae) Juan E. Palomares- Rius1,*, Carlos Gutiérrez- Gutiérrez2, Manuel Mota2, Wim Bert3, Myriam Claeys3, Vladimir V. Yushin4, Natalia E. Suzina5, Elena V. Ariskina5, Lyudmila I. Evtushenko5, Sergei A. Subbotin6,7 and Pablo Castillo1 Abstract An intracellular bacterium, strain IAST, was observed to infect several species of the plant- parasitic nematode genus Xiphin- ema (Xiphinema astaregiense, Xiphinema incertum, Xiphinema madeirense, Xiphinema pachtaicum, Xiphinema parapachydermum and Xiphinema vallense). The bacterium could not be recovered on axenic medium. The 16S rRNA gene sequence of IAST was found to be new, being related to the family Burkholderiaceae, class Betaproteobacteria. Fungal endosymbionts Mycoavidus cysteinexigens B1- EBT (92.9 % sequence identity) and ‘Candidatus Glomeribacter gigasporarum’ BEG34 (89.8 % identity) are the closest taxa and form a separate phylogenetic clade inside Burkholderiaceae. Other genes (atpD, lepA and recA) also separated this species from its closest relatives using a multilocus sequence analysis approach. These genes were obtained using a partial genome of this bacterium. The localization of the bacterium (via light and fluorescence in situ hybridization microscopy) is in the X. pachtaicum females clustered around the developing oocytes, primarily found embedded inside the epithelial wall cells of the ovaries, from where they are dispersed in the intestine. Transmission electron microscopy (TEM) observations sup- ported the presence of bacteria inside the nematode body, where they occupy ovaries and occur inside the intestinal epithelium.
    [Show full text]
  • Whole Genome Analyses Suggests That Burkholderia Sensu Lato Contains Two Additional Novel Genera (Mycetohabitans Gen
    G C A T T A C G G C A T genes Article Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae Paulina Estrada-de los Santos 1,*,† ID , Marike Palmer 2,†, Belén Chávez-Ramírez 1, Chrizelle Beukes 2, Emma T. Steenkamp 2, Leah Briscoe 3, Noor Khan 3 ID , Marta Maluk 4, Marcel Lafos 4, Ethan Humm 3, Monique Arrabit 3, Matthew Crook 5, Eduardo Gross 6 ID , Marcelo F. Simon 7,Fábio Bueno dos Reis Junior 8, William B. Whitman 9, Nicole Shapiro 10, Philip S. Poole 11, Ann M. Hirsch 3,* ID , Stephanus N. Venter 2,* ID and Euan K. James 4,* ID 1 Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, 11340 Cd. de Mexico, Mexico; [email protected] 2 Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0083, South Africa; [email protected] (M.P.); [email protected] (C.B.); [email protected] (E.T.S.) 3 Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; [email protected] (L.B.); [email protected] (N.K.); [email protected] (E.H.); [email protected] (M.A.) 4 The James Hutton Institute, Dundee DD2 5DA, UK; [email protected] (M.M.); [email protected] (M.L.) 5 450G Tracy Hall Science Building, Weber State University, Ogden, 84403 UT, USA; [email protected]
    [Show full text]
  • Specificity in Legume-Rhizobia Symbioses
    International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga).
    [Show full text]
  • Whole Genome Analyses Suggests That Burkholderiasensu Lato Contains Two Additional Novel Genera (Mycetohabitans Gen
    24/09/2018 Genes | Free Full-Text | Whole Genome Analyses Suggests that Burkholderia sensu lato Contains Two Additional Novel Genera (… Genes 2018, 9(8), 389; doi:10.3390/genes9080389 Article Whole Genome Analyses Suggests that Burkholderiasensu lato Contains Two Additional Novel Genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the Evolution of Diazotrophy and Nodulation in the Burkholderiaceae Paulina Estrada-de los Santos 1,†,* , Marike Palmer 2,† , Belén Chávez-Ramírez 1 , Chrizelle Beukes 2 , Emma T. Steenkamp 2 , Leah Briscoe 3 , Noor Khan 3 , Marta Maluk 4 , Marcel Lafos 4 , Ethan Humm 3 , Monique Arrabit 3 , Matthew Crook 5 , Eduardo Gross 6 , Marcelo F. Simon 7 , Fábio Bueno dos Reis Junior 8 , William B. Whitman 9 , Nicole Shapiro 10 , Philip S. Poole 11 , Ann M. Hirsch 3,* , Stephanus N. Venter 2,* and Euan K. James 4,* 1 Instituto Politécnico Nacional, Escuela Nacional de 2Ciencias Biológicas, 11340 Cd. de Mexico, Mexico Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, 3University of Pretoria, Pretoria 0083, South Africa Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University 4of California, Los Angeles, CA 90095, USA 5The James Hutton Institute, Dundee DD2 5DA, UK 450G Tracy Hall Science Building, Weber State 6University, Ogden, 84403 UT, USA Center for Electron Microscopy, Department of Agricultural and Environmental Sciences, Santa 7Cruz State University, 45662-900 Ilheus, BA, Brazil Embrapa CENARGEN,
    [Show full text]
  • Cluster 1 Cluster 3 Cluster 2
    5 9 Luteibacter yeojuensis strain SU11 (Ga0078639_1004, 2640590121) 7 0 Luteibacter rhizovicinus DSM 16549 (Ga0078601_1039, 2631914223) 4 7 Luteibacter sp. UNCMF366Tsu5.1 (FG06DRAFT_scaffold00001.1, 2595447474) 5 5 Dyella japonica UNC79MFTsu3.2 (N515DRAFT_scaffold00003.3, 2558296041) 4 8 100 Rhodanobacter sp. Root179 (Ga0124815_151, 2699823700) 9 4 Rhodanobacter sp. OR87 (RhoOR87DRAFT_scaffold_21.22, 2510416040) Dyella japonica DSM 16301 (Ga0078600_1041, 2640844523) Dyella sp. OK004 (Ga0066746_17, 2609553531) 9 9 9 3 Xanthomonas fuscans (007972314) 100 Xanthomonas axonopodis (078563083) 4 9 Xanthomonas oryzae pv. oryzae KACC10331 (NC_006834, 637633170) 100 100 Xanthomonas albilineans USA048 (Ga0078502_15, 2651125062) 5 6 Xanthomonas translucens XT123 (Ga0113452_1085, 2663222128) 6 5 Lysobacter enzymogenes ATCC 29487 (Ga0111606_103, 2678972498) 100 Rhizobacter sp. Root1221 (056656680) Rhizobacter sp. Root1221 (Ga0102088_103, 2644243628) 100 Aquabacterium sp. NJ1 (052162038) Aquabacterium sp. NJ1 (Ga0077486_101, 2634019136) Uliginosibacterium gangwonense DSM 18521 (B145DRAFT_scaffold_15.16, 2515877853) 9 6 9 7 Derxia lacustris (085315679) 8 7 Derxia gummosa DSM 723 (H566DRAFT_scaffold00003.3, 2529306053) 7 2 Ideonella sp. B508-1 (I73DRAFT_BADL01000387_1.387, 2553574224) Zoogloea sp. LCSB751 (079432982) PHB-accumulating bacterium (PHBDraf_Contig14, 2502333272) Thiobacillus sp. 65-1059 (OJW46643.1) 8 4 Dechloromonas aromatica RCB (NC_007298, 637680051) 8 4 7 7 Dechloromonas sp. JJ (JJ_JJcontig4, 2506671179) Dechloromonas RCB 100 Azoarcus
    [Show full text]
  • Molecular Signatures and Phylogenomic Analysis Of
    ORIGINAL RESEARCH ARTICLE published: 19 December 2014 doi: 10.3389/fgene.2014.00429 Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species Amandeep Sawana , Mobolaji Adeolu and Radhey S. Gupta* Department of Biochemistry and Biomedical Sciences, Health Sciences Center, McMaster University, Hamilton, ON, Canada Edited by: The genus Burkholderia contains large number of diverse species which include many Scott Norman Peterson, Sanford clinically important organisms, phytopathogens, as well as environmental species. Burnham Medical Research However, currently, there is a paucity of biochemical or molecular characteristics which can Institute, USA reliably distinguish different groups of Burkholderia species. We report here the results Reviewed by: Loren John Hauser, Oak Ridge of detailed phylogenetic and comparative genomic analyses of 45 sequenced species National Laboratory, USA of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences William Charles Nierman, J. Craig for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members Venter Institute, USA of the genus Burkholderia grouped into two major clades. Within these main clades *Correspondence: a number of smaller clades including those corresponding to the clinically important Radhey S. Gupta, Department of Biochemistry and Biomedical Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also Sciences, Health Sciences Center, clearly distinguished. Our comparative analysis of protein sequences from Burkholderia McMaster University, 1200 Main spp. has identified 42 highly specific molecular markers in the form of conserved sequence Street West, Hamilton, ON L8N indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia 3Z5, Canada e-mail: [email protected] spp.
    [Show full text]
  • Molecular Signatures and Phylogenomic
    ORIGINAL RESEARCH ARTICLE published: 19 December 2014 doi: 10.3389/fgene.2014.00429 Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species Amandeep Sawana , Mobolaji Adeolu and Radhey S. Gupta* Department of Biochemistry and Biomedical Sciences, Health Sciences Center, McMaster University, Hamilton, ON, Canada Edited by: The genus Burkholderia contains large number of diverse species which include many Scott Norman Peterson, Sanford clinically important organisms, phytopathogens, as well as environmental species. Burnham Medical Research However, currently, there is a paucity of biochemical or molecular characteristics which can Institute, USA reliably distinguish different groups of Burkholderia species. We report here the results Reviewed by: Loren John Hauser, Oak Ridge of detailed phylogenetic and comparative genomic analyses of 45 sequenced species National Laboratory, USA of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences William Charles Nierman, J. Craig for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members Venter Institute, USA of the genus Burkholderia grouped into two major clades. Within these main clades *Correspondence: a number of smaller clades including those corresponding to the clinically important Radhey S. Gupta, Department of Biochemistry and Biomedical Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also Sciences, Health Sciences Center, clearly distinguished. Our comparative analysis of protein sequences from Burkholderia McMaster University, 1200 Main spp. has identified 42 highly specific molecular markers in the form of conserved sequence Street West, Hamilton, ON L8N indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia 3Z5, Canada e-mail: [email protected] spp.
    [Show full text]
  • TITLE: Paraburkholderia Guartelaensis Sp. Nov., ISOLATED from NATIVE Mimosa Gymnas in a BRAZILIAN ECOTONE AUTHORS: PAULITSCH, F
    TITLE: Paraburkholderia guartelaensis sp. nov., ISOLATED FROM NATIVE Mimosa gymnas IN A BRAZILIAN ECOTONE AUTHORS: PAULITSCH, F.; DALL’AGNOL, R.F; DELAMUTA, J.R.M.; RIBEIRO, R.A; BATISTA, J.S.S; HUNGRIA, M. INSTITUTION: DEPARTMENT OF MICROBIOLOGY, UNIVERSIDADE ESTADUAL DE LONDRINA, C.P. 10.011, 86057-970, LONDRINA, PARANÁ, BRAZIL ABSTRACT: The symbioses between plants of the Fabaceae family and diazotrophic bacteria have been studied over the years, due to their ability to fix atmospheric nitrogen in a process denominated as biological nitrogen fixation (BFN). BFN plays a key role in the nitrogen incorporation into the terrestrial environments. This restricted group of bacteria is collectively called rhizobia. Most of the known rhizobia belong to the Alphaproteobacteria class, but also include Betaproteobacteria, with an emphasis on the Paraburkholderia genus. Paraburkholderia have been recognized as the main symbionts of the Mimosa genus in Brazil, the second largest genus of the subfamily Mimosoideae, and the country represents the main radiation center of the genus, many of which are endemic species. Six nitrogen-fixing symbiotic bacteria were isolated from nodules of Mimosa gymnas native and endemic from the Guartelá State Park, PR, an ecotone region between the Brazilian biomes of Atlantic forest and Cerrado. A polyphasic approach was performed in order to determine the taxonomic position of the group. In the analysis of the 16S rRNA, the strains showed highest similarity with Paraburkholderia nodosa BR 3437T (98.4–98.5 %), P. mimosarum PAS44T (98.6–99.9 %) and P. diazotrophica JPY461T (96.5–99.9 %). The Multilocus Sequence Analysis (MLSA) of five (recA, gyrB, trpB, gltB and atpD) concatenated housekeeping genes indicated a distinct position of strain CNPSo 3008T, with P.
    [Show full text]
  • Genomic Features and Insights Into the Taxonomy, Virulence, and Benevolence of Plant-Associated Burkholderia Species
    International Journal of Molecular Sciences Review Genomic Features and Insights into the Taxonomy, Virulence, and Benevolence of Plant-Associated Burkholderia Species Mohamed Mannaa 1 , Inmyoung Park 2 and Young-Su Seo 1,* 1 Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; [email protected] 2 Department of Oriental Food and Culinary Arts, Youngsan University, Busan 48015, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-51-510-2267 Received: 13 December 2018; Accepted: 24 December 2018; Published: 29 December 2018 Abstract: The members of the Burkholderia genus are characterized by high versatility and adaptability to various ecological niches. With the availability of the genome sequences of numerous species of Burkholderia, many studies have been conducted to elucidate the unique features of this exceptional group of bacteria. Genomic and metabolic plasticity are common among Burkholderia species, as evidenced by their relatively large multi-replicon genomes that are rich in insertion sequences and genomic islands and contain a high proportion of coding regions. Such unique features could explain their adaptability to various habitats and their versatile lifestyles, which are reflected in a multiplicity of species including free-living rhizospheric bacteria, plant endosymbionts, legume nodulators, and plant pathogens. The phytopathogenic Burkholderia group encompasses several pathogens representing threats to important agriculture crops such as rice. Contrarily, plant-beneficial Burkholderia have also been reported, which have symbiotic and growth-promoting roles. In this review, the taxonomy of Burkholderia is discussed emphasizing the recent updates and the contributions of genomic studies to precise taxonomic positioning. Moreover, genomic and functional studies on Burkholderia are reviewed and insights are provided into the mechanisms underlying the virulence and benevolence of phytopathogenic and plant-beneficial Burkholderia, respectively, on the basis of cutting-edge knowledge.
    [Show full text]
  • Diversity and Efficiency of Rhizobia Communities from Iron Mining
    Rev Bras Cienc Solo 2017;41:e0160525 Article Division - Soil Processes and Properties | Commission - Soil Biology Diversity and Efficiency of Rhizobia Communities from Iron Mining Areas Using Cowpea as a Trap Plant Jordana Luísa de Castro(1), Mariana Gonçalves Souza(2), Márcia Rufini(1), Amanda Azarias Guimarães(1), Tainara Louzada Rodrigues(3) and Fatima Maria de Souza Moreira(4)* (1) Universidade Federal de Lavras, Departamento de Ciência do Solo, Programa de Pós-graduação em Ciência do Solo, Lavras, Minas Gerais, Brasil. (2) Universidade Federal de Lavras, Curso de Engenharia Agrícola, Lavras, Minas Gerais, Brasil. (3) Universidade Federal de Lavras, Curso de Agronomia, Lavras, Minas Gerais, Brasil. (4) Universidade Federal de Lavras, Departamento de Ciência do Solo, Lavras, Minas Gerais, Brasil. ABSTRACT: Mining is an important economic activity. However, its impact on environment must be accessed, mainly on relevant processes for their sustainability. The objective of this study was to evaluate the diversity and efficiency of symbiotic nitrogen fixing bacterial communities in soils under different types of vegetation in theQuadrilátero Ferrífero: ironstone outcrops, Atlantic Forest, neotropical savanna, and a rehabilitated area revegetated with grass. Suspensions of soil samples collected under each type of vegetation were made in a saline solution to capture rhizobia communities that were then inoculated on cowpea [Vigna unguiculata (L.) Walp.], which was used as a trap plant. The symbiotic efficiency of the communities was evaluated in a greenhouse experiment and the data obtained were correlated to the chemical and physical properties of the soils under each type of vegetation. At the end of the experiment, the bacteria present in the nodules were isolated to evaluate their diversity.
    [Show full text]
  • Identification and Biochemical Characterization of Β-Rhizobia Isolated from Root Nodules of Mimosa Pudica
    Journal of Academia and Industrial Research (JAIR) Volume 8, Issue 11, April 2020 173 ISSN: 2278-5213 Research Article Identification and Biochemical Characterization of β-Rhizobia isolated from Root Nodules of Mimosa pudica Lekha Sharma1* and Girish K. Goswami2 1Department of Life Sciences, CU Shah University, Surendranagar-Ahmedabad Highway, Dist. Surendranagar, Gujarat-363030 2Project Director, GUJCOST, DST, Government of Gujarat, India [email protected]*; [email protected]; +91 7076711701; 7575051672 Received: February 09 2020/Accepted: 21 March 2020/Published: 07 April 2020 Abstract Total ten Gram negative, single short rod shaped and motile bacterial strains were isolated from the roots of Mimosa pudica from different regions of Sukna forest in North Bengal, India. Isolates were characterized based on biochemical and 16S rRNA sequence analysis and it was found that all had close relationship to members of the genus Paraburkholderia, named Paraburkholderia caribensis (MWAP64T). Strains grew well in the yeast extract mannitol agar (YEMA) medium (pH 7.0) at 30°C and showed negative results to catalase, ketolactase and cellulose test. Plant growth promoting abilities of the bacterial isolates were identified by conducting various tests. After pot nodulation experiment, six isolates were considered as true Paraburkholderia (SK ND1, SK ND2, SK ND3, SK ND4, SK ND8 and SK ND9). Optimum growth temperature was observed at 20°-40°C, at pH 5.0-8.0 and NaCl concentration of 1-3% (W/V). Keywords: Mimosa pudica, root nodules, Sukna forest, Paraburkholderia caribensis, pot nodulation. important and phytopathogenic member and the other one Introduction is environmental beneficiary species (Gyaneshwar et al., Plant require nitrogen in large quantities for synthesizing 2011; Estrada et al., 2013).
    [Show full text]
  • Systematic and Applied Microbiology 43 (2020) 126151
    Systematic and Applied Microbiology 43 (2020) 126151 Contents lists available at ScienceDirect Systematic and Applied Microbiology jo urnal homepage: http://www.elsevier.com/locate/syapm Phylogeny of symbiotic genes reveals symbiovars within legume-nodulating Paraburkholderia species a,b,c a,d d Fabiane Paulitsch , Jakeline Renata Marc¸ on Delamuta , Renan Augusto Ribeiro , e a,b,d,∗ Jesiane Stefania da Silva Batista , Mariangela Hungria a Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil b Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil c Coordenac¸ ão de Aperfeic¸ oamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020 Brasília, Distrito Federal, Brazil d Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil e Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Avenida General Carlos Cavalcanti, 4748 – Uvaranas, C.P. 6001, Ponta Grossa, PR 84030-900, Brazil a r t i c l e i n f o a b s t r a c t Article history: Bacteria belonging to the genus Paraburkholderia are capable of establishing symbiotic relationships with Received 6 August 2020 plants belonging to the Fabaceae (=Leguminosae) family and fixing the atmospheric nitrogen in special- Received in revised form 1 October 2020 ized structures in the roots called nodules, in a process known as biological nitrogen fixation (BNF). In the Accepted 2 October 2020 nodulation and BNF processes several bacterial symbiotic genes are involved, but the relations between symbiotic, core genes and host specificity are still poorly studied and understood in Paraburkholderia.
    [Show full text]