Biogeographical Study of Japanese Beech Forests Under Diffe- Rent Climatic Conditions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High-Throughput Sequencing of 5S-IGS Rdna in Fagus L. (Fagaceae) Reveals Complex Evolutionary Patterns and Hybrid Origin of Modern Species
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433057; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license. Cardoni, Piredda et al. High-Throughput Sequencing of Fagus 5S-IGS rDNA High-Throughput Sequencing of 5S-IGS rDNA in Fagus L. (Fagaceae) reveals complex evolutionary patterns and hybrid origin of modern species Simone Cardoni1, Roberta Piredda2, Thomas Denk3, Guido W. Grimm4, Aristotelis C. Papageorgiou5, Ernst-Detlef Schulze6, Anna Scoppola1, Parvin Salehi Shanjani7, Yoshihisa Suyama8, Nobuhiro Tomaru9, James R.P. Worth10, Marco Cosimo Simeone1* Affiliations 1Department of Agricultural and Forestry Science (DAFNE), Università degli studi della Tuscia, 01100 Viterbo, Italy 2Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy 3Swedish Museum of Natural History, Stockholm, 10405 Sweden 4Unaffiliated, Orléans, France, ORCID ID: 0000-0003-0674-3553 5Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece 6Max-Planck Institute for Biogeochemistry, 07701 Jena, Germany 7Natural Resources Gene Bank, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization, Tehran, Iran 8Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi 989-6711 Japan 9Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, 464- 8601, Japan 10Ecological Genetics Laboratory, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687 Japan * Corresponding author Marco Cosimo Simeone; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433057; this version posted February 27, 2021. -
Title Insect-Flower Relationship in the Temperate Deciduous Forest Of
Insect-flower Relationship in the Temperate Deciduous Forest Title of Kibune, Kyoto : An Overview of the Flowering Phenology and the Seasonal Pattern of Insect Visits INOUE, Tamiji; KATO, Makoto; KAKUTANI, Takehiko; Author(s) SUKA, Takeshi; ITINO, Takao Contributions from the Biological Laboratory, Kyoto Citation University (1990), 27(4): 377-464 Issue Date 1990-08-20 URL http://hdl.handle.net/2433/156100 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Contr. biol, Lab. Kyoto Univ,, Vol. 27, pp. 377-463 Issued 20 August 1990 Insect-flower Relationship in the Temperate Deciduous 'Forest of Kibune, Kyoto: An Overview of the Flowering Phenology and the Seasonal Pattern of Insect Visits' Tamiji INouE, Makoto KATo, Takehiko KAKuTANi, Takeshi SuKA and Takao IT[No ABSTRACT In 1984 -1987, insect visitors to fiowers werebimonthly or weekly surveyed on a total of 115 plant species or 49 families in the temperate deciduous forest of Kibune, Kyoto, Japan. Flowering was observed from early April to early November, The number of plant species that concurrently bloomed was nine to 17 from May to September. Themonthly total number of flowering plant species peaked twice in May (34 spp.) and September (33 spp,). From April to August, floweringperiods werestaggered arnong congeneric woody species, e.g., Lindera, Rubus, Hydrangea and Deutzia. A total of 4603 individuals of 889 species in 12 orders of Insecta and 2 orders of Arachnoidea were collected. The most abundant order was Hymeno- ptera (46 O/o of the total number of individuals), and it was followed by Diptera (30 O/o) and Coleoptera (140/o). -
Improvement and Silviculture of Beech Proceedings from the 7Th
Improvement and Silviculture of Beech Proceedings from the 7th International Beech Symposium IUFRO Research Group 1.10.00 10-20 May 2004, Tehran, Iran Editors: Khosro Sagheb-Talebi, Palle Madsen and Kazuhiko Terazawa Research Institute of Forests and Rangelands, Iran University of Tehran, Faculty of Natural Resources, Iran Forest, Range and Watershed Organization, Iran Danish Centre for Forest, Landscape and Planning, Denmark Hokkaido Forestry Research Institute, Japan Improvement and Silviculture of Beech Proceedings from the 7th International Beech Symposium IUFRO Research Group 1.10.00 10-20 May 2004, Tehran, Iran Editors: Khosro Sagheb-Talebi, Palle Madsen and Kazuhiko Terazawa Published by Research Insitute of Forests and Rangelands (RIFR), Iran Scientific committee: • Amani Manuchehr (Iran) • Assareh Mohammad Hassan (Iran) • Kerr Garry (England) • Lüpke Burghard von (Germany) • Madsen Palle (Denmark) • Marvie-Mohadjer Mohammad Reza (Iran) • Mosandle Reinhard (Germany) • Sagheb-Talebi Khosro (Iran) • Salehi Parviz (Iran) • Schütz Jean-Philippe (Switzerland) • Seifollahian Majid (Iran) • Teissier du Cros Eric (France) • Terazawa Kazuhiko (Japan) • Zahedi Amiri Ghavomedin (Iran) * Akhavan Reza (Secretary) Executive committee: • Boujari Jamshid • Ebrahimi Rastaghi Morteza • Etemad Vahid • Khodaie Mahammad Bagher • Pourtahmasi Kambiz • Rahimiyan Mohammed Sadegh • Sagheb-Talebi Khosro • Yazdani Shahbaz * Hassani Majid (Secretary) 2 Welcome address Forests in Iran, Constraints and Strategies By definition, Iran is categorized a country with low forest cover. Only 7.6% of its land is covered by forest ecosystems. Despite of this the vital role of these ecosystems can not be ignored, dependence of daily life of local population, recreational affects, soil and water conservation, and more important, its facilitation for sustaining high biodiversity of the country already have been recognized. -
Hideaki OHBA A,* and Shinobu AKIYAMA B
J. Jpn. Bot. 92(4): 245–247 (2017) a, b Hideaki OHBA * and Shinobu AKIYAMA : Notes on the Genus Hortensia (Hydrangeaceae) aDepartment of Botany, the University Museum, the University of Tokyo, 7-3-1, Hongo, Tokyo, 113-0033 JAPAN; bDepartment of Botany, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, 305-0005 JAPAN *Corresponding author: [email protected] Summary: New combinations of Hortensia, (2) Treatment of Hydrangea yayeyamensis Hortensia hirta f. albiflora and f. laminalis, Koidz. and H. formosana Koidz. and Hortensia chinensis var. yayeyamensis Hydrangea yayeyamensis and H. formosana are proposed. Hortensia formosana Koidz. is were simultaneously published by Koidzumi lectotypified here. (1929). In the protologue of H. yayeyamensis Koidzumi (1929) wrote “Hab. Loochoo: insula The authors published the generic segregation Yayeyama. Formosa: prope Tamsuy (Oldham of some sections and subsections of the genus no. 110. pro parte in ann[sic] 1864.) Herb. Kew.” Hydrangea sensu De Smet et al. (2015) (Ohba Though McClintock (1957) wrote that Oldham and Akiyama 2016). Some additional new 110 (“pro parte”) is the only specimen cited of combinations need to be published. H. yayeyamensis, Koidzumi cited also “Loochoo: insula Yayeyama.” “Loochoo: insula Yayeyama” (1) New combinations of forms of Hortensia is recognized as a citation of a specimen. hirta Masamune (1958) recognized plants in Yaeyama Hortensia hirta (Thunb.) H. Ohba & S. islands to be distinguished from those in Taiwan Akiyama in J. Jpn. Bot. 91: 348 (2016). and made a new combination, H. chinensis f. f. albiflora (Honda) H. Ohba & S. Akiyama, yayeyamensis (Koidz.) Masam. It is considered comb. -
The Complete Chloroplast Genome of Fagus Crenata (Subgenus Fagus) and Comparison with F
The complete chloroplast genome of Fagus crenata (subgenus Fagus) and comparison with F. engleriana (subgenus Engleriana) James R. P. Worth1, Luxian Liu2, Fu-Jin Wei1 and Nobuhiro Tomaru3 1 Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Japan 2 Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, College of Life Sciences, Henan University, Kaifeng, China 3 Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan ABSTRACT This study reports the whole chloroplast genome of Fagus crenata (subgenus Fagus), a foundation tree species of Japanese temperate forests. The genome has a total of 158,227 bp containing 111 genes, including 76 protein-coding genes, 31 tRNA genes and 4 ribosomal RNA genes. Comparison with the only other published Fagus chloroplast genome, F. engeleriana (subgenus Engleriana) shows that the genomes are relatively conserved with no inversions or rearrangements observed while the proportion of nucleotide sites differing between the two species was equal to 0.0018. The six most variable regions were, in increasing order of variability, psbK-psbI, trnG-psbfM, rpl32, trnV, ndhI-ndh and ndhD-psaC. These highly variable chloroplast regions in addition to 160 chloroplast microsatellites identified (of which 46 were variable between the two species) will provide useful genetic resources for studies of the inter- and intra-specific genetic structure and diversity of this important northern hemisphere tree genus. Subjects Biodiversity, Evolutionary Studies, Genetics, Plant Science Keywords Beech, Chloroplast SSRs, Fagaceae phylogeny, Fagus crenata, Whole chloroplast Submitted 9 January 2019 genome, Chloroplast microsatellites Accepted 24 April 2019 Published 7 June 2019 INTRODUCTION Corresponding author James R. -
2018–2019 Seed Exchange Catalog MID-ATLANTIC GROUP He 25Th Annual Edition for the First Time
The Hardy Plant Society/Mid-Atlantic Group 2018–2019 Seed Exchange Catalog MID-ATLANTIC GROUP he 25th annual edition for the first time. As you can tions and you will find plants of the Seed Exchange see, this seed program in- your garden can’t do with- TCatalog includes 974 cludes new plants not previ- out! Since some listed seed seed donations contributed ously offered as well as old is in short supply, you are en- by 58 gardeners, from begin- favorites. couraged to place your order ners to professionals. Over We’re sure you’ll enjoy early. 98 new plants were donated perusing this year’s selec- Our Seed Donors Catalog listed seed was generously contributed by our members. Where the initial source name is fol- lowed by “/”and other member names, the latter identifies those who actually selected, collected, cleaned, and then provided descriptions to the members who prepared the catalog. If a donor reported their zone, you will find it in parenthesis. Our sincere thanks to our donors—they make this Seed Exchange possible. Aquascapes Unlimited Gibson, M.M. 3177 (7) Perron, William 3321 (6) / Heffner, Randy 1114 Gregg, John 3001 (7) Plant Delights, 32 Bartlett, John 45 Haas, Joan 1277 (6a) Rifici, Stephen 3540 (7) Bennett, Teri 1865 (7) Iroki Garden 5024 (6b) Robinson, Barbara Paul 797 Berger, Clara 65 Jellinek, Susan 1607 (7a) Roper, Lisa 9968 (7a) Bittmann, Frank 2937 (6a) Jenkins Arboretum 9985 (7a) Roskoph, Zane 3645 (7a) Bowditch, Margaret 84 Kolo, Fred 507 (7) Scofield, Connie 1585 Boylan, Rebecca 2137 (6b) Kaplan, Paula West 475 (4/5) Silberstein, Steve 3436 (7a) Bricker, Matthew D. -
Lazzereschi Sara Tesi 13.5.13
UNIVERSITÀ DEGLI STUDI DELLA TUSCIA DI VITERBO DIPARTIMENTO DI SCIENZE E TECNOLOGIE PER L’AGRICOLTURA, LE FORESTE, LA NATURA E L’ENERGIA (DAFNE) Corso di Dottorato di Ricerca in Ortoflorofrutticoltura XXV Ciclo Caratterizzazione morfo-genetica con metodi biometrici e molecolari e applicazioni di tecniche colturali innovative su una collezione di germoplasma di Hydrangea spp. (s.s.d. AGR/04 ) Tesi di dottorato di Dott. Sara Lazzereschi Coordinatore del corso Tutore Dott. Giuseppe Colla Dott. Antonio Grassotti 07/06/2013 INDICE Parte generale pag. 1 1. Introduzione pag. 2 1.1. Cenni storici, origine e diffusione pag. 2 1.2. Classificazione, inquadramento sistematico e descrizione del genere pag. 4 1.2.1. Specie pag. 9 1.3. Impieghi del genere pag.17 1.4. Importanza economica, produzione e valorizzazione del genere Hydrangea pag. 20 1.5. Note di coltivazione pag. 26 2. Miglioramento genetico del genere Hydrangea pag. 30 3. Tecniche di distinzione varietale in floricoltura pag. 35 3.1. Introduzione pag. 35 3.2. Marcatori morfologici pag. 38 3.3. Marcatori biochimici (isoenzimi) pag. 38 3.4. Marcatori molecolari pag. 39 4. La caratterizzazione del genere Hydrangea : stato dell’arte pag. 47 5. Applicazione di tecniche colturali innovative pag. 52 Parte sperimentale pag. 58 6. Materiali pag. 59 6.1. Allestimento e descrizione della collezione pag. 60 I 7. Metodi pag. 64 7.1. Analisi morfometrica pag. 64 7.2. Analisi molecolare pag. 67 7.2.1. Estrazione del DNA pag. 68 7.2.2. Ottenimento di marcatori pag. 69 7.2.3. Reazione di amplificazione mediante PCR: analisi RAPD pag. -
The Complete Chloroplast Genome of [I]Fagus Crenata
A peer-reviewed version of this preprint was published in PeerJ on 7 June 2019. View the peer-reviewed version (peerj.com/articles/7026), which is the preferred citable publication unless you specifically need to cite this preprint. Worth JRP, Liu L, Wei F, Tomaru N. 2019. The complete chloroplast genome of Fagus crenata (subgenus Fagus) and comparison with F. engleriana (subgenus Engleriana) PeerJ 7:e7026 https://doi.org/10.7717/peerj.7026 The complete chloroplast genome of Fagus crenata (subgenus Fagus) and comparison with F. engleriana (subgenus Engleriana) James Worth Corresp., 1 , Luxian Liu 2 , Nobuhiro Tomaru 3 1 Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Japan 2 Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, China 3 Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan, Japan Corresponding Author: James Worth Email address: [email protected] This study reports the whole chloroplast genome of Fagus crenata (subgenus Fagus), a foundation tree species of Japanese temperate forests. The genome was a total of 158,247 bp in length containing 111 genes. Comparison with the only other published Fagus chloroplast genome, F. engeleriana (subgenus Engleriana) shows that the genomes are relatively conserved with no inversions or rearrangements observed between them and differing by 311 single nucleotide polymorphisms. The six most variable regions between the two genomes were the psbK-psbI, trnG-psbfM, trnV, rpl32, ndhD-psaC and ndhI-ndh regions. These highly variable chloroplast regions and the identification of 42 variable chloroplast SSRs found to be shared between the two species will provide useful genetic resources for studies of the inter- and intra-specific genetic structure and diversity of this important northern hemisphere tree genus. -
Genetic Diversity Estimates for the Genus Hydrangea and Development of a Molecular Key Based on SSR
RE J. AMER. Soc. HORT. SCI. 131(6):787-797. 2006. Genetic Diversity Estimates for the Genus Hydrangea and Development of a Molecular Key Based on SSR Timothy A. Rinehart USDA—ARS, Southern Horticultural Laboratory, 810 Highway 26 West, Poplarville, MS 39470 Brian E. Scheffler USDA—ARS—CGRU, Mid South Area Geno,nics Laboratory, Stoneville, MS 38776 Sandra M. Reed USDA—ARS, Floral and Nursery Plants Research Unit, Tennessee State University Nursery Research Center, McMinnville, TN 37110 AI)I)tTJoNL INDEX WORDS. Hvdrangea nacrophvlla breeding, molecular marker, Dichroa, Schizophragma, Platycrater ABSTRACT. Using 14 codominant microsatellite markers that amplify loci across 14 different Hydrangea L. species, we analyzed gene diversity and genetic similarity within Hydrangea. Samples also included Dichroa Lour., Plalycrater Sieb. and Zucc., and Schizophragma Sieb. and Zucc. genera to establish their relatedness to Hydrangea species since previous work suggests they may be closely related. Our results support the close affiliation between Macrophyllae E.M. McClint. and Petalanthe (Maxim.) Rehder subsections and their separation from the other Hydrangea species. Most of the Hydrangea species analyzed cluster within their designated sections and subsections; however, genetic distance between species within each subsection varied considerably. Our data suggest that morphological analyses which labeled H. serrata (Thuiib.) Ser. as a subspecies of H. inacrophylla (Thunb. Ex J.A. Murr.) Ser. are probably more accurate than recent genome size data suggesting H. inacrophylla ssp. inacrophylla (Thunb.) Ser. and H. macrophylla ssp. ser- rata (Thunb.) Makino are separate species. Gene diversity estimates indicate that 64.7% of the total diversity is due to differences between species and 49.7% of the overall variation is due to differences between subsections. -
Introduction Study Site Result (Number of Seedlings)
Regeneration just after clear cutting at Sugi(Cryptomeria japonica) and Hinoki(Chamaecyparis obtusa) plantation Seiji Ishibashi, Toshihiro Saito, Kazuya Omura and Haruo Sawada (University Forest in Chichibu, The University of Tokyo) Introduction Result (Number of seedlings) The area of plantation in Japan is about ten million hector and many of them has U = Species which grow upper layer grown thirty to fifty years old that reached the age for cutting. However, many forest SU = Species which grow sub-upper layer owners don't want to cut their forest because low price of timber and difficulty of S = Species which grow shrub layer regeneration by planting. Some of them plan to try naturally regeneration after clear C = Conifer species cutting. In this study, we discuss about possibility of early natural regeneration just CL = Climber species after clear cutting at conifer plantation. 160 160 40 140 140 35 120 120 30 100 100 25 80 Study Site 80 20 60 15 60 40 10 40 number trees of per plot number of trees per plot per trees of number number trees plot of per 20 The study site is located at compertment no.3 at University Forest in Chichibu, 5 20 0 0 0 ~10 11~20 21~30 31~40 41~50 51~60 61~100 101~ ~10 11~20 21~30 31~40 41~50 51~60 61~100 101~ ~10 11~20 21~30 31~40 41~50 51~60 61~100 101~ The University of Tokyo. This site was 87 years Sugi (Cryptomeria japonica) and height class (cm) height class (cm) height class (cm) lower site, after site preparation, Sep. -
Supplementary Material
Xiang et al., Page S1 Supporting Information Fig. S1. Examples of the diversity of diaspore shapes in Fagales. Fig. S2. Cladogram of Fagales obtained from the 5-marker data set. Fig. S3. Chronogram of Fagales obtained from analysis of the 5-marker data set in BEAST. Fig. S4. Time scale of major fagalean divergence events during the past 105 Ma. Fig. S5. Confidence intervals of expected clade diversity (log scale) according to age of stem group. Fig. S6. Evolution of diaspores types in Fagales with BiSSE model. Fig. S7. Evolution of diaspores types in Fagales with Mk1 model. Fig. S8. Evolution of dispersal modes in Fagales with MuSSE model. Fig. S9. Evolution of dispersal modes in Fagales with Mk1 model. Fig. S10. Reconstruction of pollination syndromes in Fagales with BiSSE model. Fig. S11. Reconstruction of pollination syndromes in Fagales with Mk1 model. Fig. S12. Reconstruction of habitat shifts in Fagales with MuSSE model. Fig. S13. Reconstruction of habitat shifts in Fagales with Mk1 model. Fig. S14. Stratigraphy of fossil fagalean genera. Table S1 Genera of Fagales indicating the number of recognized and sampled species, nut sizes, habits, pollination modes, and geographic distributions. Table S2 List of taxa included in this study, sources of plant material, and GenBank accession numbers. Table S3 Primers used for amplification and sequencing in this study. Table S4 Fossil age constraints utilized in this study of Fagales diversification. Table S5 Fossil fruits reviewed in this study. Xiang et al., Page S2 Table S6 Statistics from the analyses of the various data sets. Table S7 Estimated ages for all families and genera of Fagales using BEAST. -
Great Plants for Southern Gardens That Missed the Marketing Push©
Great Plants for Southern Gardens That Missed the Marketing Push 447 Great Plants for Southern Gardens That Missed the Marketing Push© Mark Weathington JC Raulston Arboretum at North Carolina State University, Department of Horticultural Sci- ence, Campus Box 7522, Raleigh, North Carolina 27695 Email: [email protected] INTRODUCTION The JC Raulston Arboretum (JCRA) has a 35-year history of collecting and evalu- ating new plants for introduction to the nursery industry. New plants drive the industry especially those that have a marketing push behind them. Many great landscape plants get passed over in the rush for the latest and greatest but deserve a second look. The JC Raulston Arboretum (JCRA) has grown from the first plant the JCRA planted in the mid-1970s. Conifers which were not supposed to survive in the south have grown into mature specimens. Gardens and collections have been planted, grown up, torn out, and re-established. Students have been the mainstay of the arboretum development and have done a great job when given adequate direction. The JCRA’s collection holds many great landscape plants that may never make it to the mainstream due to propagation difficulties. Other plants have shown they have great potential for the south. DECIDUOUS SHRUBS Rhododendron ‘Yoshino’ has proven its worth in the arboretum with leathery, semi- evergreen foliage and trusses of bright flowers in March. The growth habit is much different than many other evergreen azaleas and is used extensively as a hedging plant in Japan. Hydrangea hirta is an underused member of the genus that suf- fers from not having the sterile florets of other landscape hydrangeas.