Space Tourism Industry Emergence: Description and Data

Total Page:16

File Type:pdf, Size:1020Kb

Space Tourism Industry Emergence: Description and Data Space Tourism Industry Emergence: Description and Data Ken Davidian1–3 Keywords: innovation research, industry emergence, space tourism, suborbital spaceflight, infrastructure elements 1FAA Office of Commercial Space Transportation, Washington, DC, USA. 2Editor-in-Chief, New Space Journal, Mary Ann Liebert, Inc., New Rochelle, NY, USA. INTRODUCTION 3Virginia Polytechnic Institute and State University, Blacksburg, his report describes the emergence of the space VA, USA. tourism industry (or human suborbital spaceflight population [HSSFP]),* within models of the inno- T vation process and required industry resources. ABSTRACT The HSSFP is rooted in high-speed, rocket-powered, mili- This report has 2 goals. The first is to narrate the origins of the tary aviation research, and its emergence was stimulated space tourism industry using 2 models of industry evolution. The by the Ansari X PRIZE competition. This research identified first model, representing the complex and turbulent nature of HSSFP emergence events using a data collection method- the innovation process, sequences observed events into a nar- ology described in the Minnesota Innovation Research rative of industry emergence. The second model, listing the in- Program.1–3 dustry resources required for successful emergence, referred to The space tourism industry can be described as a techno- as industry infrastructure elements (IIEs), helps identify the logical niche proto-market,4 in the intermediate stages of relevant industry events from a larger number of component the innovation process, before the appearance of a dominant incidents. This research collected more than 8,400 pieces of design. To describe the space tourism emergence story, this secondary and archival data from traditional and news aggre- report employs the ‘‘fireworks’’ innovation process model.5 gator websites, distilled them into *400 significant events, This model reflects the complexity and uncontrollability of and categorized them within the 3 main components of IIEs: the innovation process in 3 periods and 12 phases (Fig. 1). Institutional Arrangements, Resource Endowments, and Pro- The first Initiation period includes phases of Extended Ge- prietary Functions. Primary data, collected via 40 interviews of station, Shock Trigger, and Submission of Initial Plans industry members, complemented the secondary data. Organiz- (entry of new firms). Next, the Developmental period is the ing the events within these models results in a rich description most complex, including phases of Proliferation (of the of the space tourism industry emergence phenomenon. The second goal of this report is to contribute to industry emer- gence research conducted by others. The data collection meth- odology in this research followed that of the Minnesota Innovation Research Project, which allows for the collectivi- *The phrase ‘‘space tourism industry’’ is commonly used by practitioners. More accurately, ‘‘space tourism’’ is an industry segment of the ‘‘launch vehicle’’ in- zation, and sharing, of data sets among multiple innovation dustry. Because the terms ‘‘industry’’ and ‘‘industry segment’’ could be interpreted researchers, based on a common definition of the innovation as including commercial actors only, academic researchers employ the respective process. Therefore, in support of the goal of collectivist data terms of ‘‘community’’ and ‘‘population,’’ encompassing both commercial and collection, the Supplementary Appendix of this report contains noncommercial actors. Therefore, from the academic perspective of organizational the full data set of space tourism industry emergence events evolution, the ‘‘launch vehicle industry’’ is categorized as a ‘‘community’’ and the (including citations), for use by like-minded industry emergence ‘‘space tourism industry’’ is more accurately labeled the ‘‘human suborbital space researchers. flight population.’’ ª Ken Davidian 2020; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are cited. DOI: 10.1089/space.2019.0040 MARY ANN LIEBERT, INC. VOL. 8 NO. 2 2020 NEW SPACE 87 DAVIDIAN Global (with XP).{ This analysis does not include firms who designed and operated suborbital vehicles (including sounding rockets) to trans- port scientific payloads, but not humans. One firm that built initial hardware but not included in this study, Copenhagen Suborbitals, started in 2008 with the goal of flying a single human on a suborbital trajectory in a rocket-powered vehi- cle, but their long-term public plans do not in- clude commercial operation. Finally, in October 2017, Elon Musk of SpaceX announced human suborbital transportation (flying to a different point on Earth) as a possible business spin-off from his orbital and deep space plans.6 As of Fig. 1. The innovation process model. Reprinted from Van de Ven et al.5(p. 25) December 2019, 2 of the 5 HSSFP firms were in operation, but neither had begun revenue- original concepts) Into Multiple Ideas, Setbacks and Mistakes, generating flights. Because no paying customer has flown in Shifting Goals and Criteria (of success), Changing of an HSSFP vehicle to date, the industry is in a pre-production Involved Personnel, Involvement of Top Managers and stage of emergence. Investors, (development of) Interorganizational Relation- This report begins with a brief description of data collection ships, and Infrastructure Development. Only after these 10 and analysis, followed by a recounting of the HSSFP emer- earlier phases have been executed to some extent does the gence story, grouping the relevant events into their respective process enter the final period of Implementation, encom- phases of the innovation process model. The report ends with passing phases of Innovation Adoption, and Implementation a brief conclusion section. The fully cited HSSFP event listing or Resource Cessation. is provided in the report Supplementary Appendix for use by The U.S. government (i.e., the Air Force and the National other researchers (with the presumption of appropriate attri- Aeronautics and Space Administration [NASA]) conducted bution). To minimize repetition between the list of references supporting research for the HSSFP in the 1950s through in the main report and the Supplementary Appendix, state- the 1970s. Between the years 1996 and 2004, the private ments of events given in this report, that would normally be Ansari X PRIZE competition stimulated many individuals cited, are not. and companies around the world to develop, and invest in, commercially viable vehicles to safely fly ordinary humans to the ‘‘edge’’ of space and back. New firms proposed many DATA vehicle designs, some as traditional rockets, and others as This section describes the collection and analysis of winged vehicles. Some vehicle designs launch from the data. This research collected individual HSSFP incidents (the ground, some from sea, while others were designed to be units of analysis) and combined them into relevant events dropped from an aircraft, or high-altitude balloon, in flight. through a 2-stage categorization process. A chart showing The entire mission, from the time the rocket fires until the the chronological sequence of HSSFP emergence events was safe return to Earth, typically lasts less than 30 min. The X created based on a framework of required industry emergence PRIZE purse was ultimately won by Scaled Composites in resources. October 2004. This current research focuses on vehicles designed to carry people to a minimum altitude of 100 km and return to the {For the remainder of this report, all HSSFP companies will be referred to by the same location on Earth. The firms included in this study all first word of their full names (i.e., Scaled, Virgin, Blue, XCOR, and Rocketplane). reached, or surpassed, the milestone of initial fabrication of a Although the XCOR Lynx Mark I was not designed to fly to 100 km, it was a full-scale vehicle as of December 2017. These include Scaled precursor to the Lynx Mark II that was. This study includes the Lynx Mark I Composites (with their vehicle, SpaceShipOne), Virgin Ga- because of the significant role it played in HSSFP development. Also, although lactic (with SpaceShipTwo), Blue Origin (with New Shepard Rocketplane technically never began full-scale manufacturing of their XP vehicle, [NS]), XCOR Aerospace (with Lynx Mark I), and Rocketplane they are included for similar reasons. 88 NEW SPACE 2020 MARY ANN LIEBERT, INC. HUMAN SUBORBITAL SPACE TRANSPORTATION INDUSTRY Data Collection ‘‘motivating and coordinating people to develop and implement This research initially collected data from industry blogs, new ideas by engaging in transactions (or relationships) with others including individual incidents dated between April 1999 and and making the adaptations needed to achieve desired outcomes within changing institutional and organizational contexts.’’3(p. 9) December 2016.7 From the *28,000 incident entries gener- ated from many different types of data sources and outlets, a Incidents were grouped into event categories of type and life search using HSSFP keywords{ reduced the list to *8,400 cycle stage. Event categories included: (1) meetings, expositions, HSSFP incidents. Industry blogs provide access to data. A and conferences, (2) launches, (3) hardware testing,
Recommended publications
  • Press Release
    National Aeronautic Association FOR IMMEDIATE RELEASE Contact: David Ivey, 703-527-0226 E-Mail: [email protected] SpaceShipOne Team Named 2004 Collier Trophy Winner Arlington, VA – SpaceShipOne, the first-ever privately financed, manned spacecraft has won the prestigious Robert J. Collier Trophy Monday, taking its place alongside the greatest advances in aviation history. The Collier Trophy has been awarded each year since 1911 by the National Aeronautic Association “for the greatest achievement in aviation in America…” SpaceshipOne went into space for the first time on June 21, 2004, when Mike Melvill piloted the craft 100 kilometers above the Earth’s surface, an altitude considered to be the beginning of space. In the fall of last year, SS1 made a pair of return trips to space within a week of each other to earn the $10 million Ansari X-Prize, given to the first team to prove that civilian manned spaceflight is feasible. The amazing vehicle was designed and built by a small firm in Mojave, California, Scaled Composites, LLC, which was founded in 1982 by aircraft designer Burt Rutan. The cost of the project, about $26 million, was covered by investor Paul G. Allen, the co-founder of Microsoft. Capable of carrying a pilot and two passengers to space, SS1 is made primarily of graphite and epoxy. It reaches space much like a rocket would, traveling straight up at many times the speed of sound after being released from its carrier ship, White Knight. It featured the revolutionary idea of a “carefree” re-entry into the Earth’s atmosphere, by reconfiguring its wings, which are then moved back into position to allow the pilot to glide the craft back to Earth.
    [Show full text]
  • October 2004
    OCTOBER 2004 OCTOBER 2004 SPACESHIPONE WINS ANSARI X PRIZE! THIS MONTH’S PROGRAM FROM: EAA.ORG MONDAY OCTOBER 11TH, 2004 EAA President congratulates fellow member Rutan on ac- complishment. • SOCIAL HOUR AT 7 P.M. October 4, 2004 - The long hours of work and anxiety paid off • MEETING AT 7:30 P.M. CHAP- for EAA member Burt Rutan and the SpaceShipOne project TER HOUSE, ENTRANCE B, team today, as pilot Brian Binnie took the homebuilt space- LAKE ELMO AIRPORT craft into space for the second time in five days to win the $10 • THE GUEST SPEAKER WILL BE million Ansari X Prize. JILL WALL OF FARNSWORTH AEROSPACE ELEMENTARY. INSIDE THIS ISSUE SPACESHIPONE WINS 1 ANSARI XPRIZE PRESIDENT’S REPORT 2 The SpaceShipOne team celebrates after Monday's success- TREASURER’S REPORT 3 ful flight that captured the $10 million Ansari X Prize. On the podium in front of SpaceShipOne are (from left): X Prize WEINER WITHHOLDS BILL 3 president Dr. Peter H. Diamandis; Paul Allen, who provided GA SECURITY 4 financial support; aircraft designer Burt Rutan; Monday's SpaceShipOne pilot Brian Binnie; and Sir Richard Branson, CEO of the Virgin Group. (Photo by Jim Campbell, Aero SEPTEMBER MEETING 6 MINUTES News Network. All rights reserved.) VIRGIN LICENSES 9 EAA president Tom Poberezny, who had been present at Mo- SPACESHIPONE jave, Calif., last Wednesday for the first successful X Prize (Continued on page 7) HTTP://WWW.EAA54.ORG EAA CHAPTER 54 THE BEACON PRESIDENT’S COLUMN BY PAUL HOVE Fall is definitely here. The temperatures have been down to freezing and back up to 80 de- grees in a single day.
    [Show full text]
  • Virgin Galactic Announces First Fully Crewed Spaceflight
    Virgin Galactic Announces First Fully Crewed Spaceflight Test Flight Window for Unity 22 Mission Opens July 11 Four Mission Specialists to Evaluate Virgin Galactic Astronaut Experience Virgin Galactic Founder Sir Richard Branson Among Mission Specialists First Global Livestream of Virgin Galactic Spaceflight LAS CRUCES, N.M. July 1, 2021 - Virgin Galactic Holdings, Inc. (NYSE: SPCE) (the “Company” or “Virgin Galactic”), a vertically integrated aerospace and space travel company, today announced that the fligHt window for the next rocket-powered test flight of its SpaceShipTwo Unity opens July 11, pending weather and technical checks. The “Unity 22” mission will be the twenty-second flight test for VSS Unity and the Company’s fourth crewed spaceflight. It will also be the first to carry a full crew of two pilots and four mission specialists in tHe cabin, including the Company’s founder, Sir Richard Branson, who will be testing the private astronaut experience. Building on tHe success of the Company’s most recent spaceflight in May, Unity 22 will focus on cabin and customer experience objectives, including: • Evaluating the commercial customer cabin with a full crew, including the cabin environment, seat comfort, the weightless experience, and the views of Earth that the spaceship delivers — all to ensure every moment of the astronaut’s journey maximizes the wonder and awe created by space travel • Demonstrating tHe conditions for conducting human-tended research experiments • Confirming the training program at Spaceport America supports the spaceflight experience For the first time, Virgin Galactic will share a global livestream of the spaceflight. Audiences around the world are invited to participate virtually in tHe Unity 22 test flight and see first-hand the extraordinary experience Virgin Galactic is creating for future astronauts.
    [Show full text]
  • Mitchell Thomas JOS Article
    H-SC Journal of Sciences (2017) Vol. VI Thomas Mars: A prospect for settlement Mitchell H. Thomas’17 Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943 The exploration of Mars was once left to the imagination. However, in recent years, the topic of exploring Mars has become more realistic and increasingly popular in news articles and scientific communities. Technology developed in the previous half-century have already allowed humans to send rovers to Mars in order to retrieve some basic data about the planet. Current technological advancements are resulting in reusable rockets that could one day travel between Earth and Mars. Exploration and colonization of Mars are important for the development of research on the planet and the search for life. Current data is limited, but shows that the conditions on Mars could have supported life in the past. To further our knowledge of the red planet, The atmosphere surrounding Earth is nearly organizations like NASA and companies like SpaceX one-hundred times denser than that of Mars and its are developing plans to colonize Mars. Many composition is crucial to life. According to NASA, the obstacles stand in the way before humans can reach Earth’s atmosphere is comprised of 78% Nitrogen, and colonize the red planet. However, Mars is the 21% Oxygen, and 1% Other. On Mars, the sparse best option for interplanetary colonization and the atmosphere is comprised of nearly 96% Carbon most feasible way to research current and future life Dioxide, less than 2% Argon, less than 2% Nitrogen, on a planet other than Earth.
    [Show full text]
  • Aerospace Industrial Park Planned Near Airport by Brook Stockberger
    Aerospace industrial park planned near airport By Brook Stockberger Sun-News Business Editor Las Cruces Sun-News LAS CRUCES — Business owners who want to locate near the Las Cruces International Airport in the not-too-distant future will be greeted by the site of a 170- acre industrial park — within an industrial park. That's the vision of the Rocket Racing League (RRL). The league, which has offices in Las Cruces and plans to house its facilities adjacent to the airport, hopes to buy from the city a chunk of property that sits between Interstate 10 and the airport. The land is part of a larger area known as the West Mesa Industrial Park and includes property on both sides of the highway. The company — a NASCAR-style racing league that intends to race rocket-powered aircraft — would then develop a business park for companies that work with and support the league as well as other aerospace-related firms. "Imagine every corporate executive that lands here, and they drive down this road and they see a Class A business park," said John Hummer, chief executive officer and a partner with Steinborn Inc.. Hummer heads up a limited liability company called RRL Land Development LLC, that will manage development of the proposed industrial park. "I think it'll help fill a definite need for a better-quality business park that would be appealing to high-tech companies," said Steve Vierck, president and CEO of the Mesilla Valley Economic Development Alliance. The West Mesa Strategic Committee voted recently to support the league's request and will recommend approval of the purchase to the Las Cruces City Council.
    [Show full text]
  • Northrop Grumman
    Northrop Grumman Northrop Grumman Corporation Type Public (NYSE: NOC) 1927 (in 1994, company took on Founded current name), Denver, Colorado Headquarters Los Angeles, California Ronald Sugar, Chairman and Key people CEO Industry Aerospace and defense Aircraft carriers, military aircraft, satellites, missile defense Products systems, advanced electronic sensors and systems, Information Technology, ships, and systems Revenue $30.15 Billion USD (2006) Net income $1.59 Billion USD (2006) Employees 123,600 (2007) Website NorthropGrumman.com Northrop Grumman Corporation (NYSE: NOC) is an aerospace and defense conglomerate that is the result of the 1994 purchase of Grumman by Northrop. The company is the third largest defense contractor for the U.S. military[1], and the number-one builder of naval vessels. Northrop Grumman employs over 122,000 people worldwide[2]. Its 2006 annual revenue is reported at US$30 billion. Northrop Grumman ranks #73 on the 2007 Fortune 500 list of U.S. industrial companies.[3] Products and services Some of the most expensive vehicles in the world, such as this B-2 Spirit strategic bomber, are made by Northrop Grumman and purchased by the United States government. Naval 1 Northrop Grumman's many products are made by separate business units. Newport News Shipbuilding manufactures all U.S. aircraft carriers, and is the only company capable of building Nimitz-class supercarriers. It also produces a large percentage of U.S. nuclear submarines. A separate sector, Northrop Grumman Ship Systems, produces amphibious assault ships and many other commercial and military craft, including icebreakers, tankers, and cargo ships. In a partnership with Science Applications International Corporation, Northrop Grumman provides naval engineering and architecture services as well as naval maintenance services Aerospace A BQM-74 Chukar unmanned aerial drone launches from a U.S.
    [Show full text]
  • Reusable Suborbital Market Characterization
    Reusable Suborbital Market Characterization Prepared by The Tauri Group for Space Florida March 2011 Introduction Purpose: Define and characterize the markets reusable suborbital vehicles will address Goals Define market categories Identify market drivers Characterize current activities Provide basis for future market forecasting (Note that this study is not a forecast) Benefits Shared understanding improves quality and productivity of industry discourse A consistent taxonomy enables communications across the community, with Congress, press, and investors Accessible information helps industry participants assess opportunities, plan and coordinate activities, seek funding, and budget Proprietary www.taurigroup.com 2 Agenda Methodology Suborbital spaceflight attributes and vehicles Value proposition Characterization and analysis of markets Commercial human spaceflight Basic and applied research Aerospace technology test and demonstration Remote sensing Education Media & PR Point-to-point transportation Conclusions Proprietary www.taurigroup.com 3 Methodology Literature review and data Analysis and findings collection Vehicles Articles, reports, and publications Payload types Available launch and research Markets datasets Opportunities Applicable payloads Challenges Initial customers Users Interviews Economic buyers Researchers Launch service providers Funding agencies Potential commercial customers Users Proprietary www.taurigroup.com 4 Reusable Suborbital Vehicles Industry catalyzed by Ansari X
    [Show full text]
  • U.S. Human Space Flight Safety Record As of July 20, 2021
    U.S. Human Space Flight Safety Record (As of 20 July 2021) Launch Type Total # of Total # People Total # of Total # of People on Died or Human Space Catastrophic Space Flight Seriously Flights Failures6 Injured3 Orbital (Total) 9271 17 1664 3 Suborbital 2332 3 2135 2 (Total) Total 1160 20 379 5 § 460.45(c) An operator must inform each space flight participant of the safety record of all launch or reentry vehicles that have carried one or more persons on board, including both U.S. government and private sector vehicles. This information must include— (1) The total number of people who have been on a suborbital or orbital space flight and the total number of people who have died or been seriously injured on these flights; and (2) The total number of launches and reentries conducted with people on board and the number of catastrophic failures of those launches and reentries. Federal Aviation Administration AST Commercial Space Transportation Footnotes 1. People on orbital space flights include Mercury (Atlas) (4), Gemini (20), Apollo (36), Skylab (9), Space Shuttle (852), and Crew Dragon (6) a. Occupants are counted even if they flew on only the launch or reentry portion. The Space Shuttle launched 817 humans and picked up 35 humans from MIR and the International Space Station. b. Occupants are counted once reentry is complete. 2. People on suborbital space flights include X-15 (169), M2 (24), Mercury (Redstone) (2), SpaceShipOne (5), SpaceShipTwo (29), and New Shepard System (4) a. Only occupants on the rocket-powered space bound vehicles are counted per safety record criterion #11.
    [Show full text]
  • Space Policy Directive 1 New Shepard Flies Again 5
    BUSINESS | POLITICS | PERSPECTIVE DECEMBER 18, 2017 INSIDE ■ Space Policy Directive 1 ■ New Shepard fl ies again ■ 5 bold predictions for 2018 VISIT SPACENEWS.COM FOR THE LATEST IN SPACE NEWS INNOVATION THROUGH INSIGNT CONTENTS 12.18.17 DEPARTMENTS 3 QUICK TAKES 6 NEWS Blue Origin’s New Shepard flies again Trump establishes lunar landing goal 22 COMMENTARY John Casani An argument for space fission reactors 24 ON NATIONAL SECURITY Clouds of uncertainty over miltary space programs 26 COMMENTARY Rep. Brian Babin and Rep. Ami Ber We agree, Mr. President,. America should FEATURE return to the moon 27 COMMENTARY Rebecca Cowen- 9 Hirsch We honor the 10 Paving a clear “Path” to winners of the first interoperable SATCOM annual SpaceNews awards. 32 FOUST FORWARD Third time’s the charm? SpaceNews will not publish an issue Jan. 1. Our next issue will be Jan. 15. Visit SpaceNews.com, follow us on Twitter and sign up for our newsletters at SpaceNews.com/newsletters. ON THE COVER: SPACENEWS ILLUSTRATION THIS PAGE: SPACENEWS ILLUSTRATION FOLLOW US @SpaceNews_Inc Fb.com/SpaceNewslnc youtube.com/user/SpaceNewsInc linkedin.com/company/spacenews SPACENEWS.COM | 1 VOLUME 28 | ISSUE 25 | $4.95 $7.50 NONU.S. CHAIRMAN EDITORIAL CORRESPONDENTS ADVERTISING SUBSCRIBER SERVICES Felix H. Magowan EDITORINCHIEF SILICON VALLEY BUSINESS DEVELOPMENT DIRECTOR TOLL FREE IN U.S. [email protected] Brian Berger Debra Werner Paige McCullough Tel: +1-866-429-2199 Tel: +1-303-443-4360 [email protected] [email protected] [email protected] Fax: +1-845-267-3478 +1-571-356-9624 Tel: +1-571-278-4090 CEO LONDON OUTSIDE U.S.
    [Show full text]
  • Aerospace-America-April-2019.Pdf
    17–21 JUNE 2019 DALLAS, TX SHAPING THE FUTURE OF FLIGHT The 2019 AIAA AVIATION Forum will explore how rapidly changing technology, new entrants, and emerging trends are shaping a future of flight that promises to be strikingly different from the modern global transportation built by our pioneers. Help shape the future of flight at the AIAA AVIATION Forum! PLENARY & FORUM 360 SESSIONS Hear from industry leaders and innovators including Christopher Emerson, President and Head, North America Region, Airbus Helicopters, and Greg Hyslop, Chief Technology Officer, The Boeing Company. Keynote speakers and panelists will discuss vertical lift, autonomy, hypersonics, and more. TECHNICAL PROGRAM More than 1,100 papers will be presented, giving you access to the latest research and development on technical areas including applied aerodynamics, fluid dynamics, and air traffic operations. NETWORKING OPPORTUNITIES The forum offers daily networking opportunities to connect with over 2,500 attendees from across the globe representing hundreds of government, academic, and private institutions. Opportunities to connect include: › ADS Banquet (NEW) › AVIATION 101 (NEW) › Backyard BBQ (NEW) › Exposition Hall › Ignite the “Meet”ing (NEW) › Meet the Employers Recruiting Event › Opening Reception › Student Welcome Reception › The HUB Register now aviation.aiaa.org/register FEATURES | APRIL 2019 MORE AT aerospaceamerica.aiaa.org The U.S. Army’s Kestrel Eye prototype cubesat after being released from the International Space Station. NASA 18 30 40 22 3D-printing solid Seeing the far Managing Getting out front on rocket fuel side of the moon drone traffi c Researchers China’s Chang’e-4 Package delivery alone space technology say additive “opens up a new could put thousands manufacturing is scientifi c frontier.” of drones into the sky, U.S.
    [Show full text]
  • Burt Rutan Got His Educational Start at Cal Poly
    California Polytechnic State University Sept. 29, 2004 FOR IMMEDIATE RELEASE Contact: Teresa Hendrix Public Affairs (805) 756-7266 Media Advisory: Burt Rutan Got His Educational Start at Cal Poly To: News, science, higher education, engineering and feature writers and editors From: Cal Poly -- California Polytechnic State University, San Luis Obispo, California Re: SpaceShipOne designer, Voyager designer Burt Rutan If you are working on biography stories or feature stories about aeronautical design pioneer Burt Rutan, you may want to mention Rutan is a graduate of Cal Poly’s nationally-recognized College of Engineering. Burt Rutan graduated from Cal Poly in 1965 with a bachelor’s degree in aeronautical engineering. His Senior Project won the national student paper competition of the American Institute of Aeronautics and Astronautics that year. Rutan was awarded Cal Poly's first honorary doctorate in 1987. Rutan's SpaceShipOne made history again this morning (Sept. 29) attaining a height of 67 miles during a flight over the Mojave Desert. Piloted by Mike Melvill, SpaceShipOne again landed safely. Watch the launch on the Ansari X-Prize Web site:http://web1-xprize.primary.net/launch.php Read about it in the Los Angeles Times. In its maiden spaceflight n June 2004, the craft landed safely in the Mojave Desert after flying into space, reaching an altitude of 62.5 miles. Rutan has partnered with Microsoft's Paul Allen to create the first private aircraft to travel into space in a quest to claim the $10 million prize in the Ansari X-Flight competition. This week, British billionaire Richard Branson announced plans to buy a fleet of Rutan's aircraft to begin offering commercial flights to the edge of space.
    [Show full text]
  • Capcom Volume 26 Number 3 January/February 2016
    your window to space capcom Volume 26 Number 3 January/February 2016 CapCom is published by Midlands Spaceflight Society www.midspace.org.uk Editor: Mike Bryce | President: David J Shayler | Secretary: Dave Evetts Honorary Member: Helen Sharman OBE Midlands Spaceflight Society: CapCom: Volume 26 no 3 January/February 2016 space news roundup This was the first spacewalk for a British astronaut, but also the first ESA Astronaut Tim Peake Begins sortie for the suit used by Tim Peake, which arrived on the Station in Six-Month Stay On Space Station December. Tim Kopra went first to the far end of the Station’s starboard truss, ESA astronaut Tim Peake, NASA astronaut Tim Kopra and Russian with Tim Peake following with the replacement Sequential Shunt Unit. cosmonaut commander Yuri Malenchenko arrived at the International Swapping the suitcase-sized box was a relatively simple task but one that Space Station, six hours after their launch at 11:03 GMT on 15 needed to be done safely while the clock was ticking. December 2015. To avoid high-voltage sparks, the unit could only be replaced as the The Soyuz TMA-19M spacecraft docked with the Space Station at 17:33 Station flew in Earth’s shadow, giving spacewalkers half an hour to unbolt GMT. The astronauts opened the hatch at 19:58 GMT after checking the the failed power regulator and insert and bolt down its replacement. connection between the seven-tonne Soyuz and the 400-tonne Station was airtight. Tims’ spacewalk With their main task complete, the Tims separated for individual jobs They were welcomed aboard by Russian cosmonauts Mikhail Korniyenko for the remainder of their time outside.
    [Show full text]