Magma Evolution and Ascent at Volcanic Arcs: Constraining Petrogenetic Processes Through Rates and Chronologies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Primordial Hydrogen-Helium Degassing, an Overlooked Major Energy Source for Internal Terrestrial Processes
HAIT Journal of Science and Engineering B, Volume 2, Issues 1-2, pp. 125-167 Copyright C 2005 Holon Academic Institute of Technology ° Primordial hydrogen-helium degassing, an overlooked major energy source for internal terrestrial processes 1, 2 Arie Gilat ∗ and Alexander Vol 1Geological Survey of Israel (ret.), 8 Yehoash St., Jerusalem 93152, Israel 2Enlightment Ltd. 33 David Pinsky St., Haifa 34454, Israel ∗Corresponding author: [email protected] Received 20 July 2004, revised 3 February 2005, accepted 16 February 2005 Abstract The currently accepted theories concerning terrestrial processes are lacking in accounting for a source of internal energy which: (a) are quickly focused, e.g. earthquakes and volcanic eruptions; (b) are of very high density; (c) provide very high velocities of energy re- lease; (d) have very high density of the energy transport and relatively small losses during transportation over long distances; (e) are quasi- constantly released and practically limitless. This energy release is always accompanied by H- and He-degassing. Solid solutions of H and He, and compounds of He with H, O, Si and metals were discovered in laboratory experiments of ultra-high PT-conditions; He-S, He-Cl, He- C, He-N structures can be deduced from their atomic structure and compositions of natural He-reach gases. Ultra-high PT-conditions ex- ist in the Earth’s interior; hence it seems most likely that some “exotic” compounds are present in the Earth’s core and mantle. During Earth’s accretion, primordial hydrogen and helium were trapped and stored in the planet interior as H- and He- solutions and compounds, stable only under ultrahigh PT-conditions that were dis- covered in recent experiments. -
Insight Into Subvolcanic Magma Plumbing Systems Wendy A
Insight into subvolcanic magma plumbing systems Wendy A. Bohrson Department of Geological Sciences, Central Washington University, 400 E. University Way, Ellensburg, Washington 98926, USA The Island of Hawaii, which is among the of CO2 inclusions (Bohrson and Clague, 1988; best-studied volcanic islands on Earth, provides Roedder, 1965). Rare gabbro from layer 3 of the lush ground for debates in volcanology that oceanic crust has also been identifi ed (Clague, focus on how magmatic systems evolve in space 1987a). Thus, a likely location for the deeper and time. Hawaiian volcanoes evolve through chamber is at the base of the oceanic crust. The four eruptive stages that are characterized by relatively low magma supply associated with distinct composition, magma supply rate, and the pre-shield and rejuvenated stages appar- Shallow magma plumbing degree of mantle melting (e.g., Clague, 1987a, ently precludes any persistent crustal magma system 1987b, and references therein). The pre-shield plumbing system; spinel lherzolite and garnet (shield stage) stage, fi rst identifi ed on Loihi Seamount (Moore pyroxenite xenoliths originate in the mantle et al., 1982), erupts mostly alkalic basalt and based on geobarometry, compositional charac- Deep basanite that refl ect a small magma supply and teristics, and other constraints (e.g., Frey and magma plumbing derive from relatively small degrees of mantle Roden, 1987; Frey, 1982). system melting. During the shield stage, tholeiitic Although rare on Hawaiian volcanoes, the (shield and post-shield stage) basalt (like that currently erupted at Kilauea more evolved compositions also provide insight and Mauna Loa) dominates, and refl ects com- into plumbing system dynamics. -
Ignimbrites to Batholiths Ignimbrites to Batholiths: Integrating Perspectives from Geological, Geophysical, and Geochronological Data
Ignimbrites to batholiths Ignimbrites to batholiths: Integrating perspectives from geological, geophysical, and geochronological data Peter W. Lipman1,* and Olivier Bachmann2 1U.S. Geological Survey, Mail Stop 910, Menlo Park, California 94028, USA 2Institute of Geochemistry and Petrology, ETH Zurich, CH-8092 Zürich, Switzerland ABSTRACT related intrusions cooled and solidified soon shorter. Magma-supply estimates (from ages after zircon crystallization, as magma sup- and volcano-plutonic volumes) yield focused Multistage histories of incremental accu- ply waned. Some researchers interpret these intrusion-assembly rates sufficient to gener- mulation, fractionation, and solidification results as recording pluton assembly in small ate ignimbrite-scale volumes of eruptible during construction of large subvolcanic increments that crystallized rapidly, leading magma, based on published thermal models. magma bodies that remained sufficiently to temporal disconnects between ignimbrite Mid-Tertiary processes of batholith assembly liquid to erupt are recorded by Tertiary eruption and intrusion growth. Alternatively, associated with the SRMVF caused drastic ignimbrites, source calderas, and granitoid crystallization ages of the granitic rocks chemical and physical reconstruction of the intrusions associated with large gravity lows are here inferred to record late solidifica- entire lithosphere, probably accompanied by at the Southern Rocky Mountain volcanic tion, after protracted open-system evolution asthenospheric input. field (SRMVF). Geophysical -
Hawaiian Volcanoes: from Source to Surface Site Waikolao, Hawaii 20 - 24 August 2012
AGU Chapman Conference on Hawaiian Volcanoes: From Source to Surface Site Waikolao, Hawaii 20 - 24 August 2012 Conveners Michael Poland, USGS – Hawaiian Volcano Observatory, USA Paul Okubo, USGS – Hawaiian Volcano Observatory, USA Ken Hon, University of Hawai'i at Hilo, USA Program Committee Rebecca Carey, University of California, Berkeley, USA Simon Carn, Michigan Technological University, USA Valerie Cayol, Obs. de Physique du Globe de Clermont-Ferrand Helge Gonnermann, Rice University, USA Scott Rowland, SOEST, University of Hawai'i at M noa, USA Financial Support 2 AGU Chapman Conference on Hawaiian Volcanoes: From Source to Surface Site Meeting At A Glance Sunday, 19 August 2012 1600h – 1700h Welcome Reception 1700h – 1800h Introduction and Highlights of Kilauea’s Recent Eruption Activity Monday, 20 August 2012 0830h – 0900h Welcome and Logistics 0900h – 0945h Introduction – Hawaiian Volcano Observatory: Its First 100 Years of Advancing Volcanism 0945h – 1215h Magma Origin and Ascent I 1030h – 1045h Coffee Break 1215h – 1330h Lunch on Your Own 1330h – 1430h Magma Origin and Ascent II 1430h – 1445h Coffee Break 1445h – 1600h Magma Origin and Ascent Breakout Sessions I, II, III, IV, and V 1600h – 1645h Magma Origin and Ascent III 1645h – 1900h Poster Session Tuesday, 21 August 2012 0900h – 1215h Magma Storage and Island Evolution I 1215h – 1330h Lunch on Your Own 1330h – 1445h Magma Storage and Island Evolution II 1445h – 1600h Magma Storage and Island Evolution Breakout Sessions I, II, III, IV, and V 1600h – 1645h Magma Storage -
Arxiv:1906.03473V2 [Physics.Geo-Ph] 30 Dec 2019 Double the Carbon Solubility in fluids Co-Existing with Sediments Subducted Along Cool Geotherms
Devolatilization of Subducting Slabs, Part II: Volatile Fluxes and Storage Meng Tian,1, ∗ Richard F. Katz,1 David W. Rees Jones,1, 2, 3 and Dave A. May1 1Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK. 2Department of Earth Sciences, Bullard Laboratories, University of Cambridge, Madingley Road, Cambridge, CB3 0EZ, UK. 3School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK Subduction is a crucial part of the long-term water and carbon cycling between Earth's exo- sphere and interior. However, there is broad disagreement over how much water and carbon is liberated from subducting slabs to the mantle wedge and transported to island-arc volcanoes. In the companion paper Part I, we parameterize the metamorphic reactions involving H2O and CO2 for representative subducting lithologies. On this basis, a two-dimensional reactive transport model is constructed in this Part II. We assess the various controlling factors of CO2 and H2O release from subducting slabs. Model results show that up-slab fluid flow directions produce a flux peak of CO2 and H2O at subarc depths. Moreover, infiltration of H2O-rich fluids sourced from hydrated slab mantle enhances decarbonation or carbonation at lithological interfaces, increases slab surface fluxes, and redistributes CO2 from basalt and gabbro layers to the overlying sedimentary layer. As a result, removal of the cap sediments (by diapirism or off-scraping) leads to elevated slab surface CO2 and H2O fluxes. The modelled subduction efficiency (the percentage of initially subducted volatiles retained until ∼200 km deep) of H2O and CO2 is increased by open-system effects due to fractionation within the interior of lithological layers. -
Insights Into the Recurrent Energetic Eruptions That Drive Awu Among the Deadliest Volcanoes on Earth
Insights into the recurrent energetic eruptions that drive Awu among the deadliest volcanoes on earth Philipson Bani1, Kristianto2, Syegi Kunrat2, Devy Kamil Syahbana2 5 1- Laboratoire Magmas et Volcans, Université Blaise Pascal - CNRS -IRD, OPGC, Aubière, France. 2- Center for Volcanology and Geological Hazard Mitigation (CVGHM), Jl. Diponegoro No. 57, Bandung, Indonesia Correspondence to: Philipson Bani ([email protected]) 10 Abstract The little known Awu volcano (Sangihe island, Indonesia) is among the deadliest with a cumulative death toll of 11048. In less than 4 centuries, 18 eruptions were recorded, including two VEI-4 and three VEI-3 eruptions with worldwide impacts. The regional geodynamic setting is controlled by a divergent-double-subduction and an arc-arc collision. In that context, the slab stalls in the mantle, undergoes an increase of temperature and becomes prone to 15 melting, a process that sustained the magmatic supply. Awu also has the particularity to host alternatively and simultaneously a lava dome and a crater lake throughout its activity. The lava dome passively erupted through the crater lake and induced strong water evaporation from the crater. A conduit plug associated with this dome emplacement subsequently channeled the gas emission to the crater wall. However, with the lava dome cooling, the high annual rainfall eventually reconstituted the crater lake and created a hazardous situation on Awu. Indeed with a new magma 20 injection, rapid pressure buildup may pulverize the conduit plug and the lava dome, allowing lake water injection and subsequent explosive water-magma interaction. The past vigorous eruptions are likely induced by these phenomena, a possible scenario for the future events. -
Large-Scale Inflation of Tungurahua Volcano (Ecuador) Revealed by Persistent Scatterers SAR Interferometry J
Large-scale inflation of Tungurahua volcano (Ecuador) revealed by Persistent Scatterers SAR interferometry J. Champenois, V. Pinel, S. Baize, L. Audin, H. Jomard, A. Hooper, A. Alvarado, H. Yepes To cite this version: J. Champenois, V. Pinel, S. Baize, L. Audin, H. Jomard, et al.. Large-scale inflation of Tungurahua vol- cano (Ecuador) revealed by Persistent Scatterers SAR interferometry. Geophysical Research Letters, American Geophysical Union, 2014, 41 (16), pp.5821-5828. 10.1002/2014GL060956. hal-02614039 HAL Id: hal-02614039 https://hal.archives-ouvertes.fr/hal-02614039 Submitted on 20 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GeophysicalResearchLetters RESEARCH LETTER Large-scale inflation of Tungurahua volcano (Ecuador) 10.1002/2014GL060956 revealed by Persistent Scatterers SAR interferometry Key Points: J. Champenois1,2, V. Pinel2, S. Baize1, L. Audin2, H. Jomard1, A. Hooper3, A. Alvarado4, and H. Yepes2,4 • We use PS-InSAR method to detect volcanic deformation at 1Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, -
Volcan Peteroa
GEOLOGY AND GEOCHEMISTRY OF THE ACTIVE AZUFRE-PLANCHON-PETEROA VOLCANIC CENTER (35015 ' S, SOUTHERN ANDES): IMPLICATIONS FOR CORDILLERAN ARC MAGMATISM by Daniel Richard Tormey B.S. Civil Engineering and Geology, Stanford University (1983) Submitted to the Department of Earth, Atmospheric, and Planetary Sciences In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology February, 1989 ©Daniel Richard Tormey, 1989. All rights reserved The author hereby grants to M.I.T. permission to reproduce and distribute copies of this thesis document in whole or in part. Signature of Author: Department of Earth, Atmospheric, & Plane6fry Sciences, MIT 6 January 1989 Certified by: I . rederick A.Frey Thesis Supervisor Accepted by: S,, Dr. Thomas H. Jordan Chairman, Departmental Committee on Graduate Students ARCH?," AP 111989 Geology and Geochemistry of the Active Azufre-Planchon-Peteroa Volcanic Center (35015'S, Southern Andes): Implications for Cordilleran Arc Magmatism by Daniel Richard Tormey Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on 6 January 1989 in partial fulfillment of the requirements for the degree of Doctor of Philosophy ABSTRACT Magmatism in convergent margin settings is the dominant mechanism of mass transfer from the mantle to the crust and of crustal growth during the Phanerozoic. The results of a detailed study of the Azufre-Planchon-Peteroa Volcanic Center and of regional comparison of volcanoes in the Southern Volcanic Zone of the Andes between 330S and 420S constrain the sources, processes, and rates operative during magmatism of the southern Andean volcanic front. The Azufre-Planchon-Peteroa Volcanic Center is located at 350 15'S, in a transition zone of crustal thickness. -
Dome Growth, Collapse, and Valley Fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from Satellite Radar
Research Paper GEOSPHERE Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar GEOSPHERE; v. 12, no. 4 measurements of topographic change doi:10.1130/GES01291.1 D.W.D. Arnold1, J. Biggs1, G. Wadge2, S.K. Ebmeier1, H.M. Odbert3,*, and M.P. Poland4 1COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4 figures; 5 tables; 1 supplemental file 2COMET (Centre for Observation and Modeling of Earthquakes, Volcanoes and Tectonics), Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, UK 3School of Earth Sciences, University of Bristol, Queen’s Road, Bristol BS8 1RJ, UK 4U.S. Geological Survey, Cascade Volcano Observatory, 1300 S.E. Cardinal Court, Building 10, Suite 100, Vancouver, Washington 98683-9589, USA CORRESPONDENCE: david .arnold@ bristol .ac.uk CITATION: Arnold, D.W.D., Biggs, J., Wadge, G., ABSTRACT Fink, 1996; Fink and Griffiths, 1998; Watts et al., 2002; Hutchison et al., 2013). In Ebmeier, S.K., Odbert, H.M., and Poland, M.P., 2016, Dome growth, collapse, and valley fill at Soufrière steady state, lava effusion rate can constrain the volume and pressure change Hills Volcano, Montserrat, from 1995 to 2013: Contri- Frequent high-resolution measurements of topography at active vol- of shallow magma reservoirs (e.g., Dvorak and Dzurisin, 1993; Harris et al., butions from satellite radar measurements of topo- canoes can provide important information for assessing the distribution and 2003, 2007; Anderson and Segall, 2011), while long-lived volcanic eruptions graphic change: Geosphere, v. -
The Transition-Zone Water Filter Model for Global Material Circulation: Where Do We Stand?
The Transition-Zone Water Filter Model for Global Material Circulation: Where Do We Stand? Shun-ichiro Karato, David Bercovici, Garrett Leahy, Guillaume Richard and Zhicheng Jing Yale University, Department of Geology and Geophysics, New Haven, CT 06520 Materials circulation in Earth’s mantle will be modified if partial melting occurs in the transition zone. Melting in the transition zone is plausible if a significant amount of incompatible components is present in Earth’s mantle. We review the experimental data on melting and melt density and conclude that melting is likely under a broad range of conditions, although conditions for dense melt are more limited. Current geochemical models of Earth suggest the presence of relatively dense incompatible components such as K2O and we conclude that a dense melt is likely formed when the fraction of water is small. Models have been developed to understand the structure of a melt layer and the circulation of melt and vola- tiles. The model suggests a relatively thin melt-rich layer that can be entrained by downwelling current to maintain “steady-state” structure. If deep mantle melting occurs with a small melt fraction, highly incompatible elements including hydro- gen, helium and argon are sequestered without much effect on more compatible elements. This provides a natural explanation for many paradoxes including (i) the apparent discrepancy between whole mantle convection suggested from geophysical observations and the presence of long-lived large reservoirs suggested by geochemical observations, (ii) the helium/heat flow paradox and (iii) the argon paradox. Geophysical observations are reviewed including electrical conductivity and anomalies in seismic wave velocities to test the model and some future direc- tions to refine the model are discussed. -
End of Chapter Question Answers Chapter 4 Review Questions 1
End of Chapter Question Answers Chapter 4 Review Questions 1. Describe the three processes that are responsible for the formation of magma. Answer: Magmas form from melting within the Earth. There are three types of melting: decompression melting, where magmas form when hot rock from deep in the mantle rises to shallower depths without undergoing cooling (the decrease in pressure facilitates the melting process); flux melting, where melting occurs due to the addition of volatiles such as CO2 and H2O; and heat transfer melting, where melting results from the transfer of heat from a hotter material to a cooler one. 2. Why are there so many different compositions of magma? Does partial melting produce magma with the same composition as the magma source from which it was derived? Answer: Magmas are formed from many different chemical constituents. Partial melting of rock yields magma that is more felsic (silicic) than the magma source because a higher proportion of chemicals needed to form felsic minerals diffuse into the melt at lower temperatures. Magma may incorporate chemicals dissolved from the solid rock through which it rises or from blocks of rock that fall into the magma. This process is called assimilation. Finally, fractional crystallization can modify magma composition as minerals crystallize out of a melt during the cooling process, causing the residual liquid to become progressively more felsic. 3. Why does magma rise from depth to the surface of the Earth? Answer: Magma rises toward the surface of the Earth because it is less dense than solid rock and buoyant relative to its surroundings. -
06EAS458-7 Melting
Why the Earth Melts EAS 458 Volcanology Lecture 7 How to Melt a Rock? . Raise the temperature . Heat production: radioactive heating, friction, impact heating . Heat conduction or advection . May occur in the crust, particularly where high-T magma intrudes low solidus country rock, otherwise, conduction is not efficient . Decompression . If the adiabatic gradient and the solidus intersect, rising rock will melt. This is the most important melting mechanism. Therefore, in a certain sense, volcanoes are like clouds. Lower the melting point . Just as salt lowers the freezing point of water, addition of some substances ( a flux) to rock can lower its melting point. Water is the most effective and most likely flux . This is very likely important in subduction zones 1 . Volcanism occurs at: . Divergent plate boundaries . Convergent plate boundaries . More rarely in plate interiors Decompression Melting . Decompression of rising mantle accounts for most volcanism on Earth, in particular, volcanism at divergent plate boundaries and in intraplate settings. With the help of thermodynamics, we can readily understand why this melting occurs. 2 Fundamental Variables . T: temperature . always absolute temperature, or Kelvins, in thermodynamics . P: pressure . force per unit area; SI unit is the Pascal (P) = 1 Newton/m2 = 1 kg-m/s2; in geology, we use MPa (106 Pa) or GPa (109 Pa). 1 atm ≈ 1 bar = 0.1 MPa. In the mantle pressure increases at a rate of ~ 1 GPa for each 35 km depth. V: volume Fundamental Variables . U: Energy . SI unit is the Joule . Q: Heat: a form of energy . W: Work: a form of energy dW = -PdV .