Processes in Biological Vision

Total Page:16

File Type:pdf, Size:1020Kb

Processes in Biological Vision PROCESSES IN BIOLOGICAL VISION: including, ELECTROCHEMISTRY OF THE NEURON This material is excerpted from the full β-version of the text. The final printed version will be more concise due to further editing and economical constraints. A Table of Contents and an index are located at the end of this paper. James T. Fulton Vision Concepts [email protected] April 30, 2017 C o p y r i g h t 2 0 0 1 James T. Fulton Higher Level Perception Pt I 15- 1 [xxx Consolidate references to Tootel ] 15 Higher Level Perception– PART I Signal (Vector) Interpretation 1 This chapter has been divided into two PARTS because of its size and the rapid advances being made in the understanding of the operation of the brain. This PART I is concerned with our understanding of the operation of the brain, as reflected in the journal literature, up to the middle of the 1980's. PART I still includes considerable material not available in any other text published through the 1990's. PART I contains a description of the cortical portion of visual system and human brain current as of the 1998 time period and the processing of visuotopic (as opposed to abstract) signals. This description is sufficiently advanced, relative to the literature that it forms an important bridge leading to the more advanced material in PART II. PART II introduces the important results of the Brain Research community as they apply to an understanding of the complete visual system. It contains a further expansion on the figures found in Part I in order to describe our knowledge of the system circa 2002. The major new material deals with the critically important role of the thalamic reticular nucleus of the diencephalon portion of the “old brain.” Its focus is on the extraction of abstract signals from the visuotopic signals presented to the feature extraction engines, and the ultimate processing of those signals. 15.1 Introduction UPDATE re 15.6 Our understanding of the functional elements of the diencephalon and mesencephalon is maturing rapidly. This makes it difficult to keep this chapter current. A particular problem concerns the engines found in the space morphologically labeled the thalamus and superior colliculus. In some cases, the literature cited will use the term pretectum of the tectum for what is becoming known as the perigeniculate nucleus of the thalamus. Part II of this chapter will provide further details in this area. This Chapter will discuss higher level (both sub-cortical or old brain and neo-cortical) signal processing occurring in the CNS. This processing will be called signal manipulation for clarity. Of more importance, it will discuss the “context” in which imagery is manipulated and stored. The subject of morphology will not be addressed in detail but the anatomy and topology of the nervous system will be. As discussed in the introduction to PART D, stage 4 of the visual system includes both perceptual and cognitive functions. The literature of cognition is very large. However, prior to the development of MRI, PET and CAT imaging techniques, it has been a very immature field Although interesting concepts have been put forward for discussion, cognition remains poorly understood. At the perceptual level, more progress has been made, helped immensely recently by the development of the above imaging techniques. Spillmann & Werner have published an excellent compendium of the state of knowledge regarding the operation of the cerebral cortex, circa 1990, based primarily on psychophysics, clinical experience, anatomy of the cortex and some cytology2. Some differences in terminology and notation will be used in this work for reasons explained below. Much less is known about the function and capability of the cerebellum. Based on this work, its role appears to be of paramount importance in the efferent signal paths of vision. 1Released: April 30, 2017 2Spillmann, L. & Werner, J. (1990) Visual perception: the neurophysiological foundations. NY: Academic Press. [My Library] 2 Processes in Biological Vision More recently, an event of major importance has occurred. Semir Zeki of University College London, a prolific writer and leader in the investigation of the visual system of the brain, experienced an epiphany. His book of 19933 reflects his paradigm shift in thinking as do his articles subsequent to that date (see the preface, prolog and epilog). He apologizes for his long allegiance to the conventional wisdom of the last century and explains how his work subsequent to the early 1980's has forced this major change. The seeds of the change are seen in the series of papers he presented in block in 19784 where he notes the absence of an intersection between the vertical and horizontal meridians in V1 and the presence of signals in V4 that cannot be traced to V1. His epilogue in that book should not be overlooked. His new paradigm still suffers from the lack of a viable model of the visual system adequate for his purposes. Lacking such a model, he still supports the conventional concept of morphologists that “form dictates function.” However, his support is greatly diluted and continuing to fade (see his 1995 paper with Becker). His concept of the cause of the putative phenomena of color constancy is still inadequate. Lacking a model, he also continues to speak of the M and P pathways in a nebulous manner, exhibiting little appreciation of the multiple classes of signals being carried by these pathways. Zeki’s new concept of the brain is as a modular system without a hierarchal structure and with multiple input pathways from the sub-cortical areas. This work is in total agreement with his new concept. However, his lack of a model constrains his interpretation at the detailed level. A better model would also provide a clearer understanding of the transform between motion in object space and the waveform parameters in temporal space that must be converted back to a vector representative of said object space motion. In the following material, the data of Zeki is used extensively in support of this work. Opposition will be taken to many of his positions in his pre-1990 articles. However, it appears he no longer supports these older positions (See Ffytche, Guy & Zeki and Beckers & Zeki below). Most of the textbooks of the 1990's and 2000 have not incorporated Zeki’s new views. This is unfortunate. His views are being confirmed daily using the newer techniques of nuclear imaging and his additional technique of magnetic interference. Tootell & Hadjikhani have recently provided additional data on this question of the existence of a V45. In the magnetic interference technique, Zeki is using very high strength magnetic fields to disturb the electrical conductance of signals within the brain. This technique shares with his earlier degenerative techniques, involving lesions, an inadequate spatial specificity and no known direct relationship with the underlying mechanisms. It is also difficult to implement because of the folding of the cortex. Crick & Koch provided a provocative article entitled Consciousness and Neuroscience in 19986. It followed a paper that generated mild turmoil in the neuroscience community by stating the obvious7,8. They took the position that a subject “is not directly conscious of the features represented by the neural activity in primary visual cortex” (V1). The “extremely schematic diagram” of Figure 1 in the 1995 paper is obviously inadequate for their purposes. The 1998 paper includes a mini-review as well as a series of hypotheses. Their premises appear to be based on good logic, using a variety of anecdotal experimental results, but lack a sufficiently detailed model to avoid argument. Their task is complicated by the lack of sufficiently specific definitions of the terms used. While the discussion 3Zeki, S. (1993) A vision of the brain. London: Blackwell Scientific Publications 4Zeki, S. (1978) J. Physiol. (London), vol. 277: Three papers pp. 227 to 290 5Tootell, R. & Hadjikhani, N. (2001) Where is ‘Dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence Cerebral Cortex vol 11, pp 298-311 6Crick, F. & Koch, C. (1998) Consciousness and Neuroscience Cerebral Cortex vol. 8, pp 97-107 7Crick, F. & Koch, C. (1995) Are we aware of neural activity in primary visual cortex? Nature vol. 375, pp 121- 123 8Pollen, D. (1995) Cortical areas in visual awareness Nature vol. 377, pp 293-294 (reply on pp 294-295) Higher Level Perception Pt I 15- 3 between Crick & Koch, and others like Pollen, are applauded, their lack of precision prevents this author from joining the debate in its current form. The models provided in this Chapter go far toward framing the hypotheses of Crick & Koch, and several other recent authors, more precisely. More specifically, the hypotheses of Crick & Koch do not recognize the multiple signal paths through the brain related to visual signals. They rely upon a simple ladder concept attributed to Fuster. One leg of the ladder relates to afferent pathways and the other to efferent pathways. The approach is similar to that discussed in Section 11.1.4. The brain is much to complex to continue to be represented by such a simple framework. A more elaborate ladder will be presented in Section 15.2.2. This ladder, along with the top level schematic diagram of chordate vision in Section 15.2.3 provide a framework sufficient to discuss many of the terms used in the above articles. They also help provide a clearer separation between terms like perception and recognition. The concept of a zombie becomes much clearer using these models. As Crick & Hoch describe the zombie conceived by philosophers in their carefree way, a zombie “is supposed to act just as normal people do but to be completely unconscious.” By using the models of this chapter, additional differentiation can be introduced into what a zombie can and cannot do.
Recommended publications
  • Vision Research Xxx (2015) Xxx–Xxx
    Vision Research xxx (2015) xxx–xxx Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Altered white matter in early visual pathways of humans with amblyopia ⇑ Brian Allen a, Daniel P. Spiegel c,d, Benjamin Thompson c,e, Franco Pestilli b,1, Bas Rokers a, ,1 a Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States b Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States c Optometry and Vision Science, University of Auckland, Auckland, New Zealand d McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Canada e Optometry and Vision Science, University of Waterloo, Canada article info abstract Article history: Amblyopia is a visual disorder caused by poorly coordinated binocular input during development. Little is Received 8 September 2014 known about the impact of amblyopia on the white matter within the visual system. We studied the Received in revised form 16 December 2014 properties of six major visual white-matter pathways in a group of adults with amblyopia (n = 10) and Available online xxxx matched controls (n = 10) using diffusion weighted imaging (DWI) and fiber tractography. While we did not find significant differences in diffusion properties in cortico-cortical pathways, patients with Keywords: amblyopia exhibited increased mean diffusivity in thalamo-cortical visual pathways. These findings sug- Amblyopia gest that amblyopia may systematically alter the white matter properties of early visual pathways. White matter 2015 Elsevier Ltd. All rights reserved. Tractography Ó Diffusion-MRI 1. Introduction absent sensitivity to binocular disparity (Holmes & Clarke, 2006; Li et al., 2011). Amblyopia is a developmental disorder that occurs when the The neuro-anatomical consequences of amblyopia in humans visual input from the two eyes is poorly correlated during early are less established than the functional deficits.
    [Show full text]
  • (Homonymous Hemianopsia): Tapping Into Blindsight
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Journal of Medical Hypotheses and Ideas (2015) 9,S8–S13 Available online at www.sciencedirect.com Journal of Medical Hypotheses and Ideas journal homepage: www.elsevier.com/locate/jmhi REGULAR ARTICLE Enhancing visual performance in individuals with cortical visual impairment (homonymous hemianopsia): Tapping into blindsight Faith A. Birnbaum a, Steven A. Hackley b, Lenworth N. Johnson a,* a Neuro-Ophthalmology Unit, Department of Ophthalmology, The Warren Alpert Medical School of Brown University/Lifespan/Rhode Island Hospital, Providence, RI, United States b Department of Psychological Sciences of the University of Missouri Columbia, Columbia, MO, United States Received 2 October 2015; revised 29 November 2015; accepted 15 December 2015 Available online 22 January 2016 KEYWORDS Abstract Homonymous hemianopsia is a type of cortical blindness in which vision is lost Blindsight; completely or partially in the left half or the right half of the field of vision. It is prevalent in Cortical blindness; approximately 12% of traumatic brain injury and 35% of strokes. Patients often experience Homonymous hemianopsia; difficulty with activities such as ambulating, eating, reading, and driving. Due to the high prevalence Augmented virtual reality; of homonymous hemianopsia and its associated difficulties, it is imperative to find methods for Vision restoration therapy visual rehabilitation in this condition. Traditional methods such as prism glasses can cause visual confusion and result in patient noncompliance. There is a large unmet medical need for improving this condition. In this article, we propose that modifying visual stimuli to activate non-cortical areas of visual processing, such as lateral geniculate nucleus and superior colliculus, may result in increased visual awareness.
    [Show full text]
  • Abnormal Retinotopic Representations in Human Visual Cortex Revealed by Fmri
    Acta Psychologica 107 -2001) 229±247 www.elsevier.com/locate/actpsy Abnormal retinotopic representations in human visual cortex revealed by fMRI Antony B. Morland a,*, Heidi A. Baseler c, Michael B. Homann a, Lindsay T. Sharpe b, Brian A. Wandell c a Psychology Department, University of London, Royal Holloway, Egham, Surrey TW20 0EX, UK b Psychology Department, Newcastle University, Newcastle, UK c Psychology Department, Stanford University, CA 93155, USA Received 1 September 2000; received in revised form 8 December 2000; accepted 11 December 2000 Abstract The representation of the visual ®eld in early visual areas is retinotopic. The point-to-point relationship on the retina is therefore maintained on the convoluted cortical surface. Func- tional magnetic resonance imaging -fMRI) has been able to demonstrate the retinotopic representation of the visual ®eld in occipital cortex of normal subjects. Furthermore, visual areas that are retinotopic can be identi®ed on computationally ¯attened cortical maps on the basis of positions of the vertical and horizontal meridians. Here, we investigate abnormal retinotopic representations in human visual cortex with fMRI. We present three case studies in which patients with visual disorders are investigated. We have tested a subject who only possesses operating rod photoreceptors. We ®nd in this case that the cortex undergoes a re- mapping whereby regions that would normally represent central ®eld locations now map more peripheral positions in the visual ®eld. In a human albino we also ®nd abnormal visual cortical activity. Monocular stimulation of each hemi®eld resulted in activations in the hemisphere contralateral to the stimulated eye. This is consistent with abnormal decussation at the optic chiasm in albinism.
    [Show full text]
  • Neuropsychologia 128 (2019) 150–165
    Neuropsychologia 128 (2019) 150–165 Contents lists available at ScienceDirect Neuropsychologia journal homepage: www.elsevier.com/locate/neuropsychologia Psychophysical and neuroimaging responses to moving stimuli in a patient with the Riddoch phenomenon due to bilateral visual cortex lesions T Michael J. Arcaroa,b,c, Lore Thalerd, Derek J. Quinlane, Simona Monacof, Sarah Khang, Kenneth F. Valyearh, Rainer Goebeli, Gordon N. Duttonj, Melvyn A. Goodalee,g, Sabine Kastnerb,c, ⁎ Jody C. Culhame,g, a Department of Neurobiology, Harvard Medical School, Boston, MA, USA b Department of Psychology, Princeton University, Princeton, NJ, USA c Princeton Neuroscience Institute, Princeton, NJ, USA d Department of Psychology, Durham University, Durham, UK e Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada f Center for Mind and Brain Sciences, University of Trento, Trento, Italy g Department of Psychology, University of Western Ontario, London, Ontario, Canada h School of Psychology, University of Bangor, Bangor, Wales i Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands j Department of Visual Science, Glasgow Caledonian University, Glasgow, UK ARTICLE INFO ABSTRACT Keywords: Patients with injury to early visual cortex or its inputs can display the Riddoch phenomenon: preserved Riddoch phenomenon awareness for moving but not stationary stimuli. We provide a detailed case report of a patient with the Riddoch Blindsight phenomenon, MC. MC has extensive bilateral lesions to occipitotemporal cortex that include most early visual Vision cortex and complete blindness in visual field perimetry testing with static targets. Nevertheless, she shows a Motion perception remarkably robust preserved ability to perceive motion, enabling her to navigate through cluttered environ- FMRI ments and perform actions like catching moving balls.
    [Show full text]
  • A Dictionary of Neurological Signs
    FM.qxd 9/28/05 11:10 PM Page i A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION FM.qxd 9/28/05 11:10 PM Page iii A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION A.J. LARNER MA, MD, MRCP(UK), DHMSA Consultant Neurologist Walton Centre for Neurology and Neurosurgery, Liverpool Honorary Lecturer in Neuroscience, University of Liverpool Society of Apothecaries’ Honorary Lecturer in the History of Medicine, University of Liverpool Liverpool, U.K. FM.qxd 9/28/05 11:10 PM Page iv A.J. Larner, MA, MD, MRCP(UK), DHMSA Walton Centre for Neurology and Neurosurgery Liverpool, UK Library of Congress Control Number: 2005927413 ISBN-10: 0-387-26214-8 ISBN-13: 978-0387-26214-7 Printed on acid-free paper. © 2006, 2001 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dis- similar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to propri- etary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omis- sions that may be made.
    [Show full text]
  • Visual Command Hallucinations in a Patient with Pure Alexia D H Ffytche, J M Lappin, M Philpot
    80 PAPER J Neurol Neurosurg Psychiatry: first published as on 5 January 2004. Downloaded from Visual command hallucinations in a patient with pure alexia D H ffytche, J M Lappin, M Philpot ............................................................................................................................... J Neurol Neurosurg Psychiatry 2004;75:80–86 Around 25% of patients with visual hallucinations secondary to eye disease report hallucinations of text. The hallucinated text conveys little if any meaning, typically consisting of individual letters, words, or nonsense letter strings (orthographic hallucinations). A patient is described with textual visual hallucinations of a very different linguistic content following bilateral occipito-temporal infarcts. The hallucinations consisted of grammatically correct, meaningful written sentences or phrases, often in the See end of article for second person and with a threatening and command-like nature (syntacto-semantic visual hallucinations). authors’ affiliations A detailed phenomenological interview and visual psychophysical testing were undertaken. The patient ....................... showed a classical ventral occipito-temporal syndrome with achromatopsia, prosopagnosia, and Correspondence to: associative visual agnosia. Of particular significance was the presence of pure alexia. Illusions of colour Dr D H ffytche, Institute of induced by monochromatic gratings and a novel motion–direction illusion were also observed, both Psychiatry, De Crespigny consistent with the residual capacities of the patient’s spared visual cortex. The content of orthographic Park, Denmark Hill, London SE5 8AF, UK; visual hallucinations matches the known specialisations of an area in the left posterior fusiform gyrus—the [email protected] visual word form area (VWFA)—suggesting the two are related. The VWFA is unlikely to be responsible for the syntacto-semantic hallucinations described here as the patient had a pure alexic syndrome, a Received 4 April 2003 In revised form 9 June 2003 known consequence of VWFA lesions.
    [Show full text]
  • Neuropsychiatry Review Series: Disorders of Visual Perception. Dominic Ffytche, Jan Dirk Blom, Marco Catani
    Neuropsychiatry Review series: Disorders of Visual perception. Dominic Ffytche, Jan Dirk Blom, Marco Catani To cite this version: Dominic Ffytche, Jan Dirk Blom, Marco Catani. Neuropsychiatry Review series: Disorders of Visual perception.. Journal of Neurology, Neurosurgery and Psychiatry, BMJ Publishing Group, 2010, 81 (11), pp.1280. 10.1136/jnnp.2008.171348. hal-00587980 HAL Id: hal-00587980 https://hal.archives-ouvertes.fr/hal-00587980 Submitted on 22 Apr 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Disorders of visual perception Dr Dominic H ffytche1,4* Dr JD Blom2,3 4 Dr M Catani 1 Department of Old Age Psychiatry, Institute of Psychiatry, King’s College London, UK 2 Parnassia Bavo Group, The Hague, the Netherlands 3 Department of Psychiatry, University of Groningen, Groningen, the Netherlands 4 Natbrainlab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King’s College London, UK *Address for Correspondence Dr D H ffytche Department of Old Age Psychiatry, Institute of Psychiatry PO70, King’s College
    [Show full text]
  • The Primary Visual Cortex, and Feedback to It, Are Not Necessary for Conscious Vision
    doi:10.1093/brain/awq305 Brain 2011: 134; 247–257 | 247 BRAIN A JOURNAL OF NEUROLOGY The primary visual cortex, and feedback to it, are not necessary for conscious vision 1 2 Dominic H. ffytche and Semir Zeki Downloaded from https://academic.oup.com/brain/article/134/1/247/292667 by guest on 30 September 2021 1 Department of Old Age Psychiatry, Institute of Psychiatry, King’s College London, UK 2 Wellcome Laboratory of Neurobiology, University College London, UK Correspondence to: Prof. S. Zeki, Wellcome Laboratory of Neurobiology, University College London, London WC1E 6BT, UK E-mail: [email protected] A compelling single case report of visual awareness (visual qualia) without primary visual cortex would be sufficient to refute the hypothesis that the primary visual cortex and the back-projections to it are necessary for conscious visual experience. In a previous study, we emphasized the presence of crude visual awareness in Patient G.Y., with a lesion of the primary visual cortex, who is aware of, and able to discriminate, fast-moving visual stimuli presented to his blind field. The visual nature of Patient G.Y.’s blind field experience has since been questioned and it has been suggested that the special circumstances of repeated testing over decades may have altered Patient G.Y.’s visual pathways. We therefore sought new evidence of visual awareness without primary visual cortex in patients for whom such considerations do not apply. Three patients with hemianopic field defects (Patient G.N. and Patient F.B. with MRI confirmed primary visual cortex lesions, Patient C.G.
    [Show full text]
  • A Dictionary of Neurological Signs.Pdf
    A DICTIONARY OF NEUROLOGICAL SIGNS THIRD EDITION A DICTIONARY OF NEUROLOGICAL SIGNS THIRD EDITION A.J. LARNER MA, MD, MRCP (UK), DHMSA Consultant Neurologist Walton Centre for Neurology and Neurosurgery, Liverpool Honorary Lecturer in Neuroscience, University of Liverpool Society of Apothecaries’ Honorary Lecturer in the History of Medicine, University of Liverpool Liverpool, U.K. 123 Andrew J. Larner MA MD MRCP (UK) DHMSA Walton Centre for Neurology & Neurosurgery Lower Lane L9 7LJ Liverpool, UK ISBN 978-1-4419-7094-7 e-ISBN 978-1-4419-7095-4 DOI 10.1007/978-1-4419-7095-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010937226 © Springer Science+Business Media, LLC 2001, 2006, 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
    [Show full text]
  • Subhi 2017.Pdf
    ANGLIA RUSKIN UNIVERSITY FACULTY OF SCIENCE AND TECHNOLOGY TOWARDS A FUNCTIONAL VISUAL FIELD ASSESSMENT FOR LOW VISION HIKMAT SUBHI A thesis in partial fulfilment of the requirements of Anglia Ruskin University for the degree of Doctor of Philosophy (PhD) Submitted: June 2017 Acknowledgments I would like to express my special appreciation and thanks to my first supervisor Dr Keziah Latham for her unwavering support and guidance during my PhD. Thanks also to my second and third supervisors, Dr Joy Myint and Dr Michael Crossland for their invaluable guidance and advice. Thank you to CamSight, the International Glaucoma Association, Huntingdonshire Society for the Blind, and RP Fighting Blindness for their help in the recruitment of participants. I am grateful also to Anglia Ruskin University Eye Clinic for providing facilities for my data collection. I would like to acknowledge the financial support from the College of Optometrists who funded this research over the last 3 years, and the Visual Function and Physiology Research Group at Anglia Ruskin University who provided funding to attend numerous national and international conferences. Thanks to my family and friends for their patience and encouragement, in particular my parents, Aisha Elmuntasser and Ahmed Subhi, and siblings, Emnani, Kalid, and Mohammed who offered much support and humour. Finally, I would like to express my deep and sincere gratitude to the individuals who gave up their time and travelled from far and wide to participate in this research. The completion of this research and thesis would not have been possible without you. i Abstract Visual field assessment is not only important to monitor disease progression, but also to reflect and predict functional difficulty in the real world.
    [Show full text]
  • Lecture 4: Lesions and Neurological Examination of Visual Function in Extrastriate Visual Cortex
    HMS230: Visual Object Recognition Gabriel Kreiman LECTURE NOTES BEWARE: These are only highly preliminary notes. In the future, they will become part of a textbook on “Visual Object Recognition”. In the meantime, please interpret with caution. Feedback is welcome at [email protected] Lecture 4: Lesions and neurological examination of visual function in extrastriate visual cortex To find out how something works, it is often useful to try to take it apart, examine its function upon removing individual components and then putting it back together. This has been an important approach in Neuroscience as well. Of course, this is easier said than done. First, different components of the system may interact with one another, such that removing one of them could lead to indirect functional consequences. Second, there could be a significant amount of redundancy, such that another component could take over, thereby shadowing the actual use of the removed piece. Third and equally important, it is not always easy to remove parts of the system (the brain) in a clean way, without affecting multiple other parts in the process. In spite of these and other challenges to be presented below, much has been learnt about the function of the visual object recognition circuitry through the study of lesions in animal models as well as in humans. 4.1 Some tools to study the functional role of brain areas in animal models Several tools are in use to examine the effect of removing or silencing a given brain area including lesion studies, cooling experiments, pharmacological intervention, imaging combined with specific cell ablation and molecular tools such as gene knock-outs.
    [Show full text]
  • Residual Perception of Biological Motion In
    Neuropsychologia 93 (2016) 301–311 Contents lists available at ScienceDirect Neuropsychologia journal homepage: www.elsevier.com/locate/neuropsychologia Residual perception of biological motion in cortical blindness ⁎ crossmark Nicolas Ruffieuxa, ,1, Meike Ramona,1, Junpeng Laoa,1, Françoise Colombob, Lisa Stacchia, ⁎ François-Xavier Borruatc, Ettore Accollab,d, Jean-Marie Annonib,d, Roberto Caldaraa, a Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, Faucigny 2, 1700 Fribourg, Switzerland b Unit of Neuropsychology and Aphasiology, Fribourg Hospital, CP, 1708 Fribourg, Switzerland c Jules-Gonin Eye Hospital, University of Lausanne, Avenue de France 15, 1004 Lausanne, Switzerland d Laboratory for Cognitive and Neurological Sciences, Department of Medicine, University of Fribourg, Ch. du Musée 5, 1700 Fribourg, Switzerland ARTICLE INFO ABSTRACT Keywords: From birth, the human visual system shows a remarkable sensitivity for perceiving biological motion. This Cortical blindness visual ability relies on a distributed network of brain regions and can be preserved even after damage of high- Biological motion level ventral visual areas. However, it remains unknown whether this critical biological skill can withstand the Residual visual ability loss of vision following bilateral striate damage. To address this question, we tested the categorization of human Striate damage and animal biological motion in BC, a rare case of cortical blindness after anoxia-induced bilateral striate Task dependency damage. The severity of his impairment, encompassing various aspects of vision (i.e., color, shape, face, and Eye tracking object recognition) and causing blind-like behavior, contrasts with a residual ability to process motion. We presented BC with static or dynamic point-light displays (PLDs) of human or animal walkers.
    [Show full text]