Journal of Nuclear Medicine, published on July 16, 2015 as doi:10.2967/jnumed.115.155929 Auger Radiopharmaceutical Therapy Targeting Prostate-Specific Membrane Antigen Ana P. Kiess,1 Il Minn,2,* Ying Chen,2,* Robert Hobbs,1 George Sgouros, 1,2 Ronnie C. Mease,2 Mrudula Pullambhatla,2 Colette J. Shen,1 Catherine A. Foss,2 and Martin G. Pomper1,2 1Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD; 2Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD; *Authors contributed equally Corresponding author: Ana Kiess, MD, PhD, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231; tel: (443) 287-7528; fax: (410) 502-1419; e-mail:
[email protected] The authors attest to the originality of this manuscript and have no financial disclosures or conflicts of interest relevant to this work. Data presented in part at the 56th Annual Meeting of the American Society for Radiation Oncology; San Francisco; September 2014. Running title: PSMA Auger Radiopharmaceutical Therapy ABSTRACT Auger electron emitters such as 125I have high linear energy transfer and short range of emission (< 10 μm), making them suitable for treating micrometastases while sparing normal tissues. We utilized a highly specific small molecule targeting the prostate-specific membrane antigen (PSMA) to deliver 125I to prostate cancer (PC) cells. Methods: The PSMA-targeting Auger emitter 125I-DCIBzL was synthesized. DNA damage (via γH2AX staining) and clonogenic survival were tested in PSMA-positive PC3 PIP and PSMA- negative PC3 flu human prostate cancer cells after treatment with 125I-DCIBzL.