Jet Aircraft. Rotor-Craft. Air-Balloon. Airship. Blimp and Dirigibles. Rotor Craft

Total Page:16

File Type:pdf, Size:1020Kb

Jet Aircraft. Rotor-Craft. Air-Balloon. Airship. Blimp and Dirigibles. Rotor Craft ELECTRIC AIRBALOON, AEROSTAT. [2275] AT LEAST ONE: Jet aircraft. Rotor-craft. Air-balloon. Airship. Blimp and dirigibles. Rotor craft. Auto Gyro. Gyro plane. Helicopter. Monoplane. Bi-plane. Supersonic lifting body. Civil airplane. Freight airplane. Passenger airplane. Business jet. Private Jet. Cargo plane. Unmanned autonomous cargo aircrafts. Drone, autonomous aerial vehicle. Solar plane. Electric battery powered planes. Airship. Solar hybrid Plane. Solar hybrid amphibian aerial vehicle. Sail Plane. airplane rotary wing aircraft orbit copter. gyro plane helicopter amphibian land plane. Sea- plane. float plane. flying boat. Airships (Blimps & Dirigibles): Like balloons, airships use hot air and/or lighter-than- air gases to generate lift. But unlike balloons, they also carry one or more engines and propellers to generate thrust and have aerodynamic control surfaces. Hang gliding, sport of flying in lightweight nonpowered aircraft. heavier than air (aerodyne) engine driven airplane rotary wing aircraft ornithopter gyro plane helicopter amphibian land plane, seaplane float plane flying boat. ELECTRIC ROTARY WING AIRCRFTS. [2276] Field of invention This invention relates to vertical propulsion turbine rotor and electric generator including electric machines and manual navigation controllers for helicopters and rotary wing aircraft and more particularly to helicopters with reduced blade length and increased speed and maneuverability including new possibilities and features. Helicopter in which in-plane Description of the prior art Sustainable and Zero emission helicopter with new means for navigating and power generating for electric flying vehicles. BACKGROUND OF THE INVENTION [2277] A helicopter, or chopper, is a type of rotorcraft in which lift and thrust are supplied by rotors. This allows the helicopter to take off and land vertically, to hover, and to fly forward, backward, and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft and many forms of VTOL (Vertical Takeoff and Landing) aircraft cannot perform. The Electric aircraft is navigated by the main rotor and tail rotor and turbine engines and boosters comprising electric generators for power supply. [2278] Turbine rotor applicable generating thrust is applicable for airborne and flying objects, and tethered unmanned aircraft. Radio controlled and autonomous airplanes and drones having a physical link with the ground by means of satellite connection and radio transmitters, comprising A turbine rotor with at least one blade, Pitch adjustable mounted to the hub, rotor blade horizontal and vertical angle adjustable turbine rotor. Tilt able roto hub with swash mechanism and unit operable mounted with the disturbed drive shaft. Manual controller having a stick made on the upper Centre of the controller sphere and digital automated controllers. An example of application of the turbine machines for generating electric current and for propulsion of the aircraft. [2279] A helicopter main rotor or rotor system is the combination of several rotary wings (rotor blades) and a control system that generates the aerodynamic lift force that supports the airborne weight of the helicopter, and the thrust that counteracts aerodynamic drag in forward flight. Each main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail rotor, which connects through a combination of drive shaft(s) and gearboxes along the tail boom. The blade pitch is typically controlled by a swashplate connected to the helicopter flight controls. Helicopters are one example of rotary-wing aircraft (rotorcraft). [2280] The tail rotor is a smaller rotor mounted so that it rotates vertically or near-vertically at the end of the tail of a traditional single-rotor helicopter. The tail rotor's position and distance from the center of gravity allow it to develop thrust in the same direction as the main rotor's rotation, to counter the torque effect created by the main rotor. Tail rotors are simpler than main rotors since they require only collective changes in pitch to vary thrust. The pitch of the tail rotor blades is adjustable by the pilot via the anti-torque pedals, which also provide directional control by allowing the pilot to rotate the helicopter around its vertical axis. The tail rotor is made open besides the tailfin and tail rotor arranged operable in the tail between the vertical fins. A helicopter may comprise horizontal tail wings and vertical tail wings upward end below the tail rotor. [2281] The common helicopter tail rotor drive system consists of a shaft powered from the main transmission and a gearbox mounted at the end of the tail boom. The drive shaft may consist of one long shaft or a series of shorter shafts connected at both ends with flexible couplings, that allow the drive shaft to flex with the tail boom. The gearbox at the end of the tail boom provides an angled drive for the tail rotor and may also include gearing to adjust the output to the optimum rotational speed for the tail rotor, measured in rotations per minute (RPM). On larger helicopters with a tail pylon, intermediate gearboxes are used to transition the tail rotor drive shaft from along the tail boom to the top of the pylon. The tail rotor pylon may also serve as a vertical stabilizing airfoil, to alleviate the power requirement for the tail rotor in forward flight. The tail rotor pylon may also serve to provide limited antitorque within certain airspeed ranges, in the event of the tail rotor flight controls fail. About 10% of the engine power goes to the tail rotor. [2282] The helicopter rotor is blade adjustable by means of a collective pitch mechanism or cyclic pitch are both applied for the digital helicopter and rotor hub mounted pitch system. The swash plates with a stationary member and rotating mechanisms titling angular with respect to the mast is adjustable in force and aft plane and in the lateral plane. The blade is connected members are operable connected to the plurality of rotor blades and control horn operable connected with the blade connecting member. With at least one hydraulic, pneumatic or electro mechanical actuator connected with the control horn. At least one actuator is operable connected to the swashplate assembly to the actuators. The rotor and airframe is suspended with a kinematic connection for stabilization of the airframe. The rotor head and blades include harmonic vibration. [2283] The aircraft may comprise flexible and retractable lifting rotor blades and open core rotor head. With bladelets arranged perpendicular that can be retracted in the center cavity. The retractable propellers comprise, a telescopic actuator mounted shaft. Pivoting and locking blade and rotor head. [2284] Helicopter with manual folding rotor blades for reducing the blade surface and parking multiple helicopters adjacent. Folding the plurality of blades in a group along the tail boom. The blade connecting mechanism such as a knuckle joint or universal joint mounted with the hub and shaft operable in a guiding ring in which the blade holder is movable by sliding the blade holder with the blade toward the tail. [2285] The tail rotor system rotates airfoils, small wings called blades, that vary in pitch to vary the amount of thrust they produce. The blades most often utilize a composite material construction, such as a core made of aluminum honeycomb or plasticized paper honeycomb, covered in a skin made of aluminum or carbon fiber composite. Tail rotor blades are made with both symmetrical and asymmetrical airfoil construction. The pitch change mechanism uses a cable control system or control tubes that run from the anti-torque pedals in the cockpit to a mechanism mounted on the tail rotor gearbox. In larger helicopters, the pitch change mechanism is augmented by a hydraulic power control servo. In the event of a hydraulic system failure, the mechanical system is still able to control the tail rotor pitch, though the control resistance felt by the pilot will be considerably greater. [2286] The digital helicopter electric driven tail rotor turbine machine is powered by the helicopter's main electric power supply comprises electric regulative circuits and semiconductor components including converters and charging units, on circuit boards in a isolated cage and connected by cable wiring with the rechargeable batteries and electric generators, and rotates at a speed proportional to that of the main rotor. In both piston and turbine powered helicopters, the main rotor and the tail rotor are mechanically connected through a freewheeling clutch system, which allows the rotors to keep turning in the event of an engine failure by mechanically de-linking the engine from both the main and tail rotors. During autorotation, the momentum of the main rotor continues to power the tail rotor and allow directional control. To optimize its function for forward flight, the blades of a tail rotor have no twist to reduce the profile drag, because the tail rotor is mounted with its axis of rotation perpendicular to the direction of flight. [2287] Cable ducts are electrically isolated for emotion and radiation penetrating the data wiring and cables. The dusts comprise hinged lids that are screwed and closed by antivibration washers and screws. The duct accommodates kilometers of electric with supplement insulated folly of electric whirring. [2288] Helicopters also apply conventional anti-torque controls instead of the tail rotor, such as the ducted fan (called Fenestron or FANTAIL) and NOTAR. NOTAR provides anti-torque similar to the way a wing develops lift through the use of the Coandă effect on the tail boom. And the Gyroscopic rotor applied for the tattered rotary wing turbine generator. [2289] The use of two or more horizontal rotors turning in opposite directions is another configuration used to counteract the effects of torque on the aircraft without relying on an anti-torque tail rotor. This allows the power normally required to drive the tail rotor to be applied to the main rotors, increasing the aircraft's lifting capacity.
Recommended publications
  • Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter
    Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter A project presented to The Faculty of the Department of Aerospace Engineering San José State University In partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Aaron Ford May 2019 approved by Prof. Jeanine Hunter Faculty Advisor © 2019 Aaron Ford ALL RIGHTS RESERVED ABSTRACT Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter by Aaron Ford A model of helicopter blade flapping dynamics is created to determine the occurrence of retreating blade stall on a coaxial helicopter with pusher-propeller in straight and level flight. Equations of motion are developed, and blade element theory is utilized to evaluate the appropriate aerodynamics. Modelling of the blade flapping behavior is verified against benchmark data and then used to determine the angle of attack distribution about the rotor disk for standard helicopter configurations utilizing both hinged and hingeless rotor blades. Modelling of the coaxial configuration with the pusher-prop in straight and level flight is then considered. An approach was taken that minimizes the angle of attack and generation of lift on the advancing side while minimizing them on the retreating side of the rotor disk. The resulting asymmetric lift distribution is compensated for by using both counter-rotating rotor disks to maximize lift on their respective advancing sides and reduce drag on their respective retreating sides. The result is an elimination of retreating blade stall in the coaxial and pusher-propeller configuration. Finally, an assessment of the lift capability of the configuration at both sea level and at “high and hot” conditions were made.
    [Show full text]
  • Book Reviews the SYCAMORE SEEDS
    Afterburner Book Reviews THE SYCAMORE SEEDS Early British Helicopter only to be smashed the following night in a gale. The book then covers the Cierva story in some detail, the Development chapter including, out of context, two paragraphs on By C E MacKay the Brennan propeller-driven rotor driven helicopter [helicogyro] fl own in 1924 at Farnborough but Distributed by A MacKay, 87 Knightscliffe Avenue, aborted by the Air Ministry the next year, stating that Netherton, Glasgow G13 2RX, UK (E charlese87@ there was no future for the helicopter and backing btinternet.com). 2014. 218pp. Illustrated. £12.95. Cierva’s autogyro programme contracting Avro to build ISBN 978-0-9573443-3-4. the fi rst British machines. Good coverage is given to the range of Cierva autogyros culminating in the Avro Given the paucity of coverage of British helicopter C30 Rota and its service use by the RAF. development I approached this slim (218 A5 pp) The heart of the book begins with a quotation: publication with interest. While autogyros have been “Morris, I want you to make me blades, helicopter well documented, Charnov and Ord-Hume giving blades,” with which William Weir, the fi rst Air Minister, exhaustive and well documented treatments of the founder of the RAF and supporter of Cierva, brought helicopter’s predecessor, the transition to the directly furniture maker H Morris & Co into the history of driven rotor of the helicopter is somewhat lacking. rotorcraft pulling in designers Bennett, Watson, Unfortunately MacKay’s book only contributes a Nisbet and Pullin with test pilots Marsh and Brie fi nal and short chapter to the ‘British Helicopter’ to form his team.
    [Show full text]
  • Over Thirty Years After the Wright Brothers
    ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,991,744 B1 Khan (45) Date of Patent: Mar
    USOO899.174.4B1 (12) United States Patent (10) Patent No.: US 8,991,744 B1 Khan (45) Date of Patent: Mar. 31, 2015 (54) ROTOR-MAST-TILTINGAPPARATUS AND 4,099,671 A 7, 1978 Leibach METHOD FOR OPTIMIZED CROSSING OF 35856 A : 3. Wi NATURAL FREQUENCIES 5,850,6154. W-1 A 12/1998 OSderSO ea. 6,099.254. A * 8/2000 Blaas et al. ................... 416,114 (75) Inventor: Jehan Zeb Khan, Savoy, IL (US) 6,231,005 B1* 5/2001 Costes ....................... 244f1725 6,280,141 B1 8/2001 Rampal et al. (73) Assignee: Groen Brothers Aviation, Inc., Salt 6,352,220 B1 3/2002 Banks et al. Lake City, UT (US) 6,885,917 B2 4/2005 Osder et al. s 7,137,591 B2 11/2006 Carter et al. (*) Notice: Subject to any disclaimer, the term of this 16. R 1239 sign patent is extended or adjusted under 35 2004/0232280 A1* 11/2004 Carter et al. ............... 244f1725 U.S.C. 154(b) by 494 days. OTHER PUBLICATIONS (21) Appl. No.: 13/373,412 John Ballard etal. An Investigation of a Stoppable Helicopter Rotor (22) Filed: Nov. 14, 2011 with Circulation Control NASA, Aug. 1980. Related U.S. Application Data (Continued) (60) Provisional application No. 61/575,196, filed on Aug. hR". application No. 61/575,204, Primary Examiner — Joseph W. Sanderson • Y-s (74) Attorney, Agent, or Firm — Pate Baird, PLLC (51) Int. Cl. B64C 27/52 (2006.01) B64C 27/02 (2006.01) (57) ABSTRACT ;Sp 1% 3:08: A method and apparatus for optimized crossing of natural (52) U.S.
    [Show full text]
  • The Pennsylvania State University the Graduate School Department of Aerospace Engineering an INVESTIGATION of PERFORMANCE BENEFI
    The Pennsylvania State University The Graduate School Department of Aerospace Engineering AN INVESTIGATION OF PERFORMANCE BENEFITS AND TRIM REQUIREMENTS OF A VARIABLE SPEED HELICOPTER ROTOR A Thesis in Aerospace Engineering by Jason H. Steiner 2008 Jason H. Steiner Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2008 ii The thesis of Jason Steiner was reviewed and approved* by the following: Farhan Gandhi Professor of Aerospace Engineering Thesis Advisor Robert Bill Research Associate , Department of Aerospace Engineering George Leisuietre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School iii ABSTRACT This study primarily examines the main rotor power reductions possible through variation in rotor RPM. Simulations were based on the UH-60 Blackhawk helicopter, and emphasis was placed on possible improvements when RPM variations were limited to ± 15% of the nominal rotor speed, as such limited variations are realizable through engine speed control. The studies were performed over the complete airspeed range, from sea level up to altitudes up to 12,000 ft, and for low, moderate and high vehicle gross weight. For low altitude and low to moderate gross weight, 17-18% reductions in main rotor power were observed through rotor RPM reduction. Reducing the RPM increases rotor collective and decreases the stall margin. Thus, at higher airspeeds and altitudes, the optimal reductions in rotor speed are smaller, as are the power savings. The primary method for power reduction with decreasing rotor speed is a decrease in profile power. When rotor speed is optimized based on both power and rotor torque, the optimal rotor speed increases at low speeds to decrease rotor torque without power penalties.
    [Show full text]
  • ELECTRIC ROTARY WING AIRCRFTS. [3290] Field of Invention Relates to Rotary Wing Aircrafts and the Like. This Invention Relates T
    ELECTRIC ROTARY WING AIRCRFTS. [3290] Field of invention relates to rotary wing aircrafts and the like. This invention relates to vertical propulsion turbine motors and generators combined including a digital glass cabin and manual navigation controllers consisting of a sphere or ball mounting in bearing in the stator casing and electrically connected with the flyby wire system. Helicopters and modern rotary wing aircraft and more particularly to helicopters with reduced blade length and increased speed and maneuverability with increased RPM. [3291] Combined propulsion and generator with linear rotors and perpendicular rotors. Helicopter in which in-plane Description of the prior art Sustainable and Zero emission helicopter with new means for navigating and power generating for electric flying vehicles. With wind turbines integrated in the duct and a steam turbine generator in a compressed machine casing electrically connected to the power supply. BACKGROUND OF THE INVENTION [3292] Conventional rotary wing aircraft are driven by combustion engines and are limited in application by rendering the aerial vehicles electric and digital with zero emission. Consisting rotary wing aircrafts ar helicopters and utility aerial vehicles, privet transport chopper, is a type of rotorcraft in which lift and thrust are supplied by propeller rotors. This allows the helicopter to take off and land vertically, to hover, and to fly forward, backward, and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft and many forms of VTOL (Vertical Takeoff and Landing) aircraft cannot perform. The Electric aircraft is navigated by the main rotor and tail rotor and turbine engines and boosters comprising electric generators for power supply.
    [Show full text]
  • Gyroplane Questions – from Rotorcraft Commercial Bank
    Gyroplane questions – from Rotorcraft Commercial bank (From Rotorcraft questions that obviously are either gyroplane or not helicopter) FAA Question Number: 5.0.5.8 FAA Knowledge Code: B09 To begin a flight in a rotorcraft under VFR, there must be enough fuel to fly to the first point of intended landing and, assuming normal cruise speed, to fly thereafter for at least A. 30 minutes. B. 45 minutes. X C. 20 minutes. FAA Question Number: 5.0.4.6 FAA Knowledge Code: B07 When operating a U.S.-registered civil aircraft, which document is required by regulation to be available in the aircraft? A. An Owner's Manual. B. A manufacturer's Operations Manual. X C. A current, approved Rotorcraft Flight Manual. FAA Question Number: 5.0.6.7 FAA Knowledge Code: B11 Approved flotation gear, readily available to each occupant, is required on each helicopter if it is being flown for hire over water, A. more than 50 statute miles from shore. B. in amphibious aircraft beyond 50 NM from shore. X C. beyond power-off gliding distance from shore. FAA Question Number: 5.0.7.2 FAA Knowledge Code: B11 What transponder equipment is required for helicopter operations within Class B airspace? A transponder X A. with 4096 code and Mode C capability. B. is required for helicopter operations when visibility is less than 3 miles. C. with 4096 code capability is required except when operating at or below 1,000 feet AGL under the terms of a letter of agreement. FAA Question Number: 5.1.6.8 FAA Knowledge Code: H307 For gyroplanes with constant-speed propellers, the first indication of carburetor icing is usually A.
    [Show full text]
  • Aerodynamic Concept of the Uav in the Gyrodyne Configuration
    TRANSACTIONS OF THE INSTITUTE OF AVIATION 1 (250) 2018, pp. 49–66 DOI: 10.2478/tar-2018-0005 © Copyright by Wydawnictwa Naukowe Instytutu Lotnictwa AERODYNAMIC CONCEPT OF THE UAV IN THE GYRODYNE CONFIGURATION Jan Muchowski*, Marek Szumski*, Andrzej Krzysiak** *Department of Fluid Mechanics and Aerodynamics, Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszow **Aerodynamics Department, Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw [email protected], [email protected], [email protected], Abstract The article presents an aerodynamic concept of UAV in the gyrodyne configuration, as a more efficient one than the currently used UAV airframe configuration applied for monitoring tasks of pow- er lines and railway infrastructure. A sample task which is realised by conceptual gyrodyne based on monitoring aerial power lines was characterised and described . The assumed idea of UAV was shown in comparison to the currently used aircraft configuration presented in the introduction. Referring to momentum theory, hover efficiency of the multicopter and the helicopter was evaluated. In relation to the helicopter, an initial draft of the airframe conception accompanied by a description of advan- tages of the gyrodyne configuration was exposed. Problems related to the gyrodyne configuration were emphasised in the summary. Keywords: aerodynamic concept, UAV, VTOL, gyrodyne, airframe configuration 1. INTRODUCTION In recent years a dynamic growth of the UAV (Unmanned Aerial Vehicle) usage in civil and mili- tary missions can be observed . Economic aspects are the main reasons of that increase, i.e. the purchas- ing cost of the UAS (Unmanned Aircraft System) varies from 40% up to 80% of the manned system cost.
    [Show full text]
  • Long Range Heavy Lift Aircraft Mission Profile
    XIV. LONG RANGE, HEAVY LIFT AIRCRAFT A. INTRODUCTION The Aeronautical Engineering Department, as part of the integrated ExWar project, agreed to design a conceptual aircraft to fill a capability gap identified through the Systems Engineering Top-Down analysis described in Chapter III. This chapter describes potential aviation solutions to the requirements – capabilities gaps identified from the Top-Down analysis, the aviation requirement – capabilities gap selected for a design solution, the design concepts generated to fulfill the requirement, the analysis of alternatives between these concepts, and some of the enabling technologies that make an aircraft system solution with a significant improvement over current capability possible. B. REQUIREMENTS ANALYSIS 1. Candidate Aircraft Requirement-Capability Gaps Identified in the Top Down Analysis This section discusses potential aircraft platform solutions to capability gaps identified during the Top – Down analysis and explains the rationale for selecting or rejecting them as the subject of the Aeronautical Engineering design project. a. Escort Aircraft for Tilt Rotor and Other High Speed Transports Proposed operational concepts like STOM call for insertions of men and materiel deep into hostile territory at ranges potentially exceeding 200 NM from the Sea Based task force. The primary troop transport to conduct these operations in the 2015 to 2020 timeframe is the MV-22 Osprey. The primary advantage of the MV-22 in this role is its 250 kt cruise speed, which enables it to move quickly through enemy air defenses to deposit Marines and limited quantities of sustainment directly to the objective area. This same high speed, however, combined with the MV-22’s long combat radius, permits it to outstrip any potential escort aircraft with the exception of the AV-8B or Joint Strike Fighter (JSF).
    [Show full text]
  • Helicopter Controllability. Reference 2 Presents a Comprehensive History and References 1 and 3 Present Summarized Histories of Helicopter Development
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1989-09 Helicopter controllability Carico, Dean Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/27077 DTfltttf NAVAL POSTGRADUATE SCHOOL Monterey , California THESIS C2D L/5~ HELICOPTER CONTROLLABILITY by Dean Carico September 1989 Thesis Advisor: George J. Thaler Approved for public release; distribution unlimited lclassified V CLASSi^'CATiON QF THIS PAGE REPORT DOCUMENTATION PAGE ORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS assif ied IURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release :lassification t DOWNGRADING SCHEDULE Distribution is unlimited ORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) ME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION il Postgraduate School (If applicable) 62 Naval Postgraduate School DRESS {City, State, and ZIP Code) 7b ADDRESS (C/fy, State, and ZIP Code) :erey, California 93943-5000 Monterey, California 93943-5000 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER DRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS IE (include Security Claudication) HELICOPTER CONTROLLABILITY RSONAL AUTHOR(S) ICO, G. Dean YPE OF REPORT 4 DATE OF REPORT (Year, Month. Day) ter ' s Thesis 1989, September ipplementary notation T h e views expressed in this thesis are thos e of the hor and do not reflect the official policy or position of the Department r,nyprninpnf npfpnsp nr ___ , COSATi CODES 18 SUBJECT TERMS {Continue on reverse if pecessary and identify Helicopter Controllability, Helicop Flight Control Systems, Helicopter Flying Qualities and Flying Qualities Spec if ications i 3STRACT {Continue I reverse if necessary and identify by block number) 'he concept of helicopter controllability is explained.
    [Show full text]
  • Helicopters in the Royal Air Force
    ROYAL AIR FORCE HISTORICAL SOCIETY JOURNAL 25 2 The opinions expressed in this publication are those of the contributors concerned and are not necessarily those held by the Royal Air Force Historical Society. Photographs credited to MAP have been reproduced by kind permission of Military Aircraft Photographs. Copies of these, and of many others, may be obtained via http://www.mar.co.uk Copyright 2001: Royal Air Force Historical Society First published in the UK in 2001 by the Royal Air Force Historical Society All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without permission from the Publisher in writing. ISSN 1361-4231 Typeset by Creative Associates 115 Magdalen Road Oxford OX4 1RS Printed by Professional Book Supplies Ltd 8 Station Yard Steventon Nr Abingdon OX13 6RX 3 CONTENTS THE PROCEEDINGS OF THE RAFHS SEMINAR ON 7 HELICOPTERS IN THE ROYAL AIR FORCE BOOK REVIEWS 112 4 ROYAL AIR FORCE HISTORICAL SOCIETY President Marshal of the Royal Air Force Sir Michael Beetham GCB CBE DFC AFC Vice-President Air Marshal Sir Frederick Sowrey KCB CBE AFC Committee Chairman Air Vice-Marshal N B Baldwin CB CBE FRAeS Vice-Chairman Group Captain J D Heron OBE Secretary Group Captain K J Dearman Membership Secretary Dr Jack Dunham PhD CPsychol AMRAeS Treasurer Desmond Goch Esq FCCA Members Air Commodore H A Probert MBE MA *J S Cox Esq BA MA *Dr M A Fopp MA FMA FIMgt *Group Captain P Gray
    [Show full text]
  • The Evolution of the British Rotorcraft Industry 1842-2012
    Journal of Aeronautical History Paper No. 2012/07 THE EVOLUTION OF THE BRITISH ROTORCRAFT INDUSTRY 1842-2012 Eur Ing David Gibbings C Eng., FRAeS Based on a paper originally presented to the European Rotorcraft Forum in Hamburg, September 2009. ABSTRACT This paper relates the way in which rotorcraft developed in Britain, leading to the growth of an effective design and manufacturing industry. The narrative is divided into five sections, each of which represents defining phases in UK based activity leading towards the development of the modern helicopter: 1. The Pre-Flight Period (1842-1903) This section covers British activity during the period when the objective was simply to demonstrate powered flight by any means, and where rotors might be considered to be a way of achieving this. 2. The Early Helicopter Period (1903-1926). Early attempts to build helicopters, including the work of Louise Brennan, which achieved limited success with a rotor driven by a propellers mounted on the blade tips. 3. The Pre-War Years (1926-1939) This section gives emphasis to development of the gyroplane and in particular the work of Juan de la Cierva, with his UK-based company to develop his 'Autogiro', from which the understanding of rotor dynamics and control was established, and which was to lead to the realisation of the helicopter by others. Although UK rotary wing development was driven by the gyroplane, the work carried out by the Weir Company, which was to lead to the first successful British helicopter is discussed. 4. The War Years. (1939-1945) Rotary wing activities in the UK were very limited during World War 2, restricted to the work carried out by Raoul Hafner with the Rotachute/ Rotabuggy programme and the use of autogiros for the calibration of radar.
    [Show full text]