Algorithmic Elimination Methods

Total Page:16

File Type:pdf, Size:1020Kb

Algorithmic Elimination Methods Algorithmic Elimination Methods Deepak Kapur∗ Institute for Programming and Logics Department of Computer Science State University of New York Albany, NY 12222 [email protected] Very rough draft: June 19, 1995y Abstract This tutorial provides a gentle introduction to different methods for eliminating variables from a finite system of polynomials and for solving polynomial equations. Elimination methods have applications in many fields. The first part of the tutorial will discuss resultant-based methods investigated in the 19th century and early 20th century. The main idea is to generate from a system of nonlinear polynomial equations, possibly a larger system of independent polynomial equations. The larger system has as many equations as distinct terms in the polyno- mials. Each term is treated as an unknown and the theory of linear algebra can be applied. Three major resultant methods due to Euler, Bezout, Sylvester, Cayley, Dixon and Macaulay, and a sparse reformulation of Macaulay will be discussed and compared. In the second part, two other methods { Gr¨obnerbasis method based on polyno- mial ideal theory and the characteristic set method based on algebraic geometry will be reviewed. The use of these methods for elimination and equation solving will be discussed. Examples from application domains such as computer vision, geometric reasoning and solid modeling will be used. These notes discuss resultants and characteristic set methods as written material on these topics is not easily available. Discussion on Gr¨obnerbasis methods is omit- ted because there are now good books introducing Gr¨obnerbasis methods as well as discussing Gr¨obnerbasis theory in depth. ∗Supported in part by a grant from United States Air Force Office of Scientific Research AFOSR-91-0361. yThese notes are expected to be revised extensively based on feedback and comments from the participants in the ISSAC tutorial in Montreal. The revised version would be made available by anonymous ftp. Until then, the distribution of these notes is restricted to the tutorial participants. Please get the author's permission before making additional copies and distributing it your colleagues. 1 1 Introduction Nonlinear polynomials are used to model many physical phenomena in engineering appli- cations. Often there is a need to solve nonlinear polynomial equations, or if solutions do not have to be explicitly computed, it is necessary to study the nature of solutions. Many engineering problems can be easily formulated using polynomials with the help of extra variables. It then becomes necessary to eliminate some of those extra variables. Examples include implicitization of curves and surfaces, invariants with respect to transformation groups, robotics and kinematics. Projection of a variety (which is the set of solutions of polynomial equations in an algebraically closed field) is yet another useful tool in algebraic geometry. These applications require the use of elimination techniques on polynomials, and symbolically studying the solutions of the corresponding equations. To get an idea about the use of polynomials for modeling in different application domains, the reader may consult books by Hoffman [14], Abhyankar [2], Morgan [24], Kapur and Mundy [17], Donald, Kapur and Mundy [11]. In these notes, we discuss different symbolic methods for studying the solutions of poly- nomial equations. Because of lack of time and space, we are unable to discuss numerical techniques for solving polynomial equations. An interested reader may want to look at [28] for a simple approach based on interval methods and branch and prune techniques, that has been found to be quite effective. The method is compared with homotopy based continuation methods [24] as well as other interval based techniques. In the first part of these notes, we focus on resultant methods. Resultant methods were developed in the 18th century by Newton, Euler and Bezout, in the 19th century by Sylvester and Cayley, and the early parts of 20th century by Dixon and Macaulay. These constructivists were attempting to extend simple linear algebra techniques developed for linear equations to nonlinear polynomial equations. A number of books on the theory of equations were written which are now out of print. Some very interesting subsections were omitted by the authors in revised editions of some of these books because abstract methods in algebraic geometry and invariant theory gained dominance, and constructive methods began to be viewed as too concrete to provide any useful structural insights. A good example is the 1970 edition of van der Waerden's book on algebra which does not include a beautiful chapter on elimination theory that appeared as the first chapter in the second volume of its 1940 edition. For an excellent discussion of the history of constructive methods in algebra, the reader is referred to an article by Professor Abhyankar [1]. In the second part of this paper, we discuss Ritt's characteristic set construction and its popularization by Wu Wen-tsun. Despite its tremendous success in geometry theorem proving, characteristic set methods do not seem to have gotten as much exposure as they should. For many problems, characteristic set construction is quite efficient and powerful. In these notes, we have focussed on the problems of computing zeros of polynomials, elimination of variables and projection of the the zeros of polynomials along certain dimen- sions. We have attempted to provide information that is not easily available; otherwise, we have assumed that an interested reader can consult various references for further details. For instance, we have chosen not to include a section on Gr¨obnerbasis constructions and the related theory. For an introductory reading, an interested reader may consult Buchberger's survey articles [4, 5], a section in our introductory paper on elimination methods [16], 2 Hoffman’s book [14], or Cox et al's book [9]. For a comprehensive treatment, the reader can consult Weispfenning's book [29]. For a discussion of characteristic set construction, the reader may consult Wu's articles [31, 32], Chou's book [8] or a section in our introductory article [16]. In these notes, we have added some new material on characteristic sets which could not be included in the introductory article because of lack of space. Most of the material in these notes is on resultants since except for Sylvester's resultants, very little material is included in text books. In order to conserve space, we have been selective in including examples to illustrate different concepts. In the oral presentation at the tutorial, we plan to use many examples { simple as well as nontrivial ones from different application domains. Examples have not been included to illustrate Sylvester resultants for the univariate case, Dixon's resultants for the bivariate case, or Macaulay's multivariate resultants as these examples are given in detail in our introductory paper [16]; an interested reader can consult [16] for examples on these topics. We have, however, included examples to illustrate sparse resultants as well as the new material on Dixon resultants. 1.1 Overview In the next subsection, we provide basic background information about zeros of polynomials, distinction between affine zeros and projective zeros, and the zero set of a set of polynomials. The next section is about resultants. We first review Euler's method for computing the resultant of two polynomials by eliminating one variable, Sylvester's reformulation using di- alytic expansion, Macaulay's generalization for simultaneously eliminating many variables. U-resultants are reviewed to discuss how common zeros can be extracted using resultants. The second part starts with Bezout's formulation of the resultant of two polynomials by eliminating one variable. This is followed by Cayley's remarkable formulation of Bezout's method which naturally generalizes nicely to a formulation for simultaneously eliminating many variables. Dixon's formulation of the resultant for three polynomials in two vari- ables is first discussed. Then this formulation is generalized. Two methods - generalized characteristic polynomial method based on perturbation and the rank submatrix method, are reviewed for extracting a projection operator from singular resultant matrices. An experimental comparison of different resultant formulations is given in the form of a table presenting performance of different method on examples from different application domains. Some recent results on theoretical complexity of Dixon resultants are included. The reader would note that the formulations in this section are expressed in terms of appropriate determinants which correspond to solving a linear system of equations in which the unknowns are the power products appearing in the polynomials. This linear system is obtained by transforming the original set of polynomial equations. This is in contrast to Gr¨obnerbasis and characteristic methods, where no system of linear equations is explicitly and a priori set up. Instead, these methods appear to be similar to completion algorithms in which new polynomials are successively constructed until a subset of polynomials with the desired property is generated. The third section discusses Ritt's characteristic sets. We have pointed fundamental differences in Ritt's definition and the definition used by Wu in his work. We discuss the use of characteristic set method for elimination. As an alternative to decomposition of a zero set into irreducible zero sets based on Rit-Wu's algorithm, a different method using Duval's D5 algorithm is presented for decomposing a zero set. 3 1.2 Preliminaries Let Q , IR, C, respectively, denote the fields of rational numbers, real numbers, and complex numbers. Unless specified otherwise, by a polynomial, we mean a multivariate polynomial with rational coefficients. A multivariate polynomial can be viewed as a sum of products with nonzero rational coefficients, where each product is called a term or power product; together with its coefficient, it is called a monomial. A univariate polynomial p(x) is said to vanish at a value a if the polynomial p evaluates to zero when a is uniformly substituted for x in p.
Recommended publications
  • Using Elimination to Describe Maxwell Curves Lucas P
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2006 Using elimination to describe Maxwell curves Lucas P. Beverlin Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Applied Mathematics Commons Recommended Citation Beverlin, Lucas P., "Using elimination to describe Maxwell curves" (2006). LSU Master's Theses. 2879. https://digitalcommons.lsu.edu/gradschool_theses/2879 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. USING ELIMINATION TO DESCRIBE MAXWELL CURVES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial ful¯llment of the requirements for the degree of Master of Science in The Department of Mathematics by Lucas Paul Beverlin B.S., Rose-Hulman Institute of Technology, 2002 August 2006 Acknowledgments This dissertation would not be possible without several contributions. I would like to thank my thesis advisor Dr. James Madden for his many suggestions and his patience. I would also like to thank my other committee members Dr. Robert Perlis and Dr. Stephen Shipman for their help. I would like to thank my committee in the Experimental Statistics department for their understanding while I completed this project. And ¯nally I would like to thank my family for giving me the chance to achieve a higher education.
    [Show full text]
  • Effective Noether Irreducibility Forms and Applications*
    Appears in Journal of Computer and System Sciences, 50/2 pp. 274{295 (1995). Effective Noether Irreducibility Forms and Applications* Erich Kaltofen Department of Computer Science, Rensselaer Polytechnic Institute Troy, New York 12180-3590; Inter-Net: [email protected] Abstract. Using recent absolute irreducibility testing algorithms, we derive new irreducibility forms. These are integer polynomials in variables which are the generic coefficients of a multivariate polynomial of a given degree. A (multivariate) polynomial over a specific field is said to be absolutely irreducible if it is irreducible over the algebraic closure of its coefficient field. A specific polynomial of a certain degree is absolutely irreducible, if and only if all the corresponding irreducibility forms vanish when evaluated at the coefficients of the specific polynomial. Our forms have much smaller degrees and coefficients than the forms derived originally by Emmy Noether. We can also apply our estimates to derive more effective versions of irreducibility theorems by Ostrowski and Deuring, and of the Hilbert irreducibility theorem. We also give an effective estimate on the diameter of the neighborhood of an absolutely irreducible polynomial with respect to the coefficient space in which absolute irreducibility is preserved. Furthermore, we can apply the effective estimates to derive several factorization results in parallel computational complexity theory: we show how to compute arbitrary high precision approximations of the complex factors of a multivariate integral polynomial, and how to count the number of absolutely irreducible factors of a multivariate polynomial with coefficients in a rational function field, both in the complexity class . The factorization results also extend to the case where the coefficient field is a function field.
    [Show full text]
  • Theory of Equations
    CHAPTER I - THEORY OF EQUATIONS DEFINITION 1 A function defined by n n-1 f ( x ) = p 0 x + p 1 x + ... + p n-1 x + p n where p 0 ≠ 0, n is a positive integer or zero and p i ( i = 0,1,2...,n) are fixed complex numbers, is called a polynomial function of degree n in the indeterminate x . A complex number a is called a zero of a polynomial f ( x ) if f (a ) = 0. Theorem 1 – Fundamental Theorem of Algebra Every polynomial function of degree greater than or equal to 1 has atleast one zero. Definition 2 n n-1 Let f ( x ) = p 0 x + p 1 x + ... + p n-1 x + p n where p 0 ≠ 0, n is a positive integer . Then f ( x ) = 0 is a polynomial equation of nth degree. Definition 3 A complex number a is called a root ( solution) of a polynomial equation f (x) = 0 if f ( a) = 0. THEOREM 2 – DIVISION ALGORITHM FOR POLYNOMIAL FUNCTIONS If f(x) and g( x ) are two polynomial functions with degree of g(x) is greater than or equal to 1 , then there are unique polynomials q ( x) and r (x ) , called respectively quotient and reminder , such that f (x ) = g (x) q(x) + r (x) with the degree of r (x) less than the degree of g (x). Theorem 3- Reminder Theorem If f (x) is a polynomial , then f(a ) is the remainder when f(x) is divided by x – a . Theorem 4 Every polynomial equation of degree n ≥ 1 has exactly n roots.
    [Show full text]
  • Etienne Bézout on Elimination Theory Erwan Penchevre
    Etienne Bézout on elimination theory Erwan Penchevre To cite this version: Erwan Penchevre. Etienne Bézout on elimination theory. 2017. hal-01654205 HAL Id: hal-01654205 https://hal.archives-ouvertes.fr/hal-01654205 Preprint submitted on 3 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Etienne Bézout on elimination theory ∗ Erwan Penchèvre Bézout’s name is attached to his famous theorem. Bézout’s Theorem states that the degree of the eliminand of a system a n algebraic equations in n unknowns, when each of the equations is generic of its degree, is the product of the degrees of the equations. The eliminand is, in the terms of XIXth century algebra1, an equation of smallest degree resulting from the elimination of (n − 1) unknowns. Bézout demonstrates his theorem in 1779 in a treatise entitled Théorie générale des équations algébriques. In this text, he does not only demonstrate the theorem for n > 2 for generic equations, but he also builds a classification of equations that allows a better bound on the degree of the eliminand when the equations are not generic. This part of his work is difficult: it appears incomplete and has been seldom studied.
    [Show full text]
  • Simple Proof of the Main Theorem of Elimination Theory in Algebraic Geometry
    SIMPLE PROOF OF THE MAIN THEOREM OF ELIMINATION THEORY IN ALGEBRAIC GEOMETRY Autor(en): Cartier, P. / Tate, J. Objekttyp: Article Zeitschrift: L'Enseignement Mathématique Band (Jahr): 24 (1978) Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE PDF erstellt am: 10.10.2021 Persistenter Link: http://doi.org/10.5169/seals-49707 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch A SIMPLE PROOF OF THE MAIN THEOREM OF ELIMINATION THEORY IN ALGEBRAIC GEOMETRY by P. Cartier and J. Tate Summary The purpose of this note is to provide a simple proof (which we believe to be new) for the weak zero theorem in the case of homogeneous polynomials.
    [Show full text]
  • Triangle Identities Via Elimination Theory
    Triangle Identities via Elimination Theory Dam Van Nhi and Luu Ba Thang Abstract The aim of this paper is to present some new identities via resultants and elimination theory, by presenting the sidelengths, the lengths of the altitudes and the exradii of a triangle as roots of cubic polynomials. 1 Introduction Finding identities between elements of a triangle represents a classical topic in elementary geometry. In Recent Advances in Geometric Inequalities [3], Mitrinovic et al presents the sidelengths, the lengths of the altitudes and the various radii as roots of cubic polynomials, and collects many interesting equalities and inequalities between these quantities. As far as we know, almost of them are built using only elementary algebra and geometry. In this paper, we use transformations of rational functions and resultants to build similar nice equalities and inequalities might be difficult to prove with different methods. 2 Main results To fix notations, suppose we are given a triangle ∆ABC with sidelengh a; b; c. Denote the radius of the circumcircle by R, the radius of incircle by r, the area of ∆ABC by S, the semiperimeter as p, the radii of the excircles as r1; r2; r3, and the altitudes from sides a; b and c, respectively, as ha; hb and hc. We have the results from [3, Chapter 1]. Theorem 1. [3] Using the above notations, (i) a; b; c are the roots of the cubic polynomial x3 − 2px2 + (p2 + r2 + 4Rr)x − 4Rrp: (1) (ii) ha; hb; hc are the roots of the cubic polynomial S2 + 4Rr3 + r4 2S2 2S2 x3 − x2 + x − : (2) 2Rr2 Rr R (iii) r1; r2; r3 are the roots of the cubic polynomial x3 − (4R + r)x2 + p2x − p2r: (3) Next, we present how to use transformations of rational functions to build new geometric equalities ax + b and inequalities.
    [Show full text]
  • Unit 3 Cubic and Biquadratic Equations
    UNIT 3 CUBIC AND BIQUADRATIC EQUATIONS Structure 3.1 Introduction Objectives 3.2 Let Us Recall Linear Equations Quadratic Equations 3.3 Cubic Equations Cardano's Solution Roots And Their Relation With Coefficients 3.4 Biquadratic Equations Ferrari's Solution Descartes' Solution Roots And Their Relation With Coeftlcients 3.5 Summary - 3.1 INTRODUCTION In this unit we will look at an aspect of algebra that has exercised the minds of several ~nntllematicians through the ages. We are talking about the solution of polynomial equations over It. The ancient Hindu, Arabic and Babylonian mathematicians had discovered methods ni solving linear and quadratic equations. The ancient Babylonians and Greeks had also discovered methods of solviilg some cubic equations. But, as we have said in Unit 2, they had llol thought of complex iiumbers. So, for them, a lot of quadratic and cubic equations had no solutioit$. hl the 16th century various Italian mathematicians were looking into the geometrical prob- lein of trisectiiig an angle by straight edge and compass. In the process they discovered a inethod for solviilg the general cubic equation. This method was divulged by Girolanlo Cardano, and hence, is named after him. This is the same Cardano who was the first to iiilroduce coinplex numbers into algebra. Cardano also publicised a method developed by his contemporary, Ferrari, for solving quartic equations. Lake, in the 17th century, the French mathematician Descartes developed another method for solving 4th degree equrtioiis. In this unit we will acquaint you with the solutions due to Cardano, Ferrari and Descartes. Rut first we will quickly cover methods for solving linear and quadratic equations.
    [Show full text]
  • Elimination Theory in Differential and Difference Algebra
    J Syst Sci Complex (2019) 32: 287–316 Elimination Theory in Differential and Difference Algebra∗ LI Wei · YUAN Chun-Ming Dedicated to the memories of Professor Wen-Ts¨un Wu DOI: 10.1007/s11424-019-8367-x Received: 15 October 2018 / Revised: 10 December 2018 c The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2019 Abstract Elimination theory is central in differential and difference algebra. The Wu-Ritt character- istic set method, the resultant and the Chow form are three fundamental tools in the elimination theory for algebraic differential or difference equations. In this paper, the authors mainly present a survey of the existing work on the theory of characteristic set methods for differential and difference systems, the theory of differential Chow forms, and the theory of sparse differential and difference resultants. Keywords Differential Chow forms, differential resultants, sparse differential resultants, Wu-Ritt characteristic sets. 1 Introduction Algebraic differential equations and difference equations frequently appear in numerous mathematical models and are hot research topics in many different areas. Differential algebra, founded by Ritt and Kolchin, aims to study algebraic differential equations in a way similar to how polynomial equations are studied in algebraic geometry[1, 2]. Similarly, difference algebra, founded by Ritt and Cohn, mainly focus on developing an algebraic theory for algebraic differ- ence equations[3]. Elimination theory, starting from Gaussian elimination, forms a central part of both differential and difference algebra. For the elimination of unknowns in algebraic differential and difference equations, there are several fundamental approaches, for example, the Wu-Ritt characteristic set theory, the theory of Chow forms, and the theory of resultants.
    [Show full text]
  • Some Lectures on Algebraic Geometry∗
    Some lectures on Algebraic Geometry∗ V. Srinivas 1 Affine varieties Let k be an algebraically closed field. We define the affine n-space over k n n to be just the set k of ordered n-tuples in k, and we denote it by Ak (by 0 convention we define Ak to be a point). If x1; : : : ; xn are the n coordinate n functions on Ak , any polynomial f(x1; : : : ; xn) in x1; : : : ; xn with coefficients n in k yields a k-valued function Ak ! k, which we also denote by f. Let n A(Ak ) denote the ring of such functions; we call it the coordinate ring of n Ak . Since k is algebraically closed, and in particular is infinite, we easily see n that x1; : : : ; xn are algebraically independent over k, and A(Ak ) is hence a 0 polynomial ring over k in n variables. The coordinate ring of Ak is just k. n Let S ⊂ A(Ak ) be a collection of polynomials. We can associate to it n an algebraic set (or affine variety) in Ak defined by n V (S) := fx 2 Ak j f(x) = 0 8 f 2 Sg: This is called the variety defined by the collection S. If I =< S >:= ideal in k[x1; : : : ; xn] generated by elements of S, then we clearly have V (S) = V (I). Also, if f is a polynomial such that some power f m vanishes at a point P , then so does f itself; hence if p m I := ff 2 k[x1; : : : ; xn] j f 2 I for some m > 0g p is the radical of I, then V (I) = V ( I).
    [Show full text]
  • ON the CASUS IRREDUCIBILIS of SOLVING the CUBIC EQUATION Jay Villanueva Florida Memorial University Miami, FL 33055 Jvillanu@Fmu
    ON THE CASUS IRREDUCIBILIS OF SOLVING THE CUBIC EQUATION Jay Villanueva Florida Memorial University Miami, FL 33055 [email protected] I. Introduction II. Cardan’s formulas A. 1 real, 2 complex roots B. Multiple roots C. 3 real roots – the casus irreducibilis III. Examples IV. Significance V. Conclusion ******* I. Introduction We often need to solve equations as teachers and researchers in mathematics. The linear and quadratic equations are easy. There are formulas for the cubic and quartic equations, though less familiar. There are no general methods to solve the quintic and other higher order equations. When we deal with the cubic equation one surprising result is that often we have to express the roots of the equation in terms of complex numbers although the roots are real. For example, the equation – 4 = 0 has all roots real, yet when we use the formula we get . This root is really 4, for, as Bombelli noted in 1550, and , and therefore This is one example of the casus irreducibilis on solving the cubic equation with three real roots. 205 II. Cardan’s formulas The quadratic equation with real coefficients, has the solutions (1) . The discriminant < 0, two complex roots (2) ∆ real double root > 0, two real roots. The (monic) cubic equation can be reduced by the transformation to the form where (3) Using the abbreviations (4) and , we get Cardans’ formulas (1545): (5) The complete solutions of the cubic are: (6) The roots are characterized by the discriminant (7) < 0, one real, two complex roots = 0, multiple roots > 0, three real roots.
    [Show full text]
  • MA3D5 Galois Theory
    MA3D5 Galois theory Miles Reid Jan{Mar 2004 printed Jan 2014 Contents 1 The theory of equations 3 1.1 Primitive question . 3 1.2 Quadratic equations . 3 1.3 The remainder theorem . 4 1.4 Relation between coefficients and roots . 5 1.5 Complex roots of 1 . 7 1.6 Cubic equations . 9 1.7 Quartic equations . 10 1.8 The quintic is insoluble . 11 1.9 Prerequisites and books . 13 Exercises to Chapter 1 . 14 2 Rings and fields 18 2.1 Definitions and elementary properties . 18 2.2 Factorisation in Z ......................... 21 2.3 Factorisation in k[x] ....................... 23 2.4 Factorisation in Z[x], Eisenstein's criterion . 28 Exercises to Chapter 2 . 32 3 Basic properties of field extensions 35 3.1 Degree of extension . 35 3.2 Applications to ruler-and-compass constructions . 40 3.3 Normal extensions . 46 3.4 Application to finite fields . 51 1 3.5 Separable extensions . 53 Exercises to Chapter 3 . 56 4 Galois theory 60 4.1 Counting field homomorphisms . 60 4.2 Fixed subfields, Galois extensions . 64 4.3 The Galois correspondences and the Main Theorem . 68 4.4 Soluble groups . 73 4.5 Solving equations by radicals . 76 Exercises to Chapter 4 . 80 5 Additional material 84 5.1 Substantial examples with complicated Gal(L=k) . 84 5.2 The primitive element theorem . 84 5.3 The regular element theorem . 84 5.4 Artin{Schreier extensions . 84 5.5 Algebraic closure . 85 5.6 Transcendence degree . 85 5.7 Rings of invariants and quotients in algebraic geometry .
    [Show full text]
  • DWCRTTPORS *Algebra, *Tnstr:Uction, Mathematical Concepts, *Mathematicq, Mathematics Education, *Secondary School Mathematics
    DOCUMENT RESUME ED 035 974 24 SE 007 912 AUTHOR nixon, Lyle J. TTmLE An Analysis of Certain Aspects of Approximation Theory as Related to Mathematical Instruction in. Algebra. Final Report. TmsTTTUmTON Kansas state Univ., Manhattan. MOONS AGENCY Office of Education (DHEW) , Washington, D.C. Bureau of Research. W17,ATT NO RP-8-F-03n PUP DAV' Aug 6() (1PANm OFG-6-9-008030-0035(097) NOTr 99D. "UPS DRICP ;?)RS price MP-s0.50 HC-4;3.05 DWCRTTPORS *Algebra, *Tnstr:uction, Mathematical Concepts, *Mathematicq, Mathematics Education, *Secondary School mathematics AsSTRACT This study is conc9rned with certain aspects of approximation theory which can he introduced into '.he mathematics curriculum at the secondary school level. The investigation examines existing literature in mathematics which relates to this subject in an effort to determine what is available in the way of mathematical concepts pertinent to this study. As a result of the literature review the material collected has been arranged in a structured mathematical form and existing mathematical theory has been extended to make the material useful to instructional problems in high school algebra. The results of the study are found in the expository material which comprises the ma-ior portion of this report. This material contains ideas of approximation theory which relate to elementary algebra. Also, included is a collection of references for this material. The report concludes that certain techniques of approximating a root of a polynomial by finding roots of a derived polynomial can be presented in a manner which is suitable for courses in elementary algebra. (DI') EDUCATION A WELFARE U.S.
    [Show full text]