History of Communications Edited by Mischa Schwartz
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Server-Smartphone Application Communication Patterns
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aaltodoc Publication Archive Aalto University School of Science Degree Programme in Computer Science and Engineering Péter Somogyi Analysis of server-smartphone application communication patterns Master’s Thesis Budapest, June 15, 2014 Supervisors: Professor Jukka Nurminen, Aalto University Professor Tamás Kozsik, Eötvös Loránd University Instructor: Máté Szalay-Bekő, M.Sc. Ph.D. Aalto University School of Science ABSTRACT OF THE Degree programme in Computer Science and MASTER’S THESIS Engineering Author: Péter Somogyi Title: Analysis of server-smartphone application communication patterns Number of pages: 83 Date: June 15, 2014 Language: English Professorship: Data Communication Code: T-110 Software Supervisor: Professor Jukka Nurminen, Aalto University Professor Tamás Kozsik, Eötvös Loránd University Instructor: Máté Szalay-Bekő, M.Sc. Ph.D. Abstract: The spread of smartphone devices, Internet of Things technologies and the popularity of web-services require real-time and always on applications. The aim of this thesis is to identify a suitable communication technology for server and smartphone communication which fulfills the main requirements for transferring real- time data to the handheld devices. For the analysis I selected 3 popular communication technologies that can be used on mobile devices as well as from commonly used browsers. These are client polling, long polling and HTML5 WebSocket. For the assessment I developed an Android application that receives real-time sensor data from a WildFly application server using the aforementioned technologies. Industry specific requirements were selected in order to verify the usability of this communication forms. The first one covers the message size which is relevant because most smartphone users have limited data plan. -
Performance of VBR Packet Video Communications on an Ethernet LAN: a Trace-Driven Simulation Study
9.3.1 Performance of VBR Packet Video Communications on an Ethernet LAN: A Trace-Driven Simulation Study Francis Edwards Mark Schulz edwardsF@sl .elec.uq.oz.au marksas1 .elec. uq.oz.au Department of Electrical and Computer Engineering The University of Queensland St. Lucia Q 4072 Australia Abstract medium term, we can expect that current LAN technolo- Provision of multimedia communication services on today’s gies will be utilized in the near term for packet transport of packet-switched network infrastructure is becoming increas- video applications [4,5, 61. Characterizing the performance ingly feasible. However, there remains a lack of information of current networks carrying video communications traffic is regarding the performance of multimedia sources operating therefore an important issue. This paper investigates packet in bursty data traffic conditions. In this study, a videotele- transport of real time video communications traffic, charac- phony system deployed on the Ethernet LAN is simulated, teristic of videotelephony applications, on the popular 10 employing high time-resolution LAN traces as the data traf- Mbit/s Ethernet LAN. fic load. In comparison with Poisson traffic models, the Previous work has established that Ethernet is capable of trace-driven cases produce highly variable packet delays, and supporting video communication traffic in the presence of higher packet loss, thereby degrading video traffic perfor- Poisson data traffic [6, 71. However, recent studies of high mance. In order to compensate for these effects, a delay time-resolution LAN traffic have observed highly bursty control scheme based on a timed packet dropping algorithm traffic patterns which sustain high variability over timescales is examined. -
Leased-Line Replacement
Leased-Line REPLACEMENT Utilizing gigabit wireless links to provide fiber-like performance at significant savings compared to leased lines. WHITE PAPER Leased-Line Replacement T1 (1.5 Mbps) line is not enough capacity to handle the need, four T1s When considering high-bandwidth connections between locations, the are ordered from the telco at a monthly rate of $500 each ($2,000 per thinking used to be that the only way to get service was to pick up the month). This twelve month commitment also requires a startup fee of phone, call the Local Exchange Carrier (LEC) and order a circuit. As long $1,000 to cover equipment and provisioning of the circuits. This amounts as the startup costs and monthly recurring charges were within the IT to $25,000 for the one year lease to provide a 6 Mbps connection budget, and the IT manager and business administrators were content between the corporate headquarters and the satellite office. with the level of service provided, writing a monthly check to the LEC was not a problem. If troubles were encountered with the service, a In the second scenario, a DS3 leased line is used to connect a school’s phone call to the provider was all that was necessary to resolve the LAN to the district office backbone three miles away. Services such as problem. voice, data, Internet access, and classroom video are transported over the circuit. To establish service, the local carrier requires a startup fee Businesses relying on leased lines find a wide range of performance of $3,000 that covers the cost of edge devices, as well as installation options tailored to suit their needs, from T1/E1 (1.5/2 Mbps), multiple and commissioning. -
Packet-Voice Communication on an Ethernet Local Computer Network: an Experimental Study
Packet-Voice Communication on an Ethernet Local Computer Network: an Experimental Study Timothy A. Gonsalves Packet-Voice Communication on an Ethernet Local Computer Network: an Experimental Study Timothy A. Gonsalves CSL·82·5 March 1982 [P82·00034] © Copyright Timothy A. Gonsalves 1982. All rights reserved. Abstract: Local computer networks have been used successfully for data applications such as file transfers for several years. Recently, there have been several proposals for using these networks for voice applications. This paper describes a simple voice protocol for use on a packet-switching local network. This protocol is used in an experimental study of the feasibility of using a 3 Mbps experimental Ethernet network for packet-voice communications. The study shows that with appropriately chosen parameters the experimental Ethernet is capable of supporting about 40 simultaneous 64-Kbps voice conversations with acceptable quality. This corresponds to a utilization of 95% of the network capacity. A version of this paper has been submitted for presentation at the 3rd International Conference on Distributed Computing Systems, Miami, Florida, October 1982. CR Categories: C.2.5, C.4 Key words and Phrases: CSMA/CD, Ethernet, local computer network, measurement, packet-voice, voice communication. Author's Affiliation: Computer Systems Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305. Xerox Corporation XEROX Palo Alto Research Centers 3333 Coyote Hill Road Palo Alto, California 94304 I. Introduction In the past few years. local computer networks for the interconnection of computers and shared resources within a small area such as a building or a campus have rapidly increased in popularity. These networks support applications such as file transfers and electronic mail between autonomous computers. -
2008 Annual Report
2008 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 Program Reports 4 Engineering Education 4 Center for the Advancement of Scholarship on Engineering Education 6 Technological Literacy 6 Public Understanding of Engineering Developing Effective Messages Media Relations Public Relations Grand Challenges for Engineering 8 Center for Engineering, Ethics, and Society 9 Diversity in the Engineering Workforce Engineer Girl! Website Engineer Your Life Project Engineering Equity Extension Service 10 Frontiers of Engineering Armstrong Endowment for Young Engineers-Gilbreth Lectures 12 Engineering and Health Care 14 Technology and Peace Building 14 Technology for a Quieter America 15 America’s Energy Future 16 Terrorism and the Electric Power-Delivery System 16 U.S.-China Cooperation on Electricity from Renewables 17 U.S.-China Symposium on Science and Technology Strategic Policy 17 Offshoring of Engineering 18 Gathering Storm Still Frames the Policy Debate 20 2008 NAE Awards Recipients 22 2008 New Members and Foreign Associates 24 2008 NAE Anniversary Members 28 2008 Private Contributions 28 Einstein Society 28 Heritage Society 29 Golden Bridge Society 29 Catalyst Society 30 Rosette Society 30 Challenge Society 30 Charter Society 31 Other Individual Donors 34 The Presidents’ Circle 34 Corporations, Foundations, and Other Organizations 35 National Academy of Engineering Fund Financial Report 37 Report of Independent Certified Public Accountants 41 Notes to Financial Statements 53 Officers 53 Councillors 54 Staff 54 NAE Publications Letter from the President Engineering is critical to meeting the fundamental challenges facing the U.S. economy in the 21st century. -
Reliable File Transfer Across a 10 Megabit Ethernet
Rochester Institute of Technology RIT Scholar Works Theses 1984 Reliable file transfer across a 10 megabit ethernet Mark Van Dellon Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Van Dellon, Mark, "Reliable file transfer across a 10 megabit ethernet" (1984). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Rochester Institute of Technology School of Computer Science and Technology Reliable File Transfer Ac ross A 10 Megabit Ethernet by Mark Van Dellon July 24, 1984 A thesis, submitted to The Faculty of the Computer Science and Technology, in partial fulfillment of the requirements for the degree of Master of Science in Computer Science Approved by: Roy Czernikowski Dr. Roy - Committee Head John Ellis 'Or. John Ellis Tong-han Chang Dr. Tong-han Chang Date fr-was? Copyright 1984. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, for commercial use or profit without the prior written permission of the author. Abstract: The Ethernet communications network is a broadcast, multi-access system for local computing networks. Such a network was used to connect six 68000 based Charles River Data Systems for the purpose of file transfer. Each system required hardware installation and connection to the Ethernet cable. -
Growth of the Internet
Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] Preliminary version, July 6, 2001 Abstract The Internet is the main cause of the recent explosion of activity in optical fiber telecommunica- tions. The high growth rates observed on the Internet, and the popular perception that growth rates were even higher, led to an upsurge in research, development, and investment in telecommunications. The telecom crash of 2000 occurred when investors realized that transmission capacity in place and under construction greatly exceeded actual traffic demand. This chapter discusses the growth of the Internet and compares it with that of other communication services. Internet traffic is growing, approximately doubling each year. There are reasonable arguments that it will continue to grow at this rate for the rest of this decade. If this happens, then in a few years, we may have a rough balance between supply and demand. Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] 1. Introduction Optical fiber communications was initially developed for the voice phone system. The feverish level of activity that we have experienced since the late 1990s, though, was caused primarily by the rapidly rising demand for Internet connectivity. The Internet has been growing at unprecedented rates. Moreover, because it is versatile and penetrates deeply into the economy, it is affecting all of society, and therefore has attracted inordinate amounts of public attention. The aim of this chapter is to summarize the current state of knowledge about the growth rates of the Internet, with special attention paid to the implications for fiber optic transmission. -
The Internet and Isi: Four Decades of Innovation
THE INTERNET AND ISI: FOUR DECADES OF INNOVATION ROD BECKSTROM President and Chief Executive Officer Internet Corporation for Assigned Names and Numbers (ICANN) 40th Anniversary of USC Information Sciences Institute 26 April 2012 As prepared for delivery It’s an honor to be here today to mark the 40th anniversary of the University of Southern California’s Information Sciences Institute. Thank you to Herb Schorr for inviting me to speak with you today and participate in the day’s events. When he steps down he will leave some very large shoes to fill. When I received Herb’s invitation, I seized upon it as an opportunity to come before you to express the sincere gratitude that my colleagues and I feel for the work and support of ISI. When I think of ICANN and its development, and all we have accomplished, I never forget that we stand upon the shoulders of giants, many of whom contributed to my remarks today. In fact, I owe a special debt of gratitude to Bob Kahn, who has been a mentor to me. I am honored that he took the time to walk through a number of details in the history I have been asked to relate. The organizers asked me to speak about the history of ISI and ICANN. They also invited me to talk a bit about the future of the Internet. In my role as President and CEO of ICANN, I have many speaking engagements that are forward looking. They are opportunities to talk about ICANN’s work and how it will usher in the next phase in the history of the global, unified Internet that many of you have helped to create. -
Proceedings of ~He Ninth
Proceedings of ~he Ninth In~erne~ Engineering Task Force March 1-3, 1988 in San Diego Edited by Phillip Gross Allison Mankin May 1988 NINTH IETF The MITRECorporation Washington CsI Operations 7525 Colshire Drive McLean, Virginia 22102 TABLE OF CONTENTS Page 1.0 CHAIRMAN’S INTRODUCTION 2.0 IETF ATTENDEES 3.0 FINAL AGENDA 4.0 MEETING NOTES 4.1 Tuesday, March 1 4.2 Wednesday, March 2 4.3 Thursday, March 3 11 5.0 WORKING GROUP REPORTS 17 5.1 Authentication 17 5.2 EGP3 18 5.3 Performance and Congestion Control 19 5.4 Short-term Routing 21 5.5 Open Routing 25 5.6 Open SPF IGP 25 5.7 Host Requirements 28 5.8 ISO Technical Issues 29 5.9 Internet Management Information Base (MIB) 35 5.10 IETF CMIP-Based Net Management (NETMAN) 38 5.11 SNMP Extensions 4O TABLE OF CONTENTS (Continued) Page 6.0 PRESENTATION SLIDES 41 6.1 Report on the New NSFnet--Hans-Werner Braun, UMich 42 6.2 Report on the New NSFnet (Cont.)--Jacob Rekhter, IBM 62 6.3 Status of the Adopt-A-GW Program--Bob Enger, Contel 84 6.4 Status of the Adopt-A-GW Program (Cont.)--Phill Gross, MITRE 98 6.5 BBN Report--Mike Brescia, BBN 105 6.6 BBN Report (Cont.)--Marianne (Gardner) Lepp, 121 6.7 Domain Working Group--Mark Lottor, SRI-NIC 126 6.8 EGP3 Working Group--Marianne (Gardner) Lepp, BBN 129 6.9 Open Systems Internet Operations Center WG--Jeff Case, UTK 131 6.10 Authentication WG--Marty Schoffstall, RPI 136 6.11 Performance/Congestion Control--Coleman Blake, MITRE 138 6.12 OSI Technical Issues WG--Ross Callon, BBN 141 6.13 OSI Technical Issues WG (Cont.)--Rob Hagens, UWisc 151 6.14 OSI -
By Dean R. Johnson
Alice Symposium 2009 Duke University “Who needs PowerPoint? I’ve got Alice!” By Dean R. Johnson I. Background of My Experience in Programming II. Experience with Alice A. Changes in Languages and Student Population B. Introducing Alice C. Enrollment Data III. History Lesson: Significant People in Computing A. Paper B. PowerPoint C. Alice 1. Lesson Plan 2. Grading Rubric IV. Sample Projects: Screenshots and descriptions of Student Work I. Background I started my study of Computer Science in 1982 as a high school senior when I enrolled in a one semester course titled “Computer Programming.” It was taught by my math teacher and at first seemed like a very mystifying idea. We wrote programs in BASIC b y “bubbling in” punch cards. After completing the program, we took the stack of cards to the back of the room handing them to our teacher. He was the only one allowed to insert the cards into the card reader. The PDP-11 interpreted our program and if it ran successfully, the dot matrix printer printed a table of the whole numbers from one to ten and their squares. It was amazing. The strange thing about this description is that it brings back such fond memories for me. It was during this brief exposure to programming that I was hooked for life. This is what drives me on a daily basis to do the best I can to expose students to the fascinating world of programming. I graduated from UW-Whitewater in 1986 with a Major in Mathematics and a Minor in Computer Science. -
9/8/19 Date: 9/10/19 Article Title: Brief History of the Internet Autho
● Name: John Church ● Abstract Due Date: 9/8/19 ● Date: 9/10/19 ● Article Title: Brief History of the Internet ● Author: Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn, Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, Stephen Wolf. ● Journal: Internet Society “Brief History of the Internet” provides the reader with a cursory overview of the organizations, motivations, and pivotal moments behind the creation of the internet and its existence up to the date of publication, in 1997. The paper begins by recounting the parties and organization that began the creation of the first networks, and their motivations. The article notes the formation of key organizations and the parties involved in the creation of key technologies over the years following the Internet's inception. The article does not delve into the details of new improvements or the stories behind certain pivotal moments, but instead focuses on giving a brief overview of the parties, technologies, and events largely by name alone. One interesting aspect of the internet's inception that I did not realize until reading the article, was the largely decentralized nature from the beginning. For example, the article mentions that routers were designed to be “black box gateways” that did not hold on to any information. This was likely in line with DARPA’s goals (preventing sensitive military information fro sitting in places it shouldn’t.) as well as technical limitations of the time (the cost of memory in routers.) I wonder, though, that if the US government knew what the internet would become, if they would have insisted on more centralized control measures and less decentralization. -
Multimedia, Internet, On-Line
Section IV: Multimedia, the Internet, and On-Line Services High-End Digital Video Applications Larry Amiot Electronic and Computing Technologies Division Argonne National Laboratory The emphasis of this paper is on the high-end applications Internet and Intranet that are driving digital video. The research with which I am involved at Argonne National Laboratory is not done on dig- The packet video networks which currently support many ital video per se, but rather on how the research applications applications such as file transfer, Mbone video (talking at the laboratory drive its requirements for digital video. The heads), and World Wide Web browsing are limiting for high- paper will define what digital video is, what some of its com- quality video because of the low throughput one can achieve ponents are, and then discuss a few applications that are dri- via the Internet or intranets. Examples of national packet ving the development of these components. The focus will be switched networks developed in the last several years include on what digital video means to individuals in the research the National Science Foundation Network (NSFNet). The and education community. Department of Energy had its own network called ESNET, and the National Aeronautics and Space Administration The Digital Video Environment (NASA) had a network as well. Recently, the NSFNet was de- commissioned, and commercial interests are now starting to In 1996, a group of people from several universities in the fill that void. Research and education communities are find- Midwest and from Argonne formed a Video Working Group. ing, however, that this new commercial Internet is too re- This body tried to define the areas of digital video of impor- stricting and does not meet their throughput requirements; it tance to their institutions.