Involvement of Catecholaminergic and Gabaaergic Mediations in the Anxiety-Related Behavior in Long-Term Powdered Diet-Fed Mice T

Total Page:16

File Type:pdf, Size:1020Kb

Involvement of Catecholaminergic and Gabaaergic Mediations in the Anxiety-Related Behavior in Long-Term Powdered Diet-Fed Mice T Neurochemistry International 124 (2019) 1–9 Contents lists available at ScienceDirect Neurochemistry International journal homepage: www.elsevier.com/locate/neuint Involvement of catecholaminergic and GABAAergic mediations in the anxiety-related behavior in long-term powdered diet-fed mice T ∗ Fukie Yaoitaa, , Masahiro Tsuchiyab, Yuichiro Araic, Takeshi Tadanod, Koichi Tan-Noa a Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan b Department of Nursing, Tohoku Fukushi University, 1-8-1 Kunimi, Aoba-ku, Sendai, 981-8522, Japan c Tokyo Ariake University of Medical and Health Science, 2-9-1 Ariake, Koto-Ku, Tokyo, 135-0063, Japan d Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medicine Sciences, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan ARTICLE INFO ABSTRACT Keywords: Dietary habits are important factors which affect metabolic homeostasis and the development of emotion. We Atomoxetine have previously shown that long-term powdered diet feeding in mice increases spontaneous locomotor activity Methylphenidate and social interaction (SI) time. Moreover, that diet causes changes in the dopaminergic system, especially PD168077 increased dopamine turnover and decreased dopamine D4 receptor signals in the frontal cortex. Although the Anxiety-related behavior increased SI time indicates low anxiety, the elevated plus maze (EPM) test shows anxiety-related behavior and Low anxiety impulsive behavior. In this study, we investigated whether the powdered diet feeding causes changes in anxiety- Bicuculline Attention deficit/hyperactivity disorder related behavior. Mice fed a powdered diet for 17 weeks from weaning were compared with mice fed a standard diet (control). The percentage (%) of open arm time and total number of arm entries were increased in powdered diet-fed mice in the EPM test. We also examined the effects of diazepam, benzodiazepine anti-anxiety drug, bicuculline, GABA-A receptor antagonist, methylphenidate, dopamine transporter (DAT) and noradrenaline transporter (NAT) inhibitor, atomoxetine, selective NAT inhibitor, GBR12909, selective DAT inhibitor, and PD168077, selective dopamine D4 receptor agonist, on the changes of the EPM in powdered diet-fed mice. Methylphenidate and atomoxetine are clinically used to treat attention deficit/hyperactivity disorder (ADHD) symptoms. The % of open arm time in powdered diet-fed mice was decreased by treatments of atomoxetine, methylphenidate and PD168077. Diazepam increased the % of open arm time in control diet-fed mice, but not in powdered diet-fed mice. The powdered diet feeding induced a decrease in GABA transaminase, GABA metabolic enzymes, in the frontal cortex. Moreover, the powdered diet feeding induced an increase in NAT expression, but not DAT expression, in the frontal cortex. These results suggest that the long-term powdered diet feeding may cause low anxiety or impulsivity, possibly via noradrenergic and/or dopaminergic, and GABAAergic mediations and increase the risk for onset of ADHD-like behaviors. 1. Introduction foods in part explain lesser developed masticatory function (Yamanaka et al., 2009). We recently reported that long-term powdered diet Various changes brought on by modern lifestyle have caused an feeding in mice increases spontaneous locomotor activity and social increased risk of disease. Dietary habits are particularly important interaction (SI) time of SI test. Moreover, this diet causes changes in the factors which affect development of the central nervous system as well dopaminergic system, in particular, increased dopamine turnover and as emotion (Aoki et al., 2005; Kushida et al., 2008; Mitome et al., 2005; decreased dopamine D4 receptor signals in the frontal cortex (Niijima- Niijima-Yaoita et al., 2013; Yamamoto and Hirayama, 2001). It has Yaoita et al., 2013). However, some reports suggest that the impairment been suggested that evolutionary changes in dietary habit to softer of dopaminergic activity in the hippocampus may be related to the Abbreviations: ADHD, attention deficit/hyperactivity disorder; ANOVA, analysis of variance; BZD, benzodiazepines; DAT, dopamine transporter; EPM, elevated plus maze; GABA-A, γ−amino butyric acid receptor type A; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; i.p., intraperitoneally; NA, noradrenaline; NAT, nor- adrenaline transporter; % of open arm time, percentage of time spent in the open arm; SI, social interaction; T-PBS, Tween-20 in phosphate-buffered saline ∗ Corresponding author. E-mail address: [email protected] (F. Yaoita). https://doi.org/10.1016/j.neuint.2018.12.002 Received 25 September 2018; Received in revised form 30 November 2018; Accepted 4 December 2018 Available online 07 December 2018 0197-0186/ © 2018 Elsevier Ltd. All rights reserved. F. Yaoita et al. Neurochemistry International 124 (2019) 1–9 masticatory dysfunction induced by powdered diet feeding (Kushida 2.2. Drugs and treatment et al., 2008; Yoshino et al., 2012). In addition to the SI test, the elevated plus maze (EPM) test is useful The following drugs were used: diazepam (Sigma–Aldrich, St. Louis, for evaluating anxiety-related behavior (File, 1992). It is known that MO, USA), bicuculline (GABA-A receptor antagonist, Tocris Bioscience, γ−amino butyric acid type A (GABA-A) receptor plays a critical role in Bristol, UK), methylphenidate (Novartis Pharma, Tokyo, Japan), ato- anxiolytic activity. GABA-A receptor is a chloride channel composed of moxetine (selective NET inhibitor, Sigma–Aldrich) and GBR12909 a pentameric hetero-oligometric protein with binding sites for GABA, (selective DAT inhibitor, Tocris Bioscience). Diazepam, bicuculline and benzodiazepines (BZD), barbiturates, and steroids, etc. The activation PD168077 (selective dopamine D4 receptor agonist, Sigma–Aldrich) of the GABA-A receptor induced by BZD including diazepam increases were suspended in saline containing 0.5% Tween 80. Methylphenidate, the percentage (%) of open arm time in the EPM test, indicating low atomoxetine and GBR12909 were dissolved in saline. All drugs were anxiety (i.e. anxiolytic effect) (for review see Jacob et al., 2008; Möhler administered intraperitoneally (i.p.) (volume: 0.1 ml/10 g body weight) et al., 2002). On the other hand, Hwang et al. (2004) reported that the at 30 min before the behavioral test. The drug doses used in the present increase in expression of GABA transaminase and GABA metabolic study were within the ranges widely used in experiments on mice and enzymes, provide important information about the brain with GABA rats (Gould et al., 2005; Hiraide et al., 2013; Kanegawa et al., 2010; dysfunction. Moreover, the GABA transaminase has been primarily in- Leggio et al., 2011; Niijima et al., 2006; Niijima-Yaoita et al., 2013; vestigated in relation to epilepsy, but it has also been found that a Robinson et al., 2012; Ueno et al., 2002). decrease in GABA neurotransmission appears to be involved in the aetiology of several neurological disorders such as anxiety (for review 2.3. EPM test see Kowalczyk and Kulig, 2014). Attention deficit/hyperactivity disorder (ADHD) is a neurodeve- At 20 weeks of age, the anxiety-related behavior was evaluated lopmental disorder characterized by inattention, hyperactivity, and using the EPM test. The apparatus consisted of two open arms impulsivity. Using the ADHD animal model, impulsive behavior can be (6 cm × 30 cm) opposite each other, crossed by two closed arms evaluated by the EPM test (Kishikawa et al., 2014; Niimi et al., 2011; (6 cm × 30 cm) (walls 10 cm) with an open roof and central platform Ueno et al., 2002). This test is designed to detect anxiety-related be- (9 cm × 9 cm). The maze floor and walls were constructed from acrylic havior but it also reflects impulsivity for novelty seeking. plate and elevated 40 cm from the ground floor. Initially, the animals The frontal cortex is an important brain region which is related to were placed on the central platform of the maze in front of a closed arm. ADHD symptoms, including impulsive behavior (for reviews see The animal had 5 min to explore the apparatus. Activity of mice was Arnsten and Pliszka, 2011; Brevet-Aeby et al., 2016; Herman et al., monitored via video camera positioned above the apparatus. The time 2018). The etiology and pathophysiology of ADHD have not been spent in each arm and the number of entries into each arm were au- completely clarified, however the prefrontal cortex is known to be tomatically analyzed offline using the ANY-maze video tracking soft- particularly sensitive to the neurochemical environment; relatively ware (Stoelting Company, Wood Dale, IL, USA). The test area was slight changes in the levels of noradrenaline (NA) and dopamine can cleaned with 20% ethanol between each session. produce significant changes in its function (for review see Arnsten and Pliszka, 2011). Although newer drugs have been developed, methyl- 2.4. Western blot analysis of GABA transaminase in the frontal cortex and phenidate and atomoxetine remain the predominantly prescribed drugs both NAT and DAT expressions in the frontal cortex and hippocampus for the treatment of ADHD. Methylphenidate increases extracellular dopamine and NA indirectly by blocking the transporters, dopamine After 17 weeks of treatment, animals were sacrificed by decaptation transporter (DAT) and NA transporter (NAT), while atomoxetine pre- without anesthesia. The brains were rapidly resected and two
Recommended publications
  • Auckland Uniservices Limited
    Auckland UniServices Limited Legally available, unclassified psychoactive substances and illegal drugs in New Zealand before and after the ban on BZP: a web‐ based survey of patterns of use FINAL REPORT OF FINDINGS June 2009 Janie Sheridan, PhD, BPharm, BA, FRPharmS, RegPharmNZ Rachael Butler, BA, PGDipPH Christine Y. Dong, BSc Hons, BCom Hons Joanne Barnes, PhD, BPharm, MRPharmS, RegPharmNZ, FLS The School of Pharmacy The University of Auckland New Zealand TABLE OF CONTENTS 1 Executive Summary ........................................................................................... 7 2 Introduction .................................................................................................... 11 2.1 Background .............................................................................................. 11 2.1.1 The legislative and regulatory background ................................ 11 2.1.2 The current study ........................................................................ 12 2.2 Study aims ................................................................................................ 12 2.3 Study methods ......................................................................................... 13 2.4 Ethics approval ......................................................................................... 13 2.5 Structure of this report ............................................................................ 13 3 Adverse effects associated with herbal substances used for recreational purposes: a literature review
    [Show full text]
  • Moves to Amend HF No. 2711 As Follows
    05/05/20 ​ REVISOR KLL/JK A20-0767​ 1.1 .................... moves to amend H.F. No. 2711 as follows:​ 1.2 Delete everything after the enacting clause and insert:​ 1.3 "ARTICLE 1​ 1.4 APPROPRIATIONS​ 1.5 Section 1. APPROPRIATIONS.​ 1.6 The sums shown in the column under "APPROPRIATIONS" are added to or reduce the​ 1.7 appropriations in Laws 2019, First Special Session chapter 5, to the agencies and for the​ 1.8 purposes specified in this article. The appropriations are from the general fund, or another​ 1.9 named fund, and are available for the fiscal year indicated for each purpose.​ 1.10 APPROPRIATIONS​ 1.11 Available for the Year​ 1.12 Ending June 30​ 1.13 2020​ 2021​ 1.14 Sec. 2. CORRECTIONS​ 1.15 Subdivision 1. Total Appropriation​ $​ 205,000​ $​ 5,545,000​ 1.16 The amounts that may be spent for each​ 1.17 purpose are specified in the following​ 1.18 subdivisions.​ 1.19 Subd. 2. Correctional Institutions​ -0-​ (2,545,000)​ 1.20 To account for overall bed impact savings of​ 1.21 reductions in the penalties for controlled​ 1.22 substances offenses involving the possession​ 1.23 of marijuana, investments in community​ 1.24 supervision, and increased penalties for sex​ 1.25 trafficking offenses, the fiscal year 2021​ Article 1 Sec. 2.​ 1​ 05/05/20 ​ REVISOR KLL/JK A20-0767​ 2.1 appropriation from Laws 2019, First Special​ 2.2 Session chapter 5, article 1, section 15,​ 2.3 subdivision 2, is reduced by $2,545,000.​ 2.4 Subd.
    [Show full text]
  • Neuroenhancement in Healthy Adults, Part I: Pharmaceutical
    l Rese ca arc ni h li & C f B o i o l e Journal of a t h n Fond et al., J Clinic Res Bioeth 2015, 6:2 r i c u s o J DOI: 10.4172/2155-9627.1000213 ISSN: 2155-9627 Clinical Research & Bioethics Review Article Open Access Neuroenhancement in Healthy Adults, Part I: Pharmaceutical Cognitive Enhancement: A Systematic Review Fond G1,2*, Micoulaud-Franchi JA3, Macgregor A2, Richieri R3,4, Miot S5,6, Lopez R2, Abbar M7, Lancon C3 and Repantis D8 1Université Paris Est-Créteil, Psychiatry and Addiction Pole University Hospitals Henri Mondor, Inserm U955, Eq 15 Psychiatric Genetics, DHU Pe-psy, FondaMental Foundation, Scientific Cooperation Foundation Mental Health, National Network of Schizophrenia Expert Centers, F-94000, France 2Inserm 1061, University Psychiatry Service, University of Montpellier 1, CHU Montpellier F-34000, France 3POLE Academic Psychiatry, CHU Sainte-Marguerite, F-13274 Marseille, Cedex 09, France 4 Public Health Laboratory, Faculty of Medicine, EA 3279, F-13385 Marseille, Cedex 05, France 5Inserm U1061, Idiopathic Hypersomnia Narcolepsy National Reference Centre, Unit of sleep disorders, University of Montpellier 1, CHU Montpellier F-34000, Paris, France 6Inserm U952, CNRS UMR 7224, Pierre and Marie Curie University, F-75000, Paris, France 7CHU Carémeau, University of Nîmes, Nîmes, F-31000, France 8Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany *Corresponding author: Dr. Guillaume Fond, Pole de Psychiatrie, Hôpital A. Chenevier, 40 rue de Mesly, Créteil F-94010, France, Tel: (33)178682372; Fax: (33)178682381; E-mail: [email protected] Received date: January 06, 2015, Accepted date: February 23, 2015, Published date: February 28, 2015 Copyright: © 2015 Fond G, et al.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Corticotropin Releasing Hormone Receptor CRHR1 Gene Is
    Ramoz et al. Translational Psychiatry (2020) 10:378 https://doi.org/10.1038/s41398-020-01067-y Translational Psychiatry ARTICLE Open Access Corticotropin releasing hormone receptor CRHR1 gene is associated with tianeptine antidepressant response in a large sample of outpatients from real-life settings Nicolas Ramoz 1,NicolasHoertel1,2,3, Bénédicte Nobile 4, Géraldine Voegeli1,5, Ariane Nasr1, Yann Le Strat1,6, Philippe Courtet 4 and Philip Gorwood1,5 Abstract Polymorphisms of genes involved in the hypothalamic–pituitary–adrenocortical (HPA) axis have been associated with response to several antidepressant treatments in patients suffering of depression. These pharmacogenetics findings have been reported from independent cohorts of patients mostly treated with selective serotonin reuptake inhibitors, tricyclic antidepressant, and mirtazapine. Tianeptine, an atypical antidepressant, recently identified as a mu opioid receptor agonist, which prevents and reverses the stress induced by glucocorticoids, has been investigated in this present pharmacogenetics study. More than 3200 Caucasian outpatients with a major depressive episode (MDE) from real-life settings were herein analyzed for clinical response to tianeptine, a treatment initiated from 79.5% of the subjects, during 6–8 weeks follow-up, assessing polymorphisms targeting four genes involved in the HPA axis (NR3C1, FKPB5, CRHR1, and AVPR1B). We found a significant association (p < 0.001) between CRHR1 gene variants rs878886 and 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; rs16940665, or haplotype rs878886*C–rs16940665*T, and tianeptine antidepressant response and remission according to the hospital anxiety and depression scale. Analyses, including a structural equation model with simple mediation, suggest a moderate effect of sociodemographic characteristics and depressive disorder features on treatment response in individuals carrying the antidepressant responder allele rs8788861 (allele C).
    [Show full text]
  • ANTIDEPRESSANTS in USE in CLINICAL PRACTICE Mark Agius1 & Hannah Bonnici2 1Clare College, University of Cambridge, Cambridge, UK 2Hospital Pharmacy St
    Psychiatria Danubina, 2017; Vol. 29, Suppl. 3, pp 667-671 Conference paper © Medicinska naklada - Zagreb, Croatia ANTIDEPRESSANTS IN USE IN CLINICAL PRACTICE Mark Agius1 & Hannah Bonnici2 1Clare College, University of Cambridge, Cambridge, UK 2Hospital Pharmacy St. James Hospital Malta, Malta SUMMARY The object of this paper, rather than producing new information, is to produce a useful vademecum for doctors prescribing antidepressants, with the information useful for their being prescribed. Antidepressants need to be seen as part of a package of treatment for the patient with depression which also includes psychological treatments and social interventions. Here the main Antidepressant groups, including the Selective Serotonin uptake inhibiters, the tricyclics and other classes are described, together with their mode of action, side effects, dosages. Usually antidepressants should be prescribed for six months to treat a patient with depression. The efficacy of anti-depressants is similar between classes, despite their different mechanisms of action. The choice is therefore based on the side-effects to be avoided. There is no one ideal drug capable of exerting its therapeutic effects without any adverse effects. Increasing knowledge of what exactly causes depression will enable researchers not only to create more effective antidepressants rationally but also to understand the limitations of existing drugs. Key words: antidepressants – depression - psychological therapies - social therapies * * * * * Introduction Monoamine oxidase (MAO) inhibitors í Non-selective Monoamine Oxidase Inhibitors Depression may be defined as a mood disorder that í Selective Monoamine Oxidase Type A inhibitors negatively and persistently affects the way a person feels, thinks and acts. Common signs include low mood, Atypical Anti-Depressants and other classes changes in appetite and sleep patterns and loss of inte- rest in activities that were once enjoyable.
    [Show full text]
  • Molecular Profile of Dissociative Drug Ketamine in Relation to Its Rapid Antidepressant Action
    Ficek et al. BMC Genomics (2016) 17:362 DOI 10.1186/s12864-016-2713-3 RESEARCH ARTICLE Open Access Molecular profile of dissociative drug ketamine in relation to its rapid antidepressant action Joanna Ficek, Magdalena Zygmunt, Marcin Piechota, Dzesika Hoinkis, Jan Rodriguez Parkitna, Ryszard Przewlocki and Michal Korostynski* Abstract Background: The NMDA receptor antagonist ketamine was found to act as a fast-acting antidepressant. The effects of single treatment were reported to persist for days to weeks, even in otherwise treatment-refractory cases. Identification of the mechanisms underlying ketamine’s antidepressant action may permit development of novel drugs, with similar clinical properties but lacking psychotomimetic, sedative and other side effects. Methods: We applied whole-genome microarray profiling to analyze detailed time-course (1, 2, 4 and 8 h) of transcriptome alterations in the striatum and hippocampus following acute administration of ketamine, memantine and phencyclidine in C57BL/6 J mice. The transcriptional effects of ketamine were further analyzed using next-generation sequencing and quantitative PCR. Gene expression alterations induced by the NMDA antagonists were compared to the molecular profiles of psychotropic drugs: antidepressants, antipsychotics, anxiolytics, psychostimulants and opioids. Results: We identified 52 transcripts (e.g. Dusp1, Per1 and Fkbp5) with altered expression (FDR < 1 %) in response to treatment with NMDA receptor antagonists. Functional links that connect expression of the regulated genes to the MAPK, IL-6 and insulin signaling pathways were indicated. Moreover, ketamine-regulated expression of specific gene isoforms was detected (e.g. Tsc22d3, Sgk1 and Hif3a). The comparison with other psychotropic drugs revealed that the molecular effects of ketamine are most similar to memantine and phencyclidine.
    [Show full text]
  • Screening of 300 Drugs in Blood Utilizing Second Generation
    Forensic Screening of 300 Drugs in Blood Utilizing Exactive Plus High-Resolution Accurate Mass Spectrometer and ExactFinder Software Kristine Van Natta, Marta Kozak, Xiang He Forensic Toxicology use Only Drugs analyzed Compound Compound Compound Atazanavir Efavirenz Pyrilamine Chlorpropamide Haloperidol Tolbutamide 1-(3-Chlorophenyl)piperazine Des(2-hydroxyethyl)opipramol Pentazocine Atenolol EMDP Quinidine Chlorprothixene Hydrocodone Tramadol 10-hydroxycarbazepine Desalkylflurazepam Perimetazine Atropine Ephedrine Quinine Cilazapril Hydromorphone Trazodone 5-(p-Methylphenyl)-5-phenylhydantoin Desipramine Phenacetin Benperidol Escitalopram Quinupramine Cinchonine Hydroquinine Triazolam 6-Acetylcodeine Desmethylcitalopram Phenazone Benzoylecgonine Esmolol Ranitidine Cinnarizine Hydroxychloroquine Trifluoperazine Bepridil Estazolam Reserpine 6-Monoacetylmorphine Desmethylcitalopram Phencyclidine Cisapride HydroxyItraconazole Trifluperidol Betaxolol Ethyl Loflazepate Risperidone 7(2,3dihydroxypropyl)Theophylline Desmethylclozapine Phenylbutazone Clenbuterol Hydroxyzine Triflupromazine Bezafibrate Ethylamphetamine Ritonavir 7-Aminoclonazepam Desmethyldoxepin Pholcodine Clobazam Ibogaine Trihexyphenidyl Biperiden Etifoxine Ropivacaine 7-Aminoflunitrazepam Desmethylmirtazapine Pimozide Clofibrate Imatinib Trimeprazine Bisoprolol Etodolac Rufinamide 9-hydroxy-risperidone Desmethylnefopam Pindolol Clomethiazole Imipramine Trimetazidine Bromazepam Felbamate Secobarbital Clomipramine Indalpine Trimethoprim Acepromazine Desmethyltramadol Pipamperone
    [Show full text]
  • Site Selective C–H Functionalization of Mitragyna Alkaloids Reveals A
    ARTICLE https://doi.org/10.1038/s41467-021-23736-2 OPEN Site selective C–H functionalization of Mitragyna alkaloids reveals a molecular switch for tuning opioid receptor signaling efficacy Srijita Bhowmik 1,12, Juraj Galeta 1,2,12, Václav Havel 1, Melissa Nelson 3,4, Abdelfattah Faouzi 5,6, Benjamin Bechand1, Mike Ansonoff 7, Tomas Fiala 1,8, Amanda Hunkele5,9, Andrew C. Kruegel1, ✉ John. E. Pintar 7, Susruta Majumdar 5, Jonathan A. Javitch 3,4 & Dalibor Sames 1,10,11 1234567890():,; Mitragynine (MG) is the most abundant alkaloid component of the psychoactive plant material “kratom”, which according to numerous anecdotal reports shows efficacy in self-medication for pain syndromes, depression, anxiety, and substance use disorders. We have developed a synthetic method for selective functionalization of the unexplored C11 position of the MG scaffold (C6 position in indole numbering) via the use of an indole-ethylene glycol adduct and subsequent iridium-catalyzed borylation. Through this work we discover that C11 represents a key locant for fine-tuning opioid receptor signaling efficacy. 7-Hydroxymitragynine (7OH), the parent compound with low efficacy on par with buprenorphine, is transformed to an even lower efficacy agonist by introducing a fluorine substituent in this position (11-F-7OH), as demonstrated in vitro at both mouse and human mu opioid receptors (mMOR/hMOR) and in vivo in mouse analgesia tests. Low efficacy opioid agonists are of high interest as candidates for generating safer opioid medications with mitigated adverse effects. 1 Department of Chemistry, Columbia University, New York, NY, USA. 2 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague), 160 00 Prague 6, Czech Republic.
    [Show full text]
  • In Vivo Electrophysiological Recordings of the Effects of Antidepressant Drugs
    Experimental Brain Research (2019) 237:1593–1614 https://doi.org/10.1007/s00221-019-05556-5 REVIEW In vivo electrophysiological recordings of the efects of antidepressant drugs Paul J. Fitzgerald1 · Brendon O. Watson1 Received: 9 October 2018 / Accepted: 6 May 2019 / Published online: 11 May 2019 © The Author(s) 2019 Abstract Antidepressant drugs are a standard biological treatment for various neuropsychiatric disorders, yet relatively little is known about their electrophysiologic and synaptic efects on mood systems that set moment-to-moment emotional tone. In vivo electrical recording of local feld potentials (LFPs) and single neuron spiking has been crucial for elucidating important details of neural processing and control in many other systems, and yet electrical approaches have not been broadly applied to the actions of antidepressants on mood-related circuits. Here we review the literature encompassing electrophysiologic efects of antidepressants in animals, including studies that examine older drugs, and extending to more recently synthesized novel compounds, as well as rapidly acting antidepressants. The existing studies on neuromodulator-based drugs have focused on recording in the brainstem nuclei, with much less known about their efects on prefrontal or sensory cortex. Studies on neuromodulatory drugs have moreover focused on single unit fring patterns with less emphasis on LFPs, whereas the rapidly acting antidepressant literature shows the opposite trend. In a synthesis of this information, we hypothesize that all classes of antidepressants could have common fnal efects on limbic circuitry. Whereas NMDA receptor blockade may induce a high powered gamma oscillatory state via direct and fast alteration of glutamatergic systems in mood-related circuits, neuromodulatory antidepressants may induce similar efects over slower timescales, corresponding with the timecourse of response in patients, while resetting synaptic excitatory versus inhibitory signaling to a normal level.
    [Show full text]
  • Discovering Alternative Treatments for Opioid Use Recovery Using Social Media
    CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK Discovering Alternative Treatments for Opioid Use Recovery Using Social Media Stevie Chancellor George Nitzburg Andrea Hu Georgia Tech Teachers College Georgia Tech Atlanta, GA, US Columbia University Atlanta, GA, US [email protected] New York, NY, US [email protected] [email protected] Francisco Zampieri Munmun De Choudhury Georgia Tech Georgia Tech Atlanta, GA, US Atlanta, GA, US [email protected] [email protected] ABSTRACT KEYWORDS Opioid use disorder (OUD) poses substantial risks to per- opioid use disorder; recovery; Reddit; alternative treatment; sonal well-being and public health. In online communities, addiction; online communities users support those seeking recovery, in part by promoting ACM Reference Format: clinically grounded treatments. However, some communi- Stevie Chancellor, George Nitzburg, Andrea Hu, Francisco Zampieri, ties also promote clinically unverified OUD treatments, such and Munmun De Choudhury. 2019. Discovering Alternative Treat- as unregulated and untested drugs. Little research exists on ments for Opioid Use Recovery Using Social Media. In CHI Con- which alternative treatments people use, whether these treat- ference on Human Factors in Computing Systems Proceedings (CHI ments are effective for recovery, or if they cause negative 2019), May 4–9, 2019, Glasgow, Scotland UK. ACM, New York, NY, side effects. We provide the first large-scale social media USA, 15 pages. https://doi.org/10.1145/3290605.3300354 study of clinically unverified, alternative treatments in OUD recovery on Reddit, partnering with an addiction research 1 INTRODUCTION scientist. We adopt transfer learning across 63 subreddits to Opioid use disorder (OUD)1 is one of the most pressing public precisely identify posts related to opioid recovery.
    [Show full text]
  • Agomelatine and Tianeptine Antidepressant Activity in Mice Behavioral
    Pharmacological Reports 71 (2019) 676–681 Contents lists available at ScienceDirect Pharmacological Reports journal homepage: www.elsevier.com/locate/pharep Short communication Agomelatine and tianeptine antidepressant activity in mice behavioral despair tests is enhanced by DMPX, a selective adenosine A2A receptor antagonist, but not DPCPX, a selective adenosine A1 receptor antagonist a, a a b a _ Aleksandra Szopa *, Karolina Bogatko , Anna Serefko , Elzbieta Wyska , Sylwia Wosko , a c d e Katarzyna Swia˛der , Urszula Doboszewska , Aleksandra Wlaz , Andrzej Wróbel , c f a Piotr Wlaz , Jarosław Dudka , Ewa Poleszak a Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland b Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Kraków, Poland c Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland d Department of Pathophysiology, Medical University of Lublin, Lublin, Poland e Second Department of Gynecology, Medical University of Lublin, Lublin, Poland f Chair and Department of Toxicology, Medical University of Lublin, Lublin, Poland A R T I C L E I N F O A B S T R A C T Article history: Background: Adenosine, an endogenous nucleoside, modulates the release of monoamines, e.g., Received 9 October 2018 noradrenaline, serotonin, and dopamine in the brain. Both nonselective and selective stimulation of Received in revised form 12 February 2019 adenosine receptors produce symptoms of depression in some animal models. Therefore, the main Accepted 11 March 2019 objective of our study was to assess the influence of a selective adenosine A1 receptor antagonist (DPCPX) Available online 16 March 2019 and a selective adenosine A2A receptor antagonist (DMPX) on the activity of agomelatine and tianeptine.
    [Show full text]