The Movement of Li-Ion Batteries Through the Norwegian Transport Sector
Total Page:16
File Type:pdf, Size:1020Kb
TØI report 1756/2020 Erik Figenbaum Rebecca Jayne Thorne Astrid Helene Amundsen Daniel Ruben Pinchasik Lasse Fridstrøm From Market Penetration to Vehicle Scrappage The Movement of Li-Ion Batteries through the Norwegian Transport Sector TØI-rapport 1756/2020 From Market Penetration to Vehicle Scrappage The Movement of Li-Ion Batteries through the Norwegian Transport Sector Erik Figenbaum Rebecca J. Thorne Astrid H. Amundsen Daniel R. Pinchasik Lasse Fridstrøm Forsidebilde: Shutterstock Transportøkonomisk institutt (TØI) har opphavsrett til hele rapporten og dens enkelte deler. Innholdet kan brukes som underlagsmateriale. Når rapporten siteres eller omtales, skal TØI oppgis som kilde med navn og rapportnummer. Rapporten kan ikke endres. Ved eventuell annen bruk må forhåndssamtykke fra TØI innhentes. For øvrig gjelder åndsverklovens bestemmelser. ISSN 2535-5104 Elektronisk ISBN 978-82-480-1294-8 Elektronisk Oslo, May 2020 Tittel: Fra markedsopptak til vraking. Li-Ion batteriers vei Title: From Market Penetration to Vehicle gjennom vegtransportsektoren Scrappage. The Movement of Li-Ion Batteries through the Norwegian Transport Sector Forfattere: Erik Figenbaum Authors: Erik Figenbaum Rebecca J. Thorne Rebecca J. Thorne Astrid H. Amundsen Astrid H. Amundsen Daniel R. Pinchasik Daniel R. Pinchasik Lasse Fridstrøm Lasse Fridstrøm Dato: 05.2020 Date: 05.2020 TØI-rapport: 1756/2020 TØI Report: 1756/2020 Sider: 178 Pages: 178 ISSN elektronisk: 2535-5104 ISSN: 2535-5104 ISBN elektronisk: 978-82-480-1294-8 ISBN Electronic: 978-82-480-1294-8 Finansieringskilde: Norges forskningsråd Financed by: Norwegian Research Council Prosjekt: 4772 – Batman Project: 4772 – Batman Prosjektleder: Erik Figenbaum Project Manager: Erik Figenbaum Kvalitetsansvarlig: Jardar Andersen Quality Manager: Jardar Andersen Fagfelt: Transporteknologi og miljø Research Area: Transport technology and Environment Emneord: Nullutslippskjøretøy, Markeds- Keywords: Zero-emission vehicles, Market potensial, Teknologiutvikling, potential, Technology Kostnader, Vraking, Batterier development, Costs, Scrapping, Batteries Sammendrag: Summary: Denne rapporten analyserer mulighetene for å nå This report analyses the potential for reaching the kjøretøymålene i Nasjonal Transportplan om at det bare skal National Transport Plan targets of only selling zero- selges nullutslipps kjøretøy i personbil, lette varebiler og emission cars, small light commercial vehicles and city bybuss segmentene i 2025, og bare selges nullutslipps buses in 2025, and zero-emission large vans in 2030, tunge varebiler og henholdvis 50% og 75% nullutslipps along with 50% of trucks and 75% of long-distance lastebiler og langdistansebusser i 2030. Kraftige virkemidler buses. Strong measures will be required. The passenger vil bli nødvendig. Personbilmålet er mest krevende pga. stor car target is demanding due to the wide user preference variasjon i brukerpreferanser. Varebil- og bussmålene for variation. The city bus and small light commercial vehicle 2025 ser krevende ut, men kan være oppnåelige da targets seem attainable, with technology developments kommende kjøretøymodeller i stor grad matcher behovene. so that more needs can be met. The 2030 heavy van Målet for tunge varebiler i 2030 vil trolig kunne oppnås da de target is within reach as they lag light van development ligger 5 år etter utviklingen til de lette. Målene for lastebiler by 5 years. The 2030 truck and bus targets are uncertain og langdistansebusser er mer usikre da nullutslippsvarianter as no serial production is yet in place. Hydrogen may av slike kjøretøy ikke finnes i serieproduksjon enda. I disse play a key role for long-distance heavy-duty applications. segmentene kan hydrogen få en viktig rolle. Utviklingen i Sales of passenger battery electric cars will lead to a salget av elpersonbiler vil medføre ett estimert behov for å need to recycle 0.6 GWh Li-Ion batteries in 2025 and resirkulere 0.6 GWh Li-Ion batterier i 2025 og 2.2 GWh i 2.2 GWh in 2030. 2030. Language of report: English Transportøkonomisk Institutt Institute of Transport Economics Gaustadalléen 21, 0349 Oslo Gaustadalléen 21, N-0349 Oslo, Norway Telefon 22 57 38 00 - www.toi.no Telephone +47 22 57 38 00 - www.toi.no Copyright © Transportøkonomisk institutt, 2020 Denne publikasjonen er vernet i henhold til Åndsverkloven av 2018 Ved gjengivelse av materiale fra publikasjonen, må fullstendig kilde oppgis From Market Penetration to Vehicle Scrappage. The Movement of Li-Ion Batteries through the Norwegian Transport Sector Preface The transport sector accounts for around 30 per cent of greenhouse gas emissions in Norway, around 21 per cent of EU greenhouse gas emissions and around 23 per cent of energy-related CO2 emissions globally. At the same time, there is strong growth in the transport of people and goods in Norway and globally. It is therefore crucial to reduce global emissions from the transport sector to reach international climate target goals, and to utilize resources in an efficient manner. Norway has ambitious targets for conversion to zero-emission vehicles. The Government has set the following objectives in National Transport Plan 2018-2029 (Report St. 33 2016-2017): • By 2025, all new passenger cars, new light vans and new city buses will be zero-emission vehicles • By 2030, all new heavier vans, 75 percent of new long-distance buses, and 50 percent of new trucks will be zero-emission. Electrification of the vehicles (battery or hydrogen as well as plug in hybrids) is important to achieve the objectives. Norway is on its way, but there are many barriers to a full-scale conversion to zero emissions. The Norwegian materials industry organized in the EydeCluster wants to be at the forefront of recycling battery materials and needs to know how large volumes of batteries that will be available for recycling when these electrified vehicles have reached their end of life, and when these volumes starts to ramp up. They therefore wanted to study the market, technology and policy developments for battery electric passenger cars, light and heavy vans, city and long distance buses and trucks, and when large enough battery volumes to warrant investments in battery recycling will become available. The study is part of the BATMAN project funded by the Research Council of Norway and its partners (NFR: BATMAN – 299334). The report is also interlinked to a project for the Ministry of Climate and Environment where results were documented in TOI report 1744/2019 (in Norwegian). Large parts of that report have been translated to English and included in this report. Chief Research Engineer, M.Sc. Erik Figenbaum has been TOI’s project manager and has written the majority of chapters, many in collaboration with other researchers. Natural scientist Rebecca J. Thorne is co-author of chapters 5, 6 and 9, and environmental economist Daniel R. Pinchasik is co-author of chapter 9. The exceptions are chapters 7 and 13, which the geographer Astrid H. Amundsen has written and chapter 12 that Rebecca J. Thorne has written (which includes data on the scrappage of vehicles extracted from the BIG model by Lasse Fridstrøm). All employees have commented on parts of the report along the way. We express our gratitude to all of these, as well as to BATMAN’s project leader Stephen Sayfritz at Eyde-cluster and Fernando Aguilar Lopez at NTNU who provided constructive feedback on the work. Oslo, May 2020 Institute of Transport Economics Gunnar Lindberg Jardar Andersen Managing Director Research Director Copyright © Transportøkonomisk institutt, 2020 O Denne publikasjonen er vernet i henhold til Åndsverkloven av 2018 From Market Penetration to Vehicle Scrappage. The Movement of Li-Ion Batteries through the Norwegian Transport Sector Content Summary Sammendrag 1 Introduction ......................................................................................................... 1 2 Background .......................................................................................................... 4 3 Research Questions ............................................................................................. 8 4 Methods and Data Sources .................................................................................. 9 4.1 TØI-TCO model – Passenger cars and LCVs ............................................................ 9 4.2 TØI – BIG model ......................................................................................................... 10 4.3 Cost calculation for trucks and buses ......................................................................... 12 4.4 Literature analysis and knowledge summaries........................................................... 12 4.5 Calculating the flow of Li-Ion batteries through the sector .................................... 12 5 Battery technology ............................................................................................. 16 5.1 Batteries .......................................................................................................................... 16 6 Vehicles on offer ................................................................................................. 20 6.1 Process for the development and production of cars .............................................. 20 6.2 Passenger cars ................................................................................................................ 22 6.3 Light Commercial Vehicles .........................................................................................