And Myeolchi-Jeotgal by 16S Rrna Gene Sequencing, MALDI-TOF

Total Page:16

File Type:pdf, Size:1020Kb

And Myeolchi-Jeotgal by 16S Rrna Gene Sequencing, MALDI-TOF J. Microbiol. Biotechnol. (2018), 28(7), 1112–1121 https://doi.org/10.4014/jmb.1803.03034 Research Article Review jmb Identification of Lactic Acid Bacteria in Galchi- and Myeolchi-Jeotgal by 16S rRNA Gene Sequencing, MALDI-TOF Mass Spectrometry, and PCR-DGGE S Yoonju Lee†, Youngjae Cho†, Eiseul Kim, Hyun-Joong Kim, and Hae-Yeong Kim* Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea Received: March 27, 2018 Revised: May 30, 2018 Jeotgal is a Korean traditional fermented seafood with a high concentration of salt. In this Accepted: June 4, 2018 study, we isolated lactic acid bacteria (LAB) from galchi (Trichiurus lepturus, hairtail) and First published online myeolchi (Engraulis japonicas, anchovy) jeotgal on MRS agar and MRS agar containing 5% June 6, 2018 NaCl (MRS agar+5% NaCl), and identified them by using 16S rRNA gene sequencing and *Corresponding author matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF Phone: +82-31-201-2660; MS) as culture-dependent methods. We also performed polymerase chain reaction-denaturing Fax: +82-31-204-8116; E-mail: [email protected] gradient gel electrophoresis (PCR-DGGE) as a culture-independent method to identify bacterial communities. Five samples of galchi-jeotgal and seven samples of myeolchi-jeotgal † These authors contributed were collected from different regions in Korea. A total of 327 and 395 colonies were isolated equally to this work. from the galchi- and myeolchi-jeotgal samples, respectively. 16S rRNA gene sequencing and MALDI-TOF MS revealed that the genus Pediococcus was predominant on MRS agar, and Tetragenococcus halophilus on MRS agar+5% NaCl. PCR-DGGE revealed that T. halophilus, Tetragenococcus muriaticus, and Lactobacillus sakei were predominant in both types of jeotgal. T. halophilus was detected in all samples. Even though the same species were identified by both culture-dependent and -independent methods, many species identified by the culture- S upplementary data for this dependent methods were not in the bacterial list identified by the culture-independent paper are available on-line only at methods. The distribution of bacteria in galchi-jeotgal was more diverse than in myeolchi- http://jmb.or.kr. jeotgal. The diverse LAB in galchi- and myeolchi-jeotgals can be further studied as candidates pISSN 1017-7825, eISSN 1738-8872 for starter cultures to produce fermented foods. Copyright© 2018 by The Korean Society for Microbiology Keywords: Lactic acid bacteria, galchi-jeotgal, myeolchi-jeotgal, 16S rRNA gene sequencing, and Biotechnology MALDI-TOF MS, PCR-DGGE Introduction diverse raw materials, including whole meat, intestines, or eggs of fish and shellfish. There are approximately 150 Jeotgal or jeot is traditional fermented and salted seafood different kinds of jeotgal in Korea that differ by main widely consumed in regions that have rice-based diets, ingredient and/or processing method [1]. Jeotgal is also such as Korea, Japan, and Southeast Asia. This food made in other countries; it is known as pla-ra and pa-daek product is manufactured by adding salt to various types of in Thailand and Laos [2], and nuoc-man in Vietnam [3]. seafood to prevent spoilage and has a distinctive flavor as a Jeotgal is made by adding salt to a final concentration of a result of enzymatic reactions among the ingredients. The 20-30% to the raw material and allowing the mixture to various types of Korean traditional fermented and salted ferment for 2-3 months [1]. Jeotgal is used as an important seafood, such as jeotgal, aekjeot (fish sauce), and sikhae condiment in kimchi or for seasoning Korean-style stews to (fermented fish with grains) are distinguished by the enhance flavor and taste. Additionally, the bacterial manufacturing process. In Korea, jeotgal is made using communities in jeotgal are thought to improve appetite J. Microbiol. Biotechnol. Identification of Lactic Acid Bacteria in Jeotgal 1113 and digestion [1]. culture-independent method is polymerase chain reaction- In general, most bacteria in jeotgal originate from the denaturing gradient gel electrophoresis (PCR-DGGE). seafood used as the main ingredient or the environment of Genomic DNA extracted directly from each sample is that seafood. Owing to the high salt concentration of separated by the GC content of the DNA, with different jeotgal, halophilic or halotolerant bacteria can survive and bacteria showing specific band patterns in the gradient gel participate in the fermentation, whereas the growth of after electrophoresis. This method has been used to detect harmful bacteria is decreased [1]. Examples of bacterial diverse bacterial communities grown in culture as well as genera present in jeotgal include Halobacterium and Halomonas organisms that cannot be cultured. PCR-DGGE has been in addition to Bacillus, Brevibacterium, Flavobacterium, used in several studies to investigate microorganisms in Micrococcus, Pediococcus, Pseudomonas, and Staphylococcus various fermented foods, including jeotgal [2, 15-18]. [1]. The bacterial communities vary according to the Among the many kinds of jeotgals made using various ingredients and fermentation period. There has been seafoods, galchi (hairtail)- and myeolchi (anchovy)-jeotgal extensive research into the bacteria present in jeotgal are common kimchi ingredients that are widely consumed because they contribute to its fermentation and ripening. in Korea. However, few studies have reported the lactic acid bacteria Our aim in this study was to investigate the bacterial (LAB) communities present in jeotgal and their functions in communities, especially LAB, present in galchi- and the fermentation process [4]. This is mostly because LAB myeolchi-jeotgals using diverse identification methods. cannot survive in the high salt environment of jeotgal. In First, the bacterial communities from various jeotgal this study, we identified LAB communities present in samples purchased from different regions of South Korea different jeotgal samples using agars containing salt. were identified using 16S rRNA gene sequencing and Tools to investigate bacterial community composition MALDI-TOF MS of isolates grown on agar plates with or can be categorized as culture-dependent or -independent. without salt as culture-dependent methods. Additionally, Culture-dependent methods rely on the application of the bacterial communities were analyzed using PCR-DGGE molecular techniques such as 16S rRNA gene sequencing as a culture-independent method. and matrix-assisted laser desorption/ionization time-of- flight mass spectrometry (MALDI-TOF MS) to identify Materials and Methods isolates from cultured media [5-7]. 16S rRNA gene sequencing is one of the most commonly used techniques Jeotgal Sample Preparation and Measurement of pH and Salinity for bacterial identification [4, 8]. However, this technique is Five samples of galchi-jeotgal were collected from five markets time-consuming because genes from extracted DNA need (Se-1, Se-2, Se-3, So-1, and Y-1) in three regions (Seoul, Sokcho, to be amplified by the polymerase chain reaction (PCR) and and Yeosu) and seven samples of myeolchi-jeotgal were be purified for sequencing. In contrast, MALDI-TOF MS is purchased from seven markets (B-1, B-2, B-3, Se-1, Se-2, Se-3, and Y-1) in three regions (Busan, Seoul, and Yeosu) in Korea. To an effective and accurate identification technique that can measure the pH and salinity of each sample, 1 g of sample and be performed in a short time period using only a single 10 ml of sterilized water were mixed and centrifuged at 16,200 ×g colony, and a large number of isolates can be analyzed for 10 min. The pH of the collected supernatant was then measured simultaneously [9, 10]. This quick and accurate technique has using an Orion star a211 pH meter (Thermo Fisher Scientific, previously been used to characterize bacterial communities USA) and the salinity was measured using a PAL-03S refractometer in diverse fermented foods from various countries, including (ATAGO, Japan). fermented meat nem chua from Vietnam [11] and vegetable dua muoi and ca muoi [10], including mukeunji, a long- Isolation of Lactic Acid Bacteria term aged kimchi [12], as well as yogurt and probiotics Ten grams of each sample was mixed with 90 ml of sterile water [13]. Nevertheless, few studies have used MALDI-TOF MS in a Stomacher filter bag (Seward Limited, UK) and homogenized analysis to identify bacterial communities in jeotgal. using a Stomacher 400 (Seward Limited, UK) for 30 sec at Although the distribution of viable cells in each sample 230 rpm. After serial dilution of the homogenized samples with phosphate-buffered saline, 100 μl of highly diluted sample was can be determined and isolates acquired through culture- spread onto MRS agar (Acumedia, USA) and MRS agar containing dependent methods, bacteria present at very low levels or 5% NaCl (MRS agar+5% NaCl), and incubated anaerobically for dead bacteria cannot be cultured [14]. These hard-to- 72 h at 30°C to culture LAB. Single colonies that differed in culture microorganisms can be detected effectively by morphological characteristics were picked from each plate and culture-independent methods [15]. One conventional subcultured in MRS broth (Acumedia, USA) and MRS broth July 2018 ⎪ Vol. 28⎪ No. 7 1114 Lee et al. containing 5% NaCl (MRS broth+5% NaCl) for 24 h at 30°C. Analysis of Bacterial Communities by PCR-DGGE Enriched bacterial isolates in both broths were mixed with 80% Ten grams of each sample was mixed with 90 ml of sterile water glycerol at the ratio of 7:3 and stored at -80°C. in a Stomacher filter bag and homogenized using a Stomacher 400 at 230 rpm for 30 sec. The homogenized samples were filtered Comparison of Whole Cell Protein Patterns through SDS-PAGE through four layers of cheesecloth and centrifuged at 4,250 ×g, at Analysis 4°C for 15 min. The collected pellets were washed twice with Each isolate was cultured in MRS broth or MRS broth+5% NaCl sterile water, and genomic DNA was extracted using the P&C for 24 h at 30°C and centrifuged at 16,200 ×g, 4°C for 15 min.
Recommended publications
  • Data of Read Analyses for All 20 Fecal Samples of the Egyptian Mongoose
    Supplementary Table S1 – Data of read analyses for all 20 fecal samples of the Egyptian mongoose Number of Good's No-target Chimeric reads ID at ID Total reads Low-quality amplicons Min length Average length Max length Valid reads coverage of amplicons amplicons the species library (%) level 383 2083 33 0 281 1302 1407.0 1442 1769 1722 99.72 466 2373 50 1 212 1310 1409.2 1478 2110 1882 99.53 467 1856 53 3 187 1308 1404.2 1453 1613 1555 99.19 516 2397 36 0 147 1316 1412.2 1476 2214 2161 99.10 460 2657 297 0 246 1302 1416.4 1485 2114 1169 98.77 463 2023 34 0 189 1339 1411.4 1561 1800 1677 99.44 471 2290 41 0 359 1325 1430.1 1490 1890 1833 97.57 502 2565 31 0 227 1315 1411.4 1481 2307 2240 99.31 509 2664 62 0 325 1316 1414.5 1463 2277 2073 99.56 674 2130 34 0 197 1311 1436.3 1463 1899 1095 99.21 396 2246 38 0 106 1332 1407.0 1462 2102 1953 99.05 399 2317 45 1 47 1323 1420.0 1465 2224 2120 98.65 462 2349 47 0 394 1312 1417.5 1478 1908 1794 99.27 501 2246 22 0 253 1328 1442.9 1491 1971 1949 99.04 519 2062 51 0 297 1323 1414.5 1534 1714 1632 99.71 636 2402 35 0 100 1313 1409.7 1478 2267 2206 99.07 388 2454 78 1 78 1326 1406.6 1464 2297 1929 99.26 504 2312 29 0 284 1335 1409.3 1446 1999 1945 99.60 505 2702 45 0 48 1331 1415.2 1475 2609 2497 99.46 508 2380 30 1 210 1329 1436.5 1478 2139 2133 99.02 1 Supplementary Table S2 – PERMANOVA test results of the microbial community of Egyptian mongoose comparison between female and male and between non-adult and adult.
    [Show full text]
  • Taxonomy of Lactobacilli and Bifidobacteria
    Curr. Issues Intestinal Microbiol. 8: 44–61. Online journal at www.ciim.net Taxonomy of Lactobacilli and Bifdobacteria Giovanna E. Felis and Franco Dellaglio*† of carbohydrates. The genus Bifdobacterium, even Dipartimento Scientifco e Tecnologico, Facoltà di Scienze if traditionally listed among LAB, is only poorly MM. FF. NN., Università degli Studi di Verona, Strada le phylogenetically related to genuine LAB and its species Grazie 15, 37134 Verona, Italy use a metabolic pathway for the degradation of hexoses different from those described for ‘genuine’ LAB. Abstract The interest in what lactobacilli and bifdobacteria are Genera Lactobacillus and Bifdobacterium include a able to do must consider the investigation of who they large number of species and strains exhibiting important are. properties in an applied context, especially in the area of Before reviewing the taxonomy of those two food and probiotics. An updated list of species belonging genera, some basic terms and concepts and preliminary to those two genera, their phylogenetic relationships and considerations concerning bacterial systematics need to other relevant taxonomic information are reviewed in this be introduced: they are required for readers who are not paper. familiar with taxonomy to gain a deep understanding of The conventional nature of taxonomy is explained the diffculties in obtaining a clear taxonomic scheme for and some basic concepts and terms will be presented for the bacteria under analysis. readers not familiar with this important and fast-evolving area,
    [Show full text]
  • A Review on Adventitious Lactic Acid Bacteria from Table Olives
    foods Review A Review on Adventitious Lactic Acid Bacteria from Table Olives M. Francisca Portilha-Cunha 1 , Angela C. Macedo 1,2,* and F. Xavier Malcata 1 1 LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; [email protected] (M.F.P.-C.); [email protected] (F.X.M.) 2 UNICES-ISMAI—Research Unit in Management Sciences and Sustainability, University Institute of Maia, Av. Carlos Oliveira Campos, 4475-690 Maia, Portugal * Correspondence: [email protected] Received: 10 June 2020; Accepted: 15 July 2020; Published: 17 July 2020 Abstract: Spontaneous fermentation constitutes the basis of the chief natural method of processing of table olives, where autochthonous strains of lactic acid bacteria (LAB) play a dominant role. A thorough literature search has unfolded 197 reports worldwide, published in the last two decades, that indicate an increasing interest in table olive-borne LAB, especially in Mediterranean countries. This review attempted to extract extra information from such a large body of work, namely, in terms of correlations between LAB strains isolated, manufacture processes, olive types, and geographical regions. Spain produces mostly green olives by Spanish-style treatment, whereas Italy and Greece produce mainly green and black olives, respectively, by both natural and Spanish-style. More than 40 species belonging to nine genera of LAB have been described; the genus most often cited is Lactobacillus, with L. plantarum and L. pentosus as most frequent species—irrespective of country, processing method, or olive type. Certain LAB species are typically associated with cultivar, e.g., Lactobacillus parafarraginis with Spanish Manzanilla, or L.
    [Show full text]
  • Bacterial Community Migration in the Ripening of Doenjang, a Traditional
    J. Microbiol. Biotechnol. (2014), 24(5), 648–660 http://dx.doi.org/10.4014/jmb.1401.01009 Research Article jmb Bacterial Community Migration in the Ripening of Doenjang, a Traditional Korean Fermented Soybean Food Do-Won Jeong1, Hye-Rim Kim1, Gwangsick Jung1, Seulhwa Han1, Cheong-Tae Kim2, and Jong-Hoon Lee1* 1Department of Food Science and Biotechnlogy, Kyonggi University, Suwon 443-760, Republic of Korea 2Nongshim Co., Ltd., Seoul 156-709, Republic of Korea Received: January 6, 2014 Revised: February 15, 2014 Doenjang, a traditional Korean fermented soybean paste, is made by mixing and ripening meju Accepted: February 16, 2014 with high salt brine (approximately 18%). Meju is a naturally fermented soybean block prepared by soaking, steaming, and molding soybean. To understand living bacterial community migration and the roles of bacteria in the manufacturing process of doenjang, the First published online diversity of culturable bacteria in meju and doenjang was examined using media supplemented February 19, 2014 with NaCl, and some physiological activities of predominant isolates were determined. Bacilli *Corresponding author were the major bacteria involved throughout the entire manufacturing process from meju to Phone: +82-31-249-9656; doenjang; some of these bacteria might be present as spores during the doenjang ripening Fax: +82-31-253-1165; process. Bacillus siamensis was the most populous species of the genus, and Bacillus licheniformis E-mail: [email protected] exhibited sufficient salt tolerance to maintain its growth during doenjang ripening. Enterococcus faecalis and Enterococcus faecium, the major lactic acid bacteria (LAB) identified in this study, did not continue to grow under high NaCl conditions in doenjang.
    [Show full text]
  • Antibacterial and Antifungal Activity of Crude and Freeze-Dried Bacteriocin-Like Inhibitory Substance Produced by Pediococcus Pe
    www.nature.com/scientificreports OPEN Antibacterial and antifungal activity of crude and freeze‑dried bacteriocin‑like inhibitory substance produced by Pediococcus pentosaceus Pamela Oliveira de Souza de Azevedo1, Carlos Miguel Nóbrega Mendonça1, Ana Carolina Ramos Moreno2, Antonio Vinicius Iank Bueno3, Sonia Regina Yokomizo de Almeida4, Liane Seibert5, Attilio Converti6, Ii‑Sei Watanabe4, Martin Gierus7 & Ricardo Pinheiro de Souza Oliveira1* Pediococcus pentosaceus LBM 18 has shown potential as producer of an antibacterial and antifungal bacteriocin-like inhibitory substance (BLIS). BLIS inhibited the growth of spoilage bacteria belonging to Lactobacillus, Enterococcus and Listeria genera with higher activity than Nisaplin used as control. It gave rise to inhibition halos with diameters from 9.70 to 20.00 mm, with Lactobacillus sakei being the most sensitive strain (13.50–20.00 mm). It also efectively suppressed the growth of fungi isolated from corn grain silage for up to 25 days and impaired morphology of colonies by likely afecting fungal membranes. These results point out that P. pentosaceus BLIS may be used as a new promising alternative to conventional antibacterial and antifungal substances, with potential applications in agriculture and food industry as a natural bio‑controlling agent. Moreover, cytotoxicity and cell death induction tests demonstrated cytotoxicity and toxicity of BLIS to human colon adenocarcinoma Caco‑ 2cells but not to peripheral blood mononuclear cells, with suggests possible applications of BLIS also in medical‑pharmaceutical applications. Lactic acid bacteria (LAB) are a group of well-distributed microorganisms in nature 1–3 having lactic acid as the major product of sugar fermentation 4,5. Tey are Gram-positive, non-pathogenic, non-sporulating, facultative anaerobic, catalase negative and acid tolerant bacteria with a strictly fermentative metabolism 3,6, which are ofen used as industrial starter cultures in food fermentation technology 7,8.
    [Show full text]
  • Genus-Specific Identification of Enterococci by PCR Method
    ACTA VET. BRNO 2005, 74: 633–637 Genus-Specific Identification of Enterococci by PCR Method ·. CUPÁKOVÁ1, M. POSPÍ·ILOVÁ1, I. KOLÁâKOVÁ2, R. KARPÍ·KOVÁ2 1Department of Milk Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic 2National Institute of Public Health Prague, Centre of the Hygiene of Food Chains Received May 6, 2005 Accepted November 10, 2005 Abstract Cupáková ·., M. Pospí‰ilová, I. Koláãková, R. Karpí‰ková: Genus-Specific Identification of Enterococci by PCR Method. Acta Vet Brno 2005, 74: 633-637. The aim of this study was to verify the application of polymerase chain reaction method focused on the detection of genus-specific tuf-gene for the rapid identification of enterococci. The reaction was as duplex-PCR, when, apart from the detection of genus-specific tuf-gene (amplification product of 112 bp), the internal control for 16S rRNA gene (amplification product of 241 bp) was also inserted. Detection of tuf-gene was positive in Enterococcus spp. isolates from the collections of microorganisms (8 species) and in 283 field isolates from foods and food raw materials, drinking water and various kind of waste water, previously identified by phenotypic methods as enterococci of different species. PCR product of 112 bp was missing in 16 non-enterococci strains and in 14 field isolates thereafter identified as lactococci. The above PCR method can be recommended for the rapid identification of enterococci in the routine use. Enterococcus spp., polymerase chain reaction, tuf-gene The identification of enterococci, using conventional methods and biochemical tests based on their phenotypic characteristics, is complicated and time-consuming (Devriese et al.
    [Show full text]
  • The Genus Enterococcus As Probiotic: Safety Concerns
    457 Vol.56, n.3: pp. 457-466, May-June 2013 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL The Genus Enterococcus As Probiotic: Safety Concerns Tatiane Ferreira Araújo * and Célia Lúcia de Luces Fortes Ferreira Departamento de Tecnologia de Alimentos; Universidade Federal de Viçosa; 36570-000; Viçosa - MG - Brasil ABSTRACT Species from the genus Enterococcus have been used as probiotic for humans or animals, although this genus is not considered “generally recognized as safe” (GRAS). While enterococci are considered “positive" in food technology, isolates of this genus have emerged as opportunistic pathogens for the humans. The aim of this review is to summarize the characteristics that can determine the use of this genus as probiotics. According to the guidelines used to define the genus Enterococcus strains as probiotic a case-by-case evaluation of each potential technological strain is presented and research perspectives for using enterococci as probiotic is also discussed. Key words: Disease, Enterococcus, Probiotic, Safety aspects INTRODUCTION salts, which is one of the traits for phenotypic identification (Holt et al. 1994; Devriese et al. The genus Enterococcus belongs to the family 2006; Leblanc 2006). The main species of this Enterococcaceae along with the genera genus, frequently found both in food and in Atopobacter, Catellicoccus, Melissococcus, clinical samples, are Enterococcus faecalis and E. Pilibacter, Tetragenococcus and Vagococcus. faecium (Facklam et al. 1995; Hardie and Whiley (Devriese et al. 2006; Euzéby 2010). In general, 1997). Although nowadays molecular tools are the enterococci may occur in the form of isolated available for the identification of the strains and cocci, in pairs or in short chains.
    [Show full text]
  • Genomic Insight Into the Salt Tolerance of Enterococcus Faecium
    J. Microbiol. Biotechnol. (2019), 29(10), 1591–1602 https://doi.org/10.4014/jmb.1908.08015 Research Article Review jmb Genomic Insight into the Salt Tolerance of Enterococcus faecium, Enterococcus faecalis and Tetragenococcus halophilus S Sojeong Heo1, Jungmin Lee1, Jong-Hoon Lee2, and Do-Won Jeong1* 1Department of Food and Nutrition, Dongduk Women’s University, Seoul, Republic of Korea 2Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea Received: August 7, 2019 Revised: September 2, 2019 To shed light on the genetic basis of salt tolerance in Enterococcus faecium, Enterococcus faecalis, Accepted: September 2, 2019 and Tetragenococcus halophilus, we performed comparative genome analysis of 10 E. faecalis, 11 First published online: E. faecium, and three T. halophilus strains. Factors involved in salt tolerance that could be used September 9, 2019 to distinguish the species were identified. Overall, T. halophilus contained a greater number of *Corresponding author potassium transport and osmoprotectant synthesis genes compared with the other two Phone: +82-2-940-4463 species. In particular, our findings suggested that T. halophilus may be the only one among the Fax: +82-2-940-4610 E-mail: [email protected] three species capable of synthesizing glycine betaine from choline, cardiolipin from glycerol and proline from citrate. These molecules are well-known osmoprotectants; thus, we propose S upplementary data for this that these genes confer the salt tolerance of T. halophilus. paper are available on-line only at http://jmb.or.kr. Keywords: Enterococcus faecium, Enterococcus faecalis, Tetragenococcus halophilus, salt tolerance, pISSN 1017-7825, eISSN 1738-8872 pan-genome Copyright© 2019 by The Korean Society for Microbiology and Biotechnology Introduction including Enterococcus and Tetragenococcus, are predominant bacteria in doenjang, alongside Bacillus [12-16].
    [Show full text]
  • Streptococcus Laboratory General Methods
    The reference used for compiling the methods in Section I is: Murray, P.R., Baron, E. J., Jorgensen, J.J., Pfaller, M.A., and Yolken, R.H. Manual of Clinical Microbiology, 8th ed. ASM Press: Washington, DC, 2003. The Streptococcus species identification methods in Section II were compiled by Dr. Lynn Shewmaker. Also thanks to input from several individuals, including Richard Facklam and Lucia Teixeira. Section I. 1. Accuprobe-Enterococcus Test………….………..4 2. Accuprobe-Pneumococcus Test …………..….….4 3. Acid formation in carbohydrate broth..................5 4. Arginine Hydrolysis……………………….……….6 5. Bacitracin Test……………………………………..7 6. Bile-esculin Test…………………………………...8 7. Bile solubility Test …………………………………9 8. CAMP Test…......................................................10 9. Catalase Test......................................................11 10. Clindamycin test………………………………….12 11. Esculin hydrolysis……………………………….. 13 12. Gas from MRS broth……………………………...14 13. Gram Stain………………………………………...15 14. Growth at 10 & 45C……………………………. 17 15. Hemolysis………………………………………….18 16. Hippurate hydrolysis…………………………… 19 17. Lancefield Group Antigen………………………..20 18. Leucine amino peptidase (LAP)…………………21 19. Litmus Milk Test…………………………………..22 20. Motility………………………………………………23 21. 6.5% NaCl Tolerace Test...................................24 22. Optochin…………………………………………….25 23. Pigmentation....................................................... 26 24. Pyridoxal Requirement Test (Vitamin B6)……….27 25. Pyrrolidonlarylamindase (PYR)............................28 26.
    [Show full text]
  • Tetragenococcus Halophilus in Soy Sauce Fermentation
    Japanese Journal of Lactic Acid Bacteria Copyright (C) 2000, Japan Society for Lactic Acid Bacteria Review Diversity and Ecology of Salt Tolerant Lactic Acid Bacteria: Tetragenococcus halophilus in Soy Sauce Fermentation Kinji UCHIDA Culture Collection Center, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan Soy Sauce (Shoyu) is one of the most representative Japanese traditional fermented foods and has recently become increasingly popular throughout the world. During the moromi-fermentation of soy sauce making processes, a group of lactic acid cocci known as Tetragenococcus halophilus proliferate in moromi-mash which contains a high concen- tration of sodium chloride, around 18% (w/v) , and produce nearly 1% (w/v) of L-lactic acid. In the early 1980's, a technique for discriminating individual strains was developed, and as a re- sult the diversity in physiological properties among the natural flora of soy lactic acid bacteria has become well known. A wide variety of strains have been found based on physiological proper- ties such as arginine degradation, aspartate decarboxylation, amine-formation from histidine, phenylalanine or tyrosine, consumption of citric or malic acids, and reduction of environmental red-ox potentials, besides in utilization of carbohydrates. Diversity among strains was also ob- served in their phage-susceptibility and plasmid-profiles. Many of these activities substantially affect the quality of the end products. Accordingly, strain-level control of the fermenting mi- crobes is needed for preparation of high quality soy sauce. Significance of this diversity and possible mechanisms which might have produced it were also discussed from a microbial ecology perspective.
    [Show full text]
  • Leuconostoc Mesenteroides, Pediococcus Pentosaceus and Enterococcus Gallinarum
    foods Article Non-Alcoholic Pearl Millet Beverage Innovation with Own Bioburden: Leuconostoc mesenteroides, Pediococcus pentosaceus and Enterococcus gallinarum Victoria A. Jideani 1,* , Mmaphuti A. Ratau 1 and Vincent I. Okudoh 2 1 Biopolymer Research for Food Security, Department of Food Technology, Faculty of Applied Sciences, Bellville Campus, Cape Peninsula University of Technology, Bellville 7535, South Africa; [email protected] 2 Bioresource Engineering Research Group, Department of Biotechnology, Faculty of Applied Sciences, District-Six Campus, Cape Peninsula University of Technology, Bellville 7535, South Africa; [email protected] * Correspondence: [email protected] Abstract: The appropriate solution to the problem of quality variability and microbial stability of traditional non-alcoholic pearl millet fermented beverages (NAPMFB) is the use of starter cultures. However, potential starter cultures need to be tested in the production process. We aimed to identify and purify bioburden lactic acid bacteria from naturally fermented pearl millet slurry (PMS) and assess their effectiveness as cultures for the production of NAPMFB. Following the ◦ traditional Kunun-zaki process, the PMS was naturally fermented at 37 C for 36 h. The pH, total titratable acidity (TTA), lactic acid bacteria (LAB), total viable count (TVC) and the soluble sugar Citation: Jideani, V.A.; Ratau, M.A.; were determined at 3 h interval. The presumptive LAB bacteria were characterized using a scanning Okudoh, V.I. Non-Alcoholic Pearl electron microscope, biochemical tests and identified using the VITEK 2 Advanced Expert System for Millet Beverage Innovation with Own microbial identification. The changes in pH and TTA followed a non-linear exponential model with Bioburden: Leuconostoc mesenteroides, the rate of significant pH decrease of 0.071 h−1, and TTA was inversely proportional to the pH at the Pediococcus pentosaceus and rate of 0.042 h−1.
    [Show full text]
  • Taxonomy and Diversity of Coccal Lactic Acid Bacteria Associated with Meat and the Meat Processing Environment
    Department of Food Hygiene and Environmental Health Faculty of Veterinary Medicine University of Helsinki Finland TAXONOMY AND DIVERSITY OF COCCAL LACTIC ACID BACTERIA ASSOCIATED WITH MEAT AND THE MEAT PROCESSING ENVIRONMENT Riitta Rahkila ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Veterinary Medicine of the University of Helsinki, for public examination in Biocenter 2, auditorium 1041, Viikinkaari 5, Helsinki, on 8 May 2015, at 12 noon. Helsinki 2015 Director of studies Professor Johanna Björkroth Department of Food Hygiene and Environmental Healt Faculty of Veterinary Medicine University of Helsinki Finland Supervised by Professor Johanna Björkroth Department of Food Hygiene and Environmental Health Faculty of Veterinary Medicine University of Helsinki Finland PhD Per Johansson Department of Food Hygiene and Environmental Health Faculty of Veterinary Medicine University of Helsinki Finland Reviewed by Professor George-John Nychas Agricultural University of Athens Athens, Greece Professor Danilo Ercolini University of Naples Federico II Naples, Italy Opponent Professor Kaarina Sivonen Department of Food and Environmental Sciences Faculty of Agriculture and Forestry University of Helsinki Finland ISBN 978-951-51-1103-6 (pbk.) Hansaprint Vantaa 2015 ISBN 978-951-51-1104-3 (PDF) http://ethesis.helsinki.fi ABSTRACT Spoilage of modified atmosphere (MAP) or vacuum-packaged meat is often caused by psychrotrophic lactic acid bacteria (LAB). LAB contamination occurs during the slaughter or processing of meat. During storage LAB become the dominant microbiota due to their ability to grow at refrigeration temperatures and to resist the microbial inhibitory effect of CO2. Spoilage is a complex phenomenon caused by the metabolic activities and interactions of the microbes growing in late shelf-life meat which has still not been fully explained.
    [Show full text]