Project Appraisal Document on a Proposed Loan

Total Page:16

File Type:pdf, Size:1020Kb

Project Appraisal Document on a Proposed Loan Document of The World Bank FOR OFFICIAL USE ONLY Report No: PAD2483 Public Disclosure Authorized INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT PROJECT APPRAISAL DOCUMENT ON A PROPOSED LOAN IN THE AMOUNT OF US$420 MILLION Public Disclosure Authorized TO THE REPUBLIC OF INDIA FOR A MAHARASHTRA PROJECT ON CLIMATE RESILIENT AGRICULTURE FEBRUARY 3, 2018 Public Disclosure Authorized Agriculture Global Practice South Asia Region Public Disclosure Authorized This document has a restricted distribution and may be used by recipients only in the performance of their official duties. Its contents may not otherwise be disclosed without World Bank authorization. CURRENCY EQUIVALENTS (Exchange Rate Effective December 31, 2017) Currency Unit = INR 63.87 INR = US$1 FISCAL YEAR April 1 ‐ March 31 Regional Vice President: Annette Dixon Country Director: Junaid Kamal Ahmad Senior Global Practice Director: Juergen Voegele Practice Manager: Kathryn Hollifield Task Team Leader(s): Patrick Verissimo, Ranjan Samantaray ABBREVIATIONS AND ACRONYMS AAP Annual Action Plans EX‐ACT Ex‐Ante Carbon Balance Tool ATMA Agriculture Technology FAO Food & Agriculture Organisation Management Agency BEAMS Budget Estimation Allocation & FFS Farmer Field School Monitoring System CDC Capacity Development & Coaching FIG Farmer Interest Group CDD Community Driven Development FPC Farmer Producer Company CDP Cluster Development and FPO Farmer Producer Organization Investment Plans CENA Capacity Enhancement Needs GAP Good Agricultural Practices Assessment CGWB Central Ground Water Board GCF Green Climate Fund CHC Community Health Center GDP Gross Domestic Product CIC Climate Innovation Center GHG Green House Gas CPF Country Partnership Framework GIPE Gokhale Institute of Politics & Economics CRI Corporate Results Indicator GIS Geographic Information System CRIDA Central Research Institute for GoI Government of India Development & Agriculture CTP Climate Technology Program GoM Government of Maharashtra C&AG Comptroller & Auditor General of GRM Grievance Redressal Mechanism India CCAP Climate Change Action Plan GRS Grievance Redressal Service DBT Direct Beneficiary Transfer GSDA Geo Survey & Development Agency DoA Department of Agriculture ICAR Indian Council of Agricultural Research DPC District Project Committee ICRISAT Internal Crops Research Institute for Semi‐Arid Tropics DPMU Divisional Project Management Unit ICT Information & Communications Technology DSAO District Superintendent Agriculture IEC Information, Education & Officer Communication EC Executive Committee IITB Indian Institute of Technology Bombay EMF Environment Management IISC Indian Institute of Science Framework ERR Economic Rate of Return INDC Integrated Nationally Determined Contributions IPCC Integrated Panel on Climate Change PDO Project Development Objective IPM Integrated Pest Management PIP Project Implementation Plan IRR Internal Rate of Return PMKSY Pradhan Mantri Krishi Sinchayee Yojana IWMP Integrated Watershed Management PMU Project Management Unit Program JSA Jalyukt Shivir Abhiyan PPSD Project Procurement Strategy for Development KPI Key Performance Indicators PSC Project Steering Committee KVK Krishi Vigyan Kendra RFQs Request for Quotations MACP Maharashtra Agricultural RKVY Rashtriya Krishi Vikas Yojana Competitiveness Project MAR Managed Aquifer Recharge SA Social Assessment MGNREGS Mahatma Gandhi National Rural SAU State Agriculture Universities Employment Guarantee Scheme MIS Management Information System SCD Systematic Country Diagnostic MOEF Ministry of Environment & Forest SDAO Subdivisional Agriculture Officer MPKV Mahatma Phule Krishi Vidyapeeth SMEs Small & Medium Agro‐Entrepreneurs MSAAPCC Maharashtra State Adaptation SMF Social Management Framework Action Plan on Climate Change M&E Monitoring & Evaluation SREP Strategic Research and Extension Plans NAPCC National Action Plan to Climate STEP Systematic Tracking of Exchanges in Change Procurement NGMIP National Groundwater Management TPPF Tribal People Planning Framework Improvement Program NGO Non‐Government Organization VCRMC Village Climate Resilient Management Committee NICRA National Institute for Climate WB World Bank Resilient Agriculture NPV Net Present Value YASHADA Yashwant Rao Chavan Academy of Development Administration PAC Project Advisory Committee The World Bank Maharashtra Project on Climate Resilient Agriculture (P160408) BASIC INFORMATION Is this a regionally tagged project? Country(ies) Financing Instrument No Investment Project Financing [ ] Situations of Urgent Need of Assistance or Capacity Constraints [ ] Financial Intermediaries [ ] Series of Projects Approval Date Closing Date Environmental Assessment Category 27‐Feb‐2018 30‐Jun‐2024 B ‐ Partial Assessment Bank/IFC Collaboration Joint Level Yes Complementary or Interdependent project requiring active coordination Proposed Development Objective(s) To enhance climate‐resilience and profitability of smallholder farming systems in selected districts of Maharashtra. Components Component Name Cost (US$, millions) Comp. A: Promoting Climate‐resilient Agricultural Systems 452.10 Comp. B: Post‐harvest Management and Value Chain Promotion 56.60 Comp. C: Institutional Development, Knowledge and Policies for a Climate‐resilient 33.70 Agriculture Comp. D: Project Management 56.10 Organizations Borrower : Republic of India Page 1 of 121 The World Bank Maharashtra Project on Climate Resilient Agriculture (P160408) Implementing Agency : Department of Agriculture, Government of Maharashtra PROJECT FINANCING DATA (US$, Millions) [ ✔ ] [ ✔ ] IBRD [ ] IDA Credit [ ] IDA Grant [ ] Trust [ ] Counterpart Funds Parallel Funding Financing FIN COST OLD Total Project Cost: Total Financing: Financing Gap: 599.55 599.55 0.00 Of Which Bank Financing (IBRD/IDA): 420.00 Financing (in US$, millions) FIN SUMM OLD Financing Source Amount Borrower 179.55 IBRD‐88290 420.00 Total 599.55 Expected Disbursements (in US$, millions) Fiscal Year 2018 2019 2020 2021 2022 2023 2024 Annual 25.90 54.30 105.20 102.30 81.70 50.60 0.00 Cumulative 25.90 80.20 185.40 287.70 369.40 420.00 420.00 INSTITUTIONAL DATA Practice Area (Lead) Agriculture Page 2 of 121 The World Bank Maharashtra Project on Climate Resilient Agriculture (P160408) Contributing Practice Areas Climate Change Water Climate Change and Disaster Screening This operation has been screened for short and long‐term climate change and disaster risks Gender Tag Does the project plan to undertake any of the following? a. Analysis to identify Project‐relevant gaps between males and females, especially in light of country gaps identified through SCD and CPF Yes b. Specific action(s) to address the gender gaps identified in (a) and/or to improve women or men's empowerment Yes c. Include Indicators in results framework to monitor outcomes from actions identified in (b) Yes SYSTEMATIC OPERATIONS RISK‐RATING TOOL (SORT) Risk Category Rating Low 1. Political and Governance Low 2. Macroeconomic Moderate 3. Sector Strategies and Policies Moderate 4. Technical Design of Project or Program Substantial 5. Institutional Capacity for Implementation and Sustainability Substantial 6. Fiduciary Moderate 7. Environment and Social Moderate 8. Stakeholders Low 9. Other 10. Overall Moderate Page 3 of 121 The World Bank Maharashtra Project on Climate Resilient Agriculture (P160408) COMPLIANCE Policy Does the project depart from the CPF in content or in other significant respects? [ ] Yes [✔] No Does the project require any waivers of Bank policies? [ ] Yes [✔] No Safeguard Policies Triggered by the Project Yes No Environmental Assessment OP/BP 4.01 ✔ Natural Habitats OP/BP 4.04 ✔ Forests OP/BP 4.36 ✔ Pest Management OP 4.09 ✔ Physical Cultural Resources OP/BP 4.11 ✔ Indigenous Peoples OP/BP 4.10 ✔ Involuntary Resettlement OP/BP 4.12 ✔ Safety of Dams OP/BP 4.37 ✔ Projects on International Waterways OP/BP 7.50 ✔ Projects in Disputed Areas OP/BP 7.60 ✔ Legal Covenants Sections and Description Name: Project Steering Committee Description: Maharashtra shall maintain a high‐level Project Steering Committee, with functions, composition and responsibilities acceptable to the Bank, including the provision of conceptual, strategic and policy guidance on overall project implementation, endorsement of the annual work plan and budget. Recurrent. Frequency: throughout implementation Sections and Description Name: Project Advisory Committee Description: Maharashtra shall maintain a Project Advisory Committee, with functions, composition and Page 4 of 121 The World Bank Maharashtra Project on Climate Resilient Agriculture (P160408) responsibilities acceptable to the Bank, including technical advice on the implementation of components and project activities. Recurrent. Frequency: throughout implementation Sections and Description Name: Project Management Unit Description: Maharashtra shall maintain a Project Management Unit under its Department of Agriculture (DOA), assisted by adequate professional and administrative staff, with powers, budget and functions as required to, inter‐alia: oversee day‐to‐day implementation of Project activities, ensure smooth coordination with other departments and agencies and ensure proper fiduciary management and compliance with safeguards requirements. Recurrent. Frequency: throughout implementation Sections and Description Name: District Project Committee Description: Maharashtra shall maintain, at the district level, a District Project Committee, with functions, composition and responsibilities acceptable to the Bank; including
Recommended publications
  • Recommendations to Enhance the Impact of Sustainability Standards on Smallholder Cotton Farmers in Maharashtra
    RECOMMENDATIONS TO ENHANCE THE IMPACT OF SUSTAINABILITY STANDARDS ON SMALLHOLDER COTTON FARMERS IN MAHARASHTRA Partner WWF IS Knowledge Partner WORKING WITH IKEA ON COTTON FOREST AND WATER Government of Maharashtra © WWF-India Published by WWF-India Reproduction is authorized, provided the source is acknowledged, save where otherwise stated. Cover Image: Licensed under Creative Commons WWF-India WWF India is committed to creating and demonstrating practical solutions that help conserve India’s ecosystems and rich biodiversity. Marking 50 years of conservation journey in the country, WWF India works towards finding science-based and sustainable solutions to address challenges at the interface of development and conservation. Today, with over 70 offices across 20 states, WWF India’s work spans across thematic areas including the conservation of key wildlife species and their habitats, management of rivers, wetlands and their ecosystems, climate change adaptation, driving sustainable solutions for business and agriculture, empowering local communities as stewards of conservation, combatting illegal wildlife trade and inspiring students and citizens to take positive action for the environment through outreach and awareness campaigns. WWF India is part of the WWF International Network, with presence in over 100 countries across the globe IKEA IKEA is a global leader in household products, committed to creating a positive impact on people, society and the planet. WWF and IKEA have partnered since 2002 to protect some of the world’s most precious natural resources. In 2005, WWF and IKEA set out to transform cotton production and secure a sustainable future for the industry by helping farmers earn a better living and improving working conditions, as well as reducing impacts from pesticide use and saving precious water resources.
    [Show full text]
  • How Do Atmospheres Change Over Time? the Greenhouse Effect
    Activity #5 How Do Atmospheres Change Over Time? The Greenhouse Effect [Adult] Adapted from: Global Warming & The Greenhouse Effect, Great Explorations in Math and Science (GEMS) Lawrence Hall of Science, 1997, by the Regents of the University of California ISBN: 0-912511-75-3. Unless otherwise noted, all images are courtesy of SETI Institute. 1. Introduction In this activity, Cadettes will observe how the greenhouse effect can change an atmosphere on Mars or on Earth. They will “Think like a scientist. Be a scientist!” 2. Science Objectives You will: • construct models to test ideas about processes that cannot be directly studied on Earth or Mars; • appreciate that the atmosphere is a large and complex system, so experiments concerning it are difficult to perform; and • use skills you have learned about atmospheric composition and apply that knowledge to new situations. 3. Materials For each group of 4–6 Cadettes. • [2] 2 liter (0.5 gal) clear soda bottles with labels removed and tops cut off. These are the Atmosphere Model Chambers. Advance preparation required (see page 2). • [1] pair of scissors for constructing a set of Atmosphere Model Chambers • [1] black permanent marker for constructing a set of Atmosphere Model Chambers • [2] identical thermometers, one for each chamber; view on Amazon.com: http://tinyurl.com/lkrvzvq • sufficient cardboard to prepare backing for each thermometer • 5–10 cm (about 4 in) of clear tape to attach thermometers to cardboard and to inside of each chamber • [1] piece of plastic wrap approximately 15 cm x 15 cm (6 x 6 in) • [1] rubber band large enough to fit the circumference of chamber and secure plastic wrap • chart of electromagnetic spectrum of light (EMS); print in advance • 250-watt infrared heat lamp (bulb) in a fixture with hood.
    [Show full text]
  • Invasive Plants in Your Backyard!
    Invasive Plants In Your Backyard! A Guide to Their Identification and Control new expanded edition Do you know what plants are growing in your yard? Chances are very good that along with your favorite flowers and shrubs, there are non‐native invasives on your property. Non‐native invasives are aggressive exotic plants introduced intentionally for their ornamental value, or accidentally by hitchhiking with people or products. They thrive in our growing conditions, and with no natural enemies have nothing to check their rapid spread. The environmental costs of invasives are great – they crowd out native vegetation and reduce biological diversity, can change how entire ecosystems function, and pose a threat Invasive Morrow’s honeysuckle (S. Leicht, to endangered species. University of Connecticut, bugwood.org) Several organizations in Connecticut are hard at work preventing the spread of invasives, including the Invasive Plant Council, the Invasive Plant Working Group, and the Invasive Plant Atlas of New England. They maintain an official list of invasive and potentially invasive plants, promote invasives eradication, and have helped establish legislation restricting the sale of invasives. Should I be concerned about invasives on my property? Invasive plants can be a major nuisance right in your own backyard. They can kill your favorite trees, show up in your gardens, and overrun your lawn. And, because it can be costly to remove them, they can even lower the value of your property. What’s more, invasive plants can escape to nearby parks, open spaces and natural areas. What should I do if there are invasives on my property? If you find invasive plants on your property they should be removed before the infestation worsens.
    [Show full text]
  • 'Drought-Free' Maharashtra? Politicising Water Conservation for Rain-Dependent Agriculture
    www.water-alternatives.org Volume 14 | Issue 2 Shah, S.H.; Harris, L.M.; Johnson, M.S. and Wittman, H. 2021. A 'drought-free' Maharashtra? Politicising water conservation for rain-dependent agriculture. Water Alternatives 14(2): 573-596 A 'Drought-Free' Maharashtra? Politicising Water Conservation for Rain-Dependent Agriculture Sameer H. Shah Institute for Resources, Environment & Sustainability (IRES), The University of British Columbia, Vancouver, Canada; [email protected] Leila M. Harris Institute for Resources, Environment & Sustainability (IRES) and the Institute for Gender, Race, Sexuality and Social Justice (GRSJ), The University of British Columbia, Vancouver, Canada; [email protected] Mark S. Johnson Institute for Resources, Environment & Sustainability (IRES) and the Department of Earth, Ocean & Atmospheric Sciences, The University of British Columbia, Vancouver, Canada; [email protected] Hannah Wittman Institute for Resources, Environment & Sustainability (IRES) and the Centre for Sustainable Food Systems, The University of British Columbia, Vancouver, Canada; [email protected] ABSTRACT: Soil moisture conservation ('green water') and runoff capture ('blue water') can reduce agricultural risks to rainfall variation. However, little is known about how such conjoined initiatives articulate with social inequity when up-scaled into formal government programmes. In 2014, the Government of Maharashtra institutionalised an integrative green-blue water conservation campaign to make 5000 new villages drought-free each year (2015- 2019). This paper analyses the extent to which the campaign, Jalyukt Shivar Abhiyan, enhanced the capture, equity, and sustainability of water for agricultural risk reduction. We find government interests to demonstrate villages as 'drought-free' affected the character and implementation of this integrative campaign.
    [Show full text]
  • Jalyukta Shivar Campaign- a Solution to Overcome Water Crisis in Maharashtra
    7 IV April 2019 https://doi.org/10.22214/ijraset.2019.4599 International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 7 Issue IV, Apr 2019- Available at www.ijraset.com Jalyukta Shivar Campaign- A Solution to Overcome Water Crisis in Maharashtra Inamdar S.R. Department of Civil Engineering, KSGB’S BIGCE, Solapur, India. Abstract: Irrigation systems in India since ancient times and continuing through even the Mughal times were highly localized There were check dams, wells, ponds and tanks in every village or shared, governments subsidized these for maintenance this in every village, governments subsidized these for maintenance and system continued through the ages. They become handy during droughts and if these dried, governments sponsored relief for famines. In building the canals and then charging higher for irrigated land, British ignored the traditional systems or irrigation which fell into disrepair and eventually lost out. This led to large parts of the country which could not be covered by canal irrigation losing out the local irrigation and completely relying on rain. After independence, the obsession with large dams and canals continued and not many governments thought of reviving the traditional irrigation which worked for centuries. Meanwhile, droughts, water scarcity, deaths continued. The countryside especially in water starved parts of Maharashtra. Water is one of the earth’s most precious resources. Though, 70% of Earth’s surface is water a major 97.5% of this is salt water and only 2.5% is freshwater. Moreover, less than 1% out of this 2.5% amount of freshwater is accessible (the majority is frozen in ice caps or as soil moisture) with growing population this amount of water is becoming insufficient.
    [Show full text]
  • West Lake Woven Wood Shade Section
    West Lake Woven Wood Shade Section Effective April 15, 2014 Save a life: "Install Safety Tension Devices!" Woven Wood Measuring Instructions Measuring Inside Mount (IB) Shades: Measure the exact width (A) and length (B) of the window opening as shown. The factory will deduct ½” overall from the window width for clearance. On all inside mount shades, a small light gap will be visible. Measuring Outside Mount (OB) Shades: Measure the exact width (A) and length (B) of the window opening you wish to cover. The shade should cover the window opening by at least 2” on both the width and length. To cover a window sill, provide a measurement (C) beyond the sill. Outside Mount Inside Mount Measuring Arch Top Valances for Woven Wood Shades: For inside mount shades, measure the exact width and tallest length inside the window opening. For outside mount shades, measure the desired width and tallest length. Make sure to measure the length of outside mount shades at its tallest point. Arch Top woven wood shades must be perfect arches where the length equals ½ the width. For arch top valances, measure dimensions A, X, & Y. For pricing, use the width and tallest length measurement. Make sure to add the arch top shade surcharge. Measuring Angled Shades: It is critical to measure all four sides of the window opening. For inside mount shades, measure the inside of the window opening and for outside mount shades, add the desired overlap. Measure the slope angle with a protractor and provide the angle in degrees. Indicate all measurements on a template to be sent to the factory.
    [Show full text]
  • 8040 Introduction to Natural Resources and Ecology Systems
    Introduction to Natural Resources and Ecology Systems 8040/36 weeks Table of Contents Acknowledgments ......................................................................................................................................... 1 Course Description ........................................................................................................................................ 2 Task Essentials Table .................................................................................................................................... 2 Curriculum Framework ................................................................................................................................. 6 Exploring Leadership Skills through FFA ................................................................................................... 6 Exploring Leadership Opportunities through FFA ....................................................................................... 7 Understanding Natural Resource Management ............................................................................................ 9 Protecting the Environment ........................................................................................................................ 15 Managing Forest Resources ........................................................................................................................ 25 Managing Wildlife Resources ....................................................................................................................
    [Show full text]
  • Water Resources Management in India
    Kushvinder Vohra Commissioner (SPR) DoWR, RD & GR, Ministry of Jal Shakti, Govt. of India Roorkee Water Conclave 2020 26th – 29th February 2020, IIT Roorkee Water Availability Particulars Quantum BCM % Precipitation received 4000 100 Present live storage capacity is Water Resource Potential 1869 46.7 255.6 BCM, additional 50 BCM Utilizable Water Resource 1123 28.1 expected from ongoing dam Ground Water 433 10.8 projects. Surface Water 690 17.2 Current Utilization 710 17.8 Total surface water capacity: 450 SW 450 11.3 BCM (65% of 690 BCM); part lost due to siltation. GW 260 6.5 Source: CWC, NCIWRD Stage of ground water development: 60% • Space & time related variability • Per capita availability • Increasing demand Source: National Register of Large Dams, CWC (2019) Roorkee Water Conclave 2020 26th – 29th February 2020, IIT Roorkee Spatial & Temporal Variation of Rainfall 25 23.76 19.89 20 15.42 15 14.19 Percent 10 7.69 6.03 5 3.46 3.45 2.12 1.24 1.33 1.42 0 Rainfall in mm Average 890 Mawsynram, Max. 11,000 Meghalaya Min. 100 Western Rajasthan Source: IMD Roorkee Water Conclave 2020 26th – 29th February 2020, IIT Roorkee Per Capita Water Availability(National Average) 6000 5177 5000 Water Stress Line ) 1700 cu. m. per person per 3 year 4000 Water Scarcity Line 1000 cu. m. per person per 3000 year 2200 1820 2000 1545 1340 1140 1000 0 Annual Per Capita Availability (m Availability Capita Per Annual 1951 1991 2001 2011 2025 2050 World’s average per capita water availability 42370 m3 (1804) 5850 m3 (2014) Roorkee Water Conclave 2020 26th –
    [Show full text]
  • Mahagenco Is First Power Utility in India to Try Use Sewage Water for Secondary Uses in Power Station
    Contd- 7. Theft of water by using pumps on water lines from dam to TPS. 8. Plant premise is not compact hence piping's are long. 9. Most of the pipes are underground, Hence identification and attending leakage takes time. 10. Temperature of Chandrapur city touches 46 oC in summer, therefore continuous water sprinkling at coal yard & nearby CHP area is required to reduce fugitive emission. 11. Both one day reservoirs are open to atmosphere for high rate of evaporation. 1 5. Technologies adopted to reduce water consumption 2 Introduction • Five units have already crossed 25 years of life. • Power stations was designed with water systems having liberal considerations for various requirements and high design margins. • However as the requirements became stringent new technologies were introduced to save water. • TPS is now using Zero discharge concept and no water is let out. 3 Water Recovery System Waste Water Recovery Cycle ETP - I Ash Slurry Disposal Ash Bund STP U # 1 to 7 ETP - II Weir Well Ash Recycling ETP - III Discharge Pump House 4 1. Sewage Treatment Plant-I • Commissioned in Apr 1987. • Installed capacity of 80 m3/Hr • Treats Colony sewage drains. • Clear water is fed to sludge disposal pump House. 5 Sewage Treatment Plant-I 6 2. Sewage Treatment Plant-II • Commissioned in Aug 1992. • Installed capacity of 160 m3/Hr • Treats Colony sewage drains. • Clear water is fed to sludge disposal pump House. 7 Sewage Treatment Plant-II 8 3. Effluent Treatment Plant-1 • Commissioned in Jan 1997. • Installed capacity of 1600 m3/Hr • Treats power station drains.
    [Show full text]
  • Natural Resources Inventory
    Natural Resources Inventory Columbia Metropolitan Planning Area Review Draft (10-1-10) NATURAL RESOURCES INVENTORY Review Draft (10-1-10) City of Columbia, Missouri October 1, 2010 - Blank - Preface for Review Document The NRI area covers the Metropolitan Planning Area defined by the Columbia Area Transportation Study Organization (CATSO), which is the local metropolitan planning organization. The information contained in the Natural Resources Inventory document has been compiled from a host of public sources. The primary data focus of the NRI has been on land cover and tree canopy, which are the product of the classification work completed by the University of Missouri Geographic Resource Center using 2007 imagery acquired for this project by the City of Columbia. The NRI uses the area’s watersheds as the geographic basis for the data inventory. Landscape features cataloged include slopes, streams, soils, and vegetation. The impacts of regulations that manage the landscape and natural resources have been cataloged; including the characteristics of the built environment and the relationship to undeveloped property. Planning Level of Detail NRI data is designed to support planning and policy level analysis. Not all the geographic data created for the Natural Resources Inventory can be used for accurate parcel level mapping. The goal is to produce seamless datasets with a spatial quality to support parcel level mapping to apply NRI data to identify the individual property impacts. There are limitations to the data that need to be made clear to avoid misinterpretations. Stormwater Buffers: The buffer data used in the NRI are estimates based upon the stream centerlines, not the high water mark specified in City and County stormwater regulations.
    [Show full text]
  • Downloaded and Translated from Marathi to English, a Three- Tiered Selection Strategy Was Used to Identify the Three Villages Suitable for Sampling
    ADVANCING LIVELIHOOD WATER SECURITY IN THE RURAL GLOBAL SOUTH by Sameer H. Shah B.ES (Hons. Co-operative), University of Waterloo, 2012 M.Sc., The University of British Columbia, 2015 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Resources, Environment and Sustainability) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2021 © Sameer H. Shah, 2021 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: Advancing Livelihood Water Security in the Rural Global South submitted by Sameer H. Shah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Resources, Environment and Sustainability Examining Committee: Dr. Leila M. Harris, Institute for Resources, Environment and Sustainability, and the Institute for Gender, Race, Sexuality and Social Justice, The University of British Columbia (UBC) Supervisor Dr. Hannah Wittman, Institute for Resources, Environment and Sustainability, and Faculty of Land and Food Systems, The University of British Columbia (UBC) Supervisory Committee Member Dr. Mark Johnson, Institute for Resources, Environment and Sustainability, and the Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia (UBC) Supervisory Committee Member Dr. Shannon M. Hagerman, Department of Forest Resources Management, The University of British Columbia (UBC) University Examiner Dr. David R. Boyd, Institute for Resources, Environment and Sustainability, and the School of Public Policy and Global Affairs, The University of British Columbia (UBC) University Examiner ii Abstract Climate change and variation, and rising demand for freshwater increasingly impact water security for humans, ecosystems, and integrated social-ecological systems.
    [Show full text]
  • International Journal of Innovative Technology and Exploring Engineering
    International Journal of Innovative Technology and Exploring Engineering ISSN : 2278 - 3075 Website: www.ijitee.org Volume-9 Issue-10, AUGUST 2020 Published by: Blue Eyes Intelligence Engineering and Sciences Publication xploring En E gi d ne an e r y in g g lo o n h c e T IjItEe e I n v i t t e E a X r v P N n o L O a O I n T t R A i o I V n N O I G N n IN f a o l l J a o r n u www.ijitee.org Exploring Innovation Editor-In-Chief Dr. Shiv Kumar Ph.D. (CSE), M.Tech. (IT, Honors), B.Tech. (IT), Senior Member of IEEE, Member of the Elsevier Advisory Panel CEO, Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP), Bhopal (MP), India Associate Editor-In-Chief Dr. Takialddin Al Smadi Professor, Department of Communication and Electronics, Jerash Universtiy, Jerash, Jordan Dr. Vo Quang Minh Senior Lecturer and Head, Department of Land Resources, College of Environment and Natural Resources (CENRes), Can Tho City, Vietnam. Dr. Stamatis Papadakis Lecturer, Department of Preschool Education, University of Crete, Greece. Dr. Ali OTHMAN Al Janaby Lecturer, Department of Communications Engineering, College of Electronics Engineering University of Ninevah, Iraq. Dr. Rabiul Ahasan Professor, Department of Industrial Engineering, King Saud University, Saudi Arabia. Dr. Hakimjon Zaynidinov Professor and Head, Department of Computer Science, Tashkent University of Information Technologies, Uzbekistan. Prof. MPS Chawla Ex-Chairman, IEEE MP Sub-Section, India, Professor-Incharge (head)-Library, Associate Professor in Electrical Engineering, G.S.
    [Show full text]