Problem Set 1

Total Page:16

File Type:pdf, Size:1020Kb

Problem Set 1 Problem Set 1 1. Astrophysical lasers/masers are very common phenomena. An example is a molecular cloud W43A in the Aquila constellation that has an observed −22 2 flux of Fν = 3 · 10 W/m Hz at the frequency ν = 22 GHz. An emitter with such a huge flux coming from only a region of size 0:100 must be a very hot object. In this exercise we will first derive some general properties of the Planck spectrum and then try to compare it to observations of the molecular cloud. (a) Consider the limit hν kBT and Taylor expand the Planck spectrum to lowest order in ν to derive the Rayleigh-Jeans law. This is basically what you would find for the Planck spectrum if you wouldn't take into account the quantum nature of the photons. Explain the presence of a UV catastrophe. (b) Next, consider the opposite limit kν kBT to derive the Wien law. Notice the presence of a exponential cut-off. Use the results obtained so far to sketch the Planck spectrum as function of frequency on a log-log plot. Without doing any computation, at which frequency do you expect to find the maximum intensity approximately? (c) Prove that curves of higher temperature lie entirely above a blackbody curve with a lower temperature. (d) Derive more precisely at which frequency the blackbody curve peaks. You should find the Wien displacement law hνmax ≈ 2:82kBT With the knowlegde of the last two questions, draw another blackbody curve in your sketch with a higher temperature. (e) We can repeat the same exercise for the Planck spectrum as function of wavelength. First, express the Planck spectrum in terms of intensity 1 per unit wavelength Bλ(T ). You should find 2hc2=λ5 Bλ(T ) = : ehc=λkB T − 1 Consequently repeat the previous exercises. For the Wien displace- ment law you should find λmaxT = 0:290 cm K: Can you understand why λmax 6= c=νmax? In particular, explain why λmax < c=νmax. (f) Now we turn to the molecular cloud. Compute the temperature that a blackbody should have to produce the measured flux. (g) Compute the corresponding wavelength at which the intensity then peaks. We don't observe X-rays from this source. What can we conclude? 2. Upon reaching a planet, part of the central star radiation will be reflected and the rest will be absorbed and re-emitted as a cooler blackbody. In the spectra of planets both of these components are observed. Consider the 9 case of Jupiter, with radius RJ = 7:1 × 10 cm and mean orbital radius 13 aJ = 7:8 × 10 cm. Assume that the spectrum of the Sun is a perfect blackbody. (a) Suppose that Jupiter perfectly reflects 10% of the light coming from the Sun. Calculate its reflected luminosity. At which wavelength does it peak? In which spectral band is it observed? (b) At which wavelength does the re-emitted luminosity peaks? In which spectral band is it observed? 3. A protostar represents the first step in the formation of a star inside a molecular cloud. This object can be idealized as a hot core, surrounded by a colder, accreting envelope. Assume that gas from the envelope can accrete onto the core only spherically. The spectra of these objects show several molecular lines on top of the continuum emission. Assume that the hot core emits black body radiation at temperature Tc and that the enve- lope has a temperature Te and emits thermal radiation. Finally, consider that the envelope is opaque only at a frequency ν1 (i.e., τ(ν1) > 1) and transparent for every other (i.e., τ(ν 6= ν1) = 0), that would correspond to an envelope containing only one single kind of molecule with only one characteristic transition. (a) Consider the envelope in hydrostatic equilibrium (no accretion). What would be the total spectrum, if we observe directly at the core through the envelope? Consider specific brightness as a function of the fre- quency. Sketch the spectrum in the case τν1 > 1 and τν1 1. (b) How would the above spectrum be modified if: • the envelope was hotter than the core? • the envelope was accreting onto the core with a line of sight ve- locity va? • the envelope corresponds to a wind moving away from the core with a line of sight velocity vw? (c) Now let's consider that the envelope can accrete spherically into the core. During the accretion process gas loses energy and emits radia- tion. The emitted radiation interacts with the surrounding medium −25 2 mainly through the electron scattering process (σT = 6:7×10 cm ), and exerts a pressure. In order to keep the structure in equilibrium the emitted luminosity cannot be arbitrarily high, but has a limit, so-called Eddington limit. Derive its expression. 4. Consider an accretion disk around a supermassive black hole, in a galaxy at a distance D from Earth. The disk is geometrically thin but very opti- cally thick at all frequencies, so that radiation and matter are in thermal equilibrium. In these disks, the energy is transported vertically (towards the surface) by radiative diffusion. The surface (τ = 2=3) is at a height H, while the optical depth integrated from z = 0 to z = H is τc 1. The disk extends from an inner radius Rin to an outer radius Rout. Assume 2 a radial temperature profile T = Tin(Rin=R) . Consider that the vertical flux is constant with z. (a) At a given R, derive the relation between the temperature at the midplane and the effective temperature at z = H. (b) Assume that we are observing directly at the disk and that the disk is seen with an inclination angle i with respect to its normal. Calculate the total specific flux that we observe from the whole disk. Consider a frequency in the Rayleigh-Jeans regime. Tc Teff z = H z = 0 Rin Rout Figure 1: Accretion disk around supermassive black hole..
Recommended publications
  • Summer Constellations
    Night Sky 101: Summer Constellations The Summer Triangle Photo Credit: Smoky Mountain Astronomical Society The Summer Triangle is made up of three bright stars—Altair, in the constellation Aquila (the eagle), Deneb in Cygnus (the swan), and Vega Lyra (the lyre, or harp). Also called “The Northern Cross” or “The Backbone of the Milky Way,” Cygnus is a horizontal cross of five bright stars. In very dark skies, Cygnus helps viewers find the Milky Way. Albireo, the last star in Cygnus’s tail, is actually made up of two stars (a binary star). The separate stars can be seen with a 30 power telescope. The Ring Nebula, part of the constellation Lyra, can also be seen with this magnification. In Japanese mythology, Vega, the celestial princess and goddess, fell in love Altair. Her father did not approve of Altair, since he was a mortal. They were forbidden from seeing each other. The two lovers were placed in the sky, where they were separated by the Celestial River, repre- sented by the Milky Way. According to the legend, once a year, a bridge of magpies form, rep- resented by Cygnus, to reunite the lovers. Photo credit: Unknown Scorpius Also called Scorpio, Scorpius is one of the 12 Zodiac constellations, which are used in reading horoscopes. Scorpius represents those born during October 23 to November 21. Scorpio is easy to spot in the summer sky. It is made up of a long string bright stars, which are visible in most lights, especially Antares, because of its distinctly red color. Antares is about 850 times bigger than our sun and is a red giant.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • A Dynamo Mechanism As the Potential Origin of the Long Cycle in Double Periodic Variables Dominik R
    A&A 602, A109 (2017) Astronomy DOI: 10.1051/0004-6361/201628900 & c ESO 2017 Astrophysics A dynamo mechanism as the potential origin of the long cycle in double periodic variables Dominik R. G. Schleicher and Ronald E. Mennickent Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C, Concepción, Chile e-mail: [email protected] Received 11 May 2016 / Accepted 9 March 2017 ABSTRACT The class of double period variables (DPVs) consists of close interacting binaries, with a characteristic long period that is an order of magnitude longer than the corresponding orbital period, many of them with a characteristic ratio of approximately 35. We consider here the possibility that the accretion flow is modulated as a result of a magnetic dynamo cycle. Due to the short binary separations, we expect the rotation of the donor star to be synchronized with the rotation of the binary due to tidal locking. We here present a model to estimate the dynamo number and the resulting relation between the activity cycle length and the orbital period, as well as an estimate for the modulation of the mass transfer rate. The latter is based on Applegate’s scenario, implying cyclic changes in the radius of the donor star and thus in the mass transfer rate as a result of magnetic activity. Our model is applied to a sample of 17 systems with known physical parameters, 11 of which also have known modulation periods. In spite of the uncertainties of our simplified framework, the results show a reasonable agreement, indicating that a dynamo interpretation is potentially feasible.
    [Show full text]
  • Annual Report 2010
    Research Institute Leiden Observatory (Onderzoekinstituut Sterrewacht Leiden) Annual Report 2010 Sterrewacht Leiden Faculty of Mathematics and Natural Sciences Leiden University Niels Bohrweg 2 Postbus 9513 2333 CA Leiden 2330 RA Leiden The Netherlands http://www.strw.leidenuniv.nl Cover: In the Sackler Laboratory for Astrophysics, the circumstances in the inter- and circumstellar medium are simulated. In 2010, water was successfully made on icy dust grains by H-atom bombardment, understanding was gained how complex molecules form under the extreme conditions that are typical for space, and experiments are now ongoing that investigate under which conditions the building blocks of life form. The picture shows the lab’s newest setup - MATRI2CES - that has been constructed with the aim to 'unlock the chemistry of the heavens'. An electronic version of this annual report is available on the web at http://www.strw.leidenuniv.nl/research/annualreport.php?node=23 Production Annual Report 2010: A. van der Tang, E. Gerstel, F.P. Israel, J. Lub, M. Israel, E. Deul Sterrewacht Leiden Executive (Directie Onderzoeksinstituut) Director K. Kuijken Wetenschappelijk Directeur Director of Education F.P. Israel Onderwijs Directeur Institute Manager E. Gerstel Instituutsmanager Supervisory Council (Raad van advies) Prof. Dr. Ir. J.A.M. Bleeker (Chair) Dr. B. Baud Drs. J.F. van Duyne Prof. Dr. K. Gaemers Prof. Dr. C. Waelkens CONTENTS Contents: Part I Chapter 1 1.1 Foreword 1 1.2 Obituary Adriaan Blaauw 5 1.3 Obituary Jaap Tinbergen 7 Chapter 2 2.1 Heritage 11 2.2 Extrasolar planets 13 2.3 Circumstellar gas and dust 15 2.4 Chemistry and physics of the interstellar medium 20 2.5 Stars 25 2.6 Galaxies of the Local Group 30 2.7 Nearby galaxies: observations and theory 37 2.8.
    [Show full text]
  • Abstracts of Talks 1
    Abstracts of Talks 1 INVITED AND CONTRIBUTED TALKS (in order of presentation) Milky Way and Magellanic Cloud Surveys for Planetary Nebulae Quentin A. Parker, Macquarie University I will review current major progress in PN surveys in our own Galaxy and the Magellanic clouds whilst giving relevant historical context and background. The recent on-line availability of large-scale wide-field surveys of the Galaxy in several optical and near/mid-infrared passbands has provided unprecedented opportunities to refine selection techniques and eliminate contaminants. This has been coupled with surveys offering improved sensitivity and resolution, permitting more extreme ends of the PN luminosity function to be explored while probing hitherto underrepresented evolutionary states. Known PN in our Galaxy and LMC have been significantly increased over the last few years due primarily to the advent of narrow-band imaging in important nebula lines such as H-alpha, [OIII] and [SIII]. These PNe are generally of lower surface brightness, larger angular extent, in more obscured regions and in later stages of evolution than those in most previous surveys. A more representative PN population for in-depth study is now available, particularly in the LMC where the known distance adds considerable utility for derived PN parameters. Future prospects for Galactic and LMC PN research are briefly highlighted. Local Group Surveys for Planetary Nebulae Laura Magrini, INAF, Osservatorio Astrofisico di Arcetri The Local Group (LG) represents the best environment to study in detail the PN population in a large number of morphological types of galaxies. The closeness of the LG galaxies allows us to investigate the faintest side of the PN luminosity function and to detect PNe also in the less luminous galaxies, the dwarf galaxies, where a small number of them is expected.
    [Show full text]
  • Free Astronomy Magazine May-June 2020
    cover EN.qxp_l'astrofilo 27/04/2020 16:36 Page 1 THE FREE MULTIMEDIA MAGAZINE THAT KEEPS YOU UPDATED ON WHAT IS HAPPENING IN SPACE Bi-monthly magazine of scientific and technical information ✶ May-June 2020 BBiioofflluuoorreesscceenntt ppllaanneetsts The star S2 moves according to Einstein’s Relativity Do sub-relativistic meteors exist? www.astropublishing.com ✶✶www.facebook.com/astropublishing [email protected] colophon EN_l'astrofilo 27/04/2020 16:36 Page 2 colophon EN_l'astrofilo 27/04/2020 16:36 Page 3 S U M M A R Y BI-MONTHLY MAGAZINE OF SCIENTIFIC AND TECHNICAL INFORMATION The star S2 moves according to Einstein’s Relativity FREELY AVAILABLE THROUGH Observations made with ESO’s Very Large Telescope (VLT) have revealed for the first time that a star or- THE INTERNET biting the supermassive black hole at the centre of the Milky Way moves just as predicted by Einstein’s general theory of relativity. Its orbit is shaped like a rosette and not like an ellipse as predicted by... May-June 2020 4 Biofluorescent planets The closest potentially habitable rocky exoplanets all orbit around red dwarfs. These types of stars are particularly suitable for hosting Earth-sized planets, but they are also characterized by surface phenom- 10 ena very harmful to life as we know it. Some organisms, however, may be able to adapt to intense... ESO telescope observes exoplanet where it rains iron Researchers using ESO’s Very Large Telescope (VLT) have observed an extreme planet where they suspect it rains iron. The ultra-hot giant exoplanet has a day side where temperatures climb above 2400 degrees 22 Celsius, high enough to vaporise metals.
    [Show full text]
  • Astronomical Coordinate Systems
    Appendix 1 Astronomical Coordinate Systems A basic requirement for studying the heavens is being able to determine where in the sky things are located. To specify sky positions, astronomers have developed several coordinate systems. Each sys- tem uses a coordinate grid projected on the celestial sphere, which is similar to the geographic coor- dinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth’s equator). Each coordinate system is named for its choice of fundamental plane. The Equatorial Coordinate System The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the most closely related to the geographic coordinate system because they use the same funda- mental plane and poles. The projection of the Earth’s equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles onto the celestial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate sys- tems: the geographic system is fixed to the Earth and rotates as the Earth does. The Equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but it’s really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec. for short). It measures the angle of an object above or below the celestial equator.
    [Show full text]
  • M31 Andromeda Galaxy Aq
    Constellation, Star, and Deep Sky Object Names Andromeda : M31 Andromeda Galaxy Lyra : Vega & M57 Ring Nebula Aquila : Altair Ophiuchus : Bernard’s Star Auriga : Capella Orion : Betelgeuse , Rigel & M42 Orion Nebula Bootes : Arcturus Perseus : Algol Cancer : M44 Beehive Cluster Sagittarius: Sagittarius A* Canes Venatici: M51 Whirlpool Galaxy Taurus : Aldebaran , Hyades Star Cluster , M1 Crab Nebula & Canis Major : Sirius M45 Pleiades Canis Minor : Procyon Tucana : Small Magellanic Cloud (SMC) Cassiopeia : Cassiopeia A & Tycho’s “Star” Ursa Minor : Polaris Centaurus : Proxima Centauri Virgo : Spica Dorado/Mensa : Large Magellanic Cloud (LMC) Milky Way Galaxy Gemini : Castor & Pollux Hercules : M13 Globular Cluster Characteristics of Stars (Compared with Sun) Class Color Temp. ( 1000 K) Absolute Magnitude Solar Luminosity Solar Mass Solar Diameter O Blue 60 -30 -7 1,000,000 50 100 to 1000 B Blue -White 30 -10 -3 10,000 10 10 to 100 A White 10 -7.5 +2 100 2 2 to 10 F White -Yellow 7.5 -6.5 +4 10 1.5 1 to 2 G Yellow 6.5 -4.5 +4.6 1 1 1 K Orange 4.5 -3.5 +11 1/100 0.5 0.5 M Red 3.5 -2.8 +15 1/100,000 0.08 0.1 Magnitude Magnitude scales: The smaller the magnitude number, the brighter the star Every 5 magnitudes = 100 times the brightness of object Every magnitude = 2.512 times the brightness of object Apparent magnitude = the brightness of object as seen from the viewer’s viewpoint (Earth) Absolute magnitude = “true brightness” – brightness as seen from 10 parsecs (32.6 light years) away Distance Measurement 1 astronomical unit = distance between Earth and Sun = 150 million kilometres or 93 million miles 1 light year ≈ 6 trillion miles / 9.5 trillion km Parsec = parallax second of arc – distance that a star “jumps” one second of a degree of arc in the sky as a result of the earth’s revolution around the sun.
    [Show full text]
  • Transit Analysis of the Corot-5, Corot-8, Corot-12, Corot-18
    MNRAS 483, 824–839 (2019) doi:10.1093/mnras/sty3085 Advance Access publication 2018 November 15 Transit analysis of the CoRoT-5, CoRoT-8, CoRoT-12, CoRoT-18, CoRoT-20, and CoRoT-27 systems with combined ground- and space-based photometry Downloaded from https://academic.oup.com/mnras/article-abstract/483/1/824/5184487 by Inst. Astrofisica Andalucia CSIC user on 28 August 2019 St. Raetz,1,2,3‹ A. M. Heras,3 M. Fernandez,´ 4 V. Casanova,4 and C. Marka5 1Institute for Astronomy and Astrophysics Tubingen¨ (IAAT), University of Tubingen,¨ Sand 1, D-72076 Tubingen,¨ Germany 2Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, D-79104 Freiburg, Germany 3Science Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 4Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apdo. 3004, 18080 Granada, Spain 5Instituto Radioastronom´ıa Milimetrica´ (IRAM), Avenida Divina Pastora 7, E-18012 Granada, Spain Accepted 2018 November 8. Received 2018 November 7; in original form 2018 April 6 ABSTRACT We have initiated a dedicated project to follow-up with ground-based photometry the transiting planets discovered by CoRoT in order to refine the orbital elements, constrain their physical parameters, and search for additional bodies in the system. From 2012 September to 2016 December we carried out 16 transit observations of six CoRoT planets (CoRoT-5 b, CoRoT- 8 b, CoRoT-12 b, CoRoT-18 b, CoRoT-20 b, and CoRoT-27 b) at three observatories located in Germany and Spain. These observations took place between 5 and 9 yr after the planet’s discovery, which has allowed us to place stringent constraints on the planetary ephemeris.
    [Show full text]
  • Annual Report 2011
    Research Institute Leiden Observatory (Onderzoekinstituut Sterrewacht Leiden) Annual Report 2011 Sterrewacht Leiden Faculty of Mathematics and Natural Sciences Leiden University Niels Bohrweg 2 Postbus 9513 2333 CA Leiden 2300 RA Leiden The Netherlands http://www.strw.leidenuniv.nl Cover: Galaxy clusters grow by mergers with other clusters and galaxy groups. These mergers create shock waves within the intracluster medium (ICM) that can accelerate particles to extreme energies. In the presence of magnetic fields, relativistic electrons form large regions emitting synchrotron radiation, the so- called radio relics. A prime example of these phenomena can be found in the galaxy cluster 1RXS J0603.3+4214 (z = 0.225), recently discovered comparing radio and X-ray large sky surveys. The deep radio image on the front cover taken with the Giant Metrewave Radio Telescope (India) shows that this cluster hosts a spectacularly large bright 1.9 Mpc radio relic (Courtesy: van Weeren and Röttgering, et al.). Initial numerical simulations (Brüggen, van Weeren, Röttgering) indicate that the 1.9 Mpc shock can be explained as originating from a triple cluster merging. Studying such systems yield information on the physics of magnetic fields and particle acceleration as well properties of gas in merging clusters. An electronic version of this annual report is available on the web at http://www.strw.leidenuniv.nl/research/annualreport.php Production Annual Report 2011: A. van der Tang, E. Gerstel, A.S. Abdullah, H.E. Andrews Mancilla, F.P. Israel, M. Kazandjian, E. Deul Sterrewacht Leiden Executive (Directie Onderzoeksinstituut) Director K. Kuijken Wetenschappelijk Directeur Director of Education P. v.d.Werf Onderwijs Directeur Institute Manager E.
    [Show full text]
  • An Aboriginal Australian Record of the Great Eruption of Eta Carinae
    Accepted in the ‘Journal for Astronomical History & Heritage’, 13(3): in press (November 2010) An Aboriginal Australian Record of the Great Eruption of Eta Carinae Duane W. Hamacher Department of Indigenous Studies, Macquarie University, NSW, 2109, Australia [email protected] David J. Frew Department of Physics & Astronomy, Macquarie University, NSW, 2109, Australia [email protected] Abstract We present evidence that the Boorong Aboriginal people of northwestern Victoria observed the Great Eruption of Eta (η) Carinae in the nineteenth century and incorporated the event into their oral traditions. We identify this star, as well as others not specifically identified by name, using descriptive material presented in the 1858 paper by William Edward Stanbridge in conjunction with early southern star catalogues. This identification of a transient astronomical event supports the assertion that Aboriginal oral traditions are dynamic and evolving, and not static. This is the only definitive indigenous record of η Carinae’s outburst identified in the literature to date. Keywords: Historical Astronomy, Ethnoastronomy, Aboriginal Australians, stars: individual (η Carinae). 1 Introduction Aboriginal Australians had a significant understanding of the night sky (Norris & Hamacher, 2009) and frequently incorporated celestial objects and transient celestial phenomena into their oral traditions, including the sun, moon, stars, planets, the Milky Way and Magellanic Clouds, eclipses, comets, meteors, and impact events. While Australia is home to hundreds of Aboriginal groups, each with a distinct language and culture, few of these groups have been studied in depth for their traditional knowledge of the night sky. We refer the interested reader to the following reviews on Australian Aboriginal astronomy: Cairns & Harney (2003), Clarke (1997; 2007/2008), Fredrick (2008), Haynes (1992; 2000), Haynes et al.
    [Show full text]