Transit Analysis of the Corot-5, Corot-8, Corot-12, Corot-18

Total Page:16

File Type:pdf, Size:1020Kb

Transit Analysis of the Corot-5, Corot-8, Corot-12, Corot-18 MNRAS 483, 824–839 (2019) doi:10.1093/mnras/sty3085 Advance Access publication 2018 November 15 Transit analysis of the CoRoT-5, CoRoT-8, CoRoT-12, CoRoT-18, CoRoT-20, and CoRoT-27 systems with combined ground- and space-based photometry Downloaded from https://academic.oup.com/mnras/article-abstract/483/1/824/5184487 by Inst. Astrofisica Andalucia CSIC user on 28 August 2019 St. Raetz,1,2,3‹ A. M. Heras,3 M. Fernandez,´ 4 V. Casanova,4 and C. Marka5 1Institute for Astronomy and Astrophysics Tubingen¨ (IAAT), University of Tubingen,¨ Sand 1, D-72076 Tubingen,¨ Germany 2Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, D-79104 Freiburg, Germany 3Science Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 4Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apdo. 3004, 18080 Granada, Spain 5Instituto Radioastronom´ıa Milimetrica´ (IRAM), Avenida Divina Pastora 7, E-18012 Granada, Spain Accepted 2018 November 8. Received 2018 November 7; in original form 2018 April 6 ABSTRACT We have initiated a dedicated project to follow-up with ground-based photometry the transiting planets discovered by CoRoT in order to refine the orbital elements, constrain their physical parameters, and search for additional bodies in the system. From 2012 September to 2016 December we carried out 16 transit observations of six CoRoT planets (CoRoT-5 b, CoRoT- 8 b, CoRoT-12 b, CoRoT-18 b, CoRoT-20 b, and CoRoT-27 b) at three observatories located in Germany and Spain. These observations took place between 5 and 9 yr after the planet’s discovery, which has allowed us to place stringent constraints on the planetary ephemeris. In five cases we obtained light curves with a deviation of the mid-transit time of up to ∼115 min from the predictions. We refined the ephemeris in all these cases and reduced the uncertainties of the orbital periods by factors between 1.2 and 33. In most cases our determined physical properties for individual systems are in agreement with values reported in previous studies. In one case, CoRoT-27 b, we could not detect any transit event in the predicted transit window. Key words: planets and satellites: individual: CoRoT-5 b, CoRoT-8 b, CoRoT-12 b, CoRoT- 18 b, CoRoT-20 b, and CoRoT-27 b – planetary systems – stars: individual: CoRoT-5, CoRoT- 8, CoRoT-12, CoRoT-18, CoRoT-20, and CoRoT-27. venture of the ultra high precision photometry from space’ (CoRot 1 INTRODUCTION Team 2016). Because of its low-earth orbit, CoRoT could point in The study of transiting extrasolar planets was revolutionized by one direction for not longer than 6 months per year to avoid the Sun the data obtained by space telescopes like CoRoT and Kepler,as entering in its field of view (FoV). The ∼6 month observing time they provide high-precision, high-cadence, continuous light curves in one direction was divided into two separate runs lasting ∼30 d (LCs) of a very high number of stars. Thanks to these extraordinary (short run, SR) and ∼150 d (long run, LR). CoRoT observed the capabilities, the first rocky super-Earths were detected (CoRoT-7b, fields with two cadence modes, a short cadence of 32 s exposure Kepler-10b, Queloz et al. 2009; Batalha et al. 2011), starting a new time and a long cadence with 16 exposures of 32 s stacked together era of exoplanet discoveries. resulting in 512 s cadence (Ollivier et al. 2016). While most stars CoRoT (convection, rotation, and planetary transits) was the first were observed in long cadence mode, the 32 s exposures were only space mission dedicated to the detection of transiting planets. The downloaded for selected targets i.e. after the detection of transit like mission was launched in 2006 December and started its first sci- events. ence observation in 2007 January. The spacecraft was equipped In 2009 March, the satellite suffered a loss of communication with a 27-cm telescope and a 4-CCD wide-field camera. Each pair with one of the data processing units (DPU), which reduced the of CCDs was designed for one of the two main goals of the mis- FoV by 50 per cent. In 2012 November, the second and last DPU sion, asteroseismology, or exoplanets. A complete overview on the failed resulting in the end of the mission in 2013 June. So far CoRoT mission can be found in ‘The CoRoT Legacy Book: The ad- 34 confirmed exoplanets have been published and ∼500 candidate exoplanets are awaiting evaluation (CoRot Team 2016). To truly benefit from CoRoT’s planet findings, the planet and E-mail: [email protected] orbit parameters need to be accurately determined. Since CoRoT C 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society Transit analysis of CoRoT-targets 825 could observe transiting planets only for a maximum duration of to the middle of the exposure. In step three, we normalized the LCs. 150 d, ground-based follow-up is mandatory to extend the observa- After the division by the average out-of-transit flux, additional light tional baseline. We have therefore initiated a dedicated project to (‘third’ light) L3 induced by contaminants in the aperture around combine the unprecedented precision of CoRoT LCs with ground- the target star was subtracted from the normalized flux before re- based follow-up photometry, in order to refine the planets orbital normalizing. In a last step we cleaned the LCs from outliers. By elements, constrain their physical parameters and search for addi- using a moving average of the time-series we created a smoothed tional bodies in the system. We selected 12 suitable targets that LC. Finally, we removed all data points that deviated more than 3σ Downloaded from https://academic.oup.com/mnras/article-abstract/483/1/824/5184487 by Inst. Astrofisica Andalucia CSIC user on 28 August 2019 fulfilled the following criteria: from this smoothed LC. (i) The brightness of the host star is V < 16 mag and the transit depth is at least 8 mmag, to ensure sufficient photometric and timing 2.2 Ground-based observations precision at 1–2 m class ground-based telescopes. (ii) The orbit of the known transiting planet is not well con- One observation in 2012 was carried out using the ‘Schmidt strained through radial velocity (RV) observations or shows non- Teleskop Kamera’ (STK, Mugrauer & Berthold 2010) mounted at zero eccentricity (though the circularization time-scale is much the 90 cm Schmidt telescope (60 cm in Schmidt mode) at the Univer- × shorter than the system age) and/or the data presents deviant RV sity Observatory Jena. With 2048 2048 pixels and a pixel scale of points, possibly indicating a perturber. 1.55 arcsec/pixel, we could observe a large FoV of 53 x 53 arcmin. (iii) Timing errors are critically large, which would impede the Most of the LCs (12 out of 16) were collected with the 1.5-m planetary transit observations within a few years. reflector at the Observatorio de Sierra Nevada (OSN), which is operated by the Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Spain. A short description and first results of this study were published in Using a VersArray:2048B CCD camera (2048 × 2048 pixels, pixel Raetz et al. (2015). Here, we report on our observations of six of scale 0.23 arcsec/pixel) we covered a FoV of 7.85 × 7.85 arcmin. these targets, CoRoT-5, CoRoT-8, CoRoT-12, CoRoT-18, CoRoT- From 2015 November to 2016 June, we obtained three additional 20, and CoRoT-27. Table 1 summarizes the literature values of the LCs at ESA’s Optical Ground Station (OGS), a 1-m telescope lo- physical properties of these systems. Fig. 1 gives the propagation cated at the Observatorio del Teide on Tenerife. The mounted spec- of the original published ephemeris uncertainties for these targets trograph (Schulz et al. 2014) was used in imaging mode for the to the present. In particular, CoRoT-20 and CoRoT-27 are of spe- observations. The Roper Spec Camera provides 2048 × 2048 pix- cial interest as they have the largest uncertainties in our sample. els with a pixel scale of 0.403 arcsec/pixel. The initial FoV of Moreover, both targets are massive hot Jupiters and, hence, very 13.8 × 13.8 arcmin was windowed to shorten read-out time. interesting systems to study formation, migration, and evolution of Since the CoRoT targets are relatively faint (V ∼ 14 − 15.5mag, gas giant planets. see Table 1) all observations were carried out either in R-band or without any filter, with exposure times between 90 and 180 s. 2 OBSERVATION, DATA REDUCTION, AND Data reduction and photometry were performed following the PHOTOMETRY procedures described by us in e.g. Raetz et al. (2014, 2016). In short, we subtracted a bias (as overscan for the data of the STK) and We started our follow-up campaign in 2013 October after first test a dark frame (only for STK) and divided by a sky flat field using the observations that were carried out in 2012 September. In total, we IRAF1 routines zerocombine, darkcombine, flatcombine,andccd- collected 16 high-precision LCs of the six selected targets, CoRoT- proc. For the aperture photometry with 10 different aperture radii 5, CoRoT-8, CoRoT-12, CoRoT-18, CoRoT-20, and CoRoT-27, we used a script based on the standard IRAF routine phot. Finally, we from 2012 September to 2016 December. Our ground-based ob- derived differential magnitudes using an optimized artificial com- servations were performed with three 1-m class telescopes located parison star (Broeg, Fernandez´ & Neuhauser¨ 2005).
Recommended publications
  • And Space-Based Photometry
    Mon. Not. R. Astron. Soc. 000, 1–17 (2002) Printed 5 December 2018 (MN LATEX style file v2.2) Transit analysis of the CoRoT-5, CoRoT-8, CoRoT-12, CoRoT-18, CoRoT-20, and CoRoT-27 systems with combined ground- and space-based photometry St. Raetz1,2,3⋆, A. M. Heras3, M. Fern´andez4, V. Casanova4, C. Marka5 1Institute for Astronomy and Astrophysics T¨ubingen (IAAT), University of T¨ubingen, Sand 1, D-72076 T¨ubingen, Germany 2Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, D-79104 Freiburg, Germany 3Science Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 4Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apdo. 3004, 18080 Granada, Spain 5Instituto Radioastronom´ıa Milim´etrica (IRAM), Avenida Divina Pastora 7, E-18012 Granada, Spain Accepted 2018 November 8. Received: 2018 November 7; in original from 2018 April 6 ABSTRACT We have initiated a dedicated project to follow-up with ground-based photometry the transiting planets discovered by CoRoT in order to refine the orbital elements, constrain their physical parameters and search for additional bodies in the system. From 2012 September to 2016 December we carried out 16 transit observations of six CoRoT planets (CoRoT-5b, CoRoT-8b, CoRoT-12b, CoRoT-18b, CoRoT-20 b, and CoRoT-27b) at three observatories located in Germany and Spain. These observations took place between 5 and 9 yr after the planet’s discovery, which has allowed us to place stringent constraints on the planetary ephemeris. In five cases we obtained light curves with a deviation of the mid-transit time of up to ∼115 min from the predictions.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • August 13 2016 7:00Pm at the Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Saturday, August 13th 2016 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. Public Star Party Follows at the Colleagues, Centennial Observatory Club Officers It's that time of year: The City of Rocks Star Party. Set for Friday, Aug. 5th, and Saturday, Aug. 6th, the event is the gem of the MVAS year. As we've done every Robert Mayer, President year, we will hold solar viewing at the Smoky Mountain Campground, followed by a [email protected] potluck there at the campground. Again, MVAS will provide the main course and 208-312-1203 beverages. Paul McClain, Vice President After the potluck, the party moves over to the corral by the bunkhouse over at [email protected] Castle Rocks, with deep sky viewing beginning sometime after 9 p.m. This is a chance to dig into some of the darkest skies in the west. Gary Leavitt, Secretary [email protected] Some members have already reserved campsites, but for those who are thinking of 208-731-7476 dropping by at the last minute, we have room for you at the bunkhouse, and would love to have to come by. Jim Tubbs, Treasurer / ALCOR [email protected] The following Saturday will be the regular MVAS meeting. Please check E-mail or 208-404-2999 Facebook for updates on our guest speaker that day. David Olsen, Newsletter Editor Until then, clear views, [email protected] Robert Mayer Rick Widmer, Webmaster [email protected] Magic Valley Astronomical Society is a member of the Astronomical League M-51 imaged by Rick Widmer & Ken Thomason Herrett Telescope Shotwell Camera https://herrett.csi.edu/astronomy/observatory/City_of_Rocks_Star_Party_2016.asp Calendars for August Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 New Moon City Rocks City Rocks Lunation 1158 Castle Rocks Castle Rocks Star Party Star Party Almo, ID Almo, ID 7 8 9 10 11 12 13 MVAS General Mtg.
    [Show full text]
  • The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 a Good Way to Start – Find North
    The expression "dog days" refers to the period from July 3 through Aug. 11 when our brightest night star, SIRIUS (aka the dog star), rises in conjunction* with the sun. Conjunction, in astronomy, is defined as the apparent meeting or passing of two celestial bodies. TAAS Fabulous Fifty A program for those new to astronomy Friday Evening, July 20, 2018, 8:00 pm All TAAS and other new and not so new astronomers are welcome. What is the TAAS Fabulous 50 Program? It is a set of 4 meetings spread across a calendar year in which a beginner to astronomy learns to locate 50 of the most prominent night sky objects visible to the naked eye. These include stars, constellations, asterisms, and Messier objects. Methodology 1. Meeting dates for each season in year 2018 Winter Jan 19 Spring Apr 20 Summer Jul 20 Fall Oct 19 2. Locate the brightest and easiest to observe stars and associated constellations 3. Add new prominent constellations for each season Tonight’s Schedule 8:00 pm – We meet inside for a slide presentation overview of the Summer sky. 8:40 pm – View night sky outside The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 A Good Way to Start – Find North Polaris North Star Polaris is about the 50th brightest star. It appears isolated making it easy to identify. Circumpolar Stars Polaris Horizon Line Albuquerque -- 35° N Circumpolar Stars Capella the Goat Star AS THE WORLD TURNS The Circle of Perpetual Apparition for Albuquerque Deneb 1 URSA MINOR 2 3 2 URSA MAJOR & Vega BIG DIPPER 1 3 Draco 4 Camelopardalis 6 4 Deneb 5 CASSIOPEIA 5 6 Cepheus Capella the Goat Star 2 3 1 Draco Ursa Minor Ursa Major 6 Camelopardalis 4 Cassiopeia 5 Cepheus Clock and Calendar A single map of the stars can show the places of the stars at different hours and months of the year in consequence of the earth’s two primary movements: Daily Clock The rotation of the earth on it's own axis amounts to 360 degrees in 24 hours, or 15 degrees per hour (360/24).
    [Show full text]
  • The Kinematics of Arp 295 in H-Alpha Emission: an Interacting Galaxy
    Revista Mexicana de Astronom´ıa y Astrof´ısica, 00, ??–?? () THE KINEMATICS OF ARP 295 IN Hα EMISSION: AN INTERACTING GALAXY WITH HIGHLY ASYMMETRIC ROTATION Nathan Roche,1 Received November 4, 2018; accepted November 4, 2018 RESUMEN El resumen ser´atraducido al espa˜nol por los editores. We investigate Arp 295, a pair of interacting spirals at z = 0.023, using optical spectroscopy, Hα imaging, and Hα velocity mapping with the Manchester Echelle Spectrograph. Scalelengths are rexp =5.24 for Arp 295a and 2.52 kpc for 295b. A much smaller Im galaxy, Arp 295c, is associated with the larger spiral. Arp 295b is asymmetric with the disk more extended eastwards but with the brightest star-formation regions on its western side. The spectrum of Arp 295b shows strong emission lines with [OII]3727 equivalent width 36A.˚ The total Hα luminosities of Arp 295b and Arp 295c are 4.69 × 1041 and 6.76 × 1040 ergs s−1, corresponding to star-formation −1 rates 3.7 and 0.53 M⊙yr . For Arp 295b, we measure the maximum disk rotation velocity as 252.6 ± 9.9 km s−1 and find the rotation curve is very asymmetric. The east (approaching) side has a higher radial velocity than the west with the maximum difference (at r = 5 arcsec) 88 km s−1 or a factor 1.675. ABSTRACT We investigate Arp 295, a pair of interacting spirals at z =0.023, using optical spectroscopy, Hα imaging, and Hα velocity mapping with the Manchester Echelle Spectrograph. Scalelengths are rexp = 5.24 for Arp 295a and 2.52 kpc for 295b.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Transiting Exoplanets from the Corot Space Mission. XI. Corot-8B: a Hot
    Astronomy & Astrophysics manuscript no. corot-8b c ESO 2018 October 23, 2018 Transiting exoplanets from the CoRoT space mission XI. CoRoT-8b: a hot and dense sub-Saturn around a K1 dwarf? P. Borde´1, F. Bouchy2;3, M. Deleuil4, J. Cabrera5;6, L. Jorda4, C. Lovis7, S. Csizmadia5, S. Aigrain8, J. M. Almenara9;10, R. Alonso7, M. Auvergne11, A. Baglin11, P. Barge4, W. Benz12, A. S. Bonomo4, H. Bruntt11, L. Carone13, S. Carpano14, H. Deeg9;10, R. Dvorak15, A. Erikson5, S. Ferraz-Mello16, M. Fridlund14, D. Gandolfi14;17, J.-C. Gazzano4, M. Gillon18, E. Guenther17, T. Guillot19, P. Guterman4, A. Hatzes17, M. Havel19, G. Hebrard´ 2, H. Lammer20, A. Leger´ 1, M. Mayor7, T. Mazeh21, C. Moutou4, M. Patzold¨ 13, F. Pepe7, M. Ollivier1, D. Queloz7, H. Rauer5;22, D. Rouan11, B. Samuel1, A. Santerne4, J. Schneider6, B. Tingley9;10, S. Udry7, J. Weingrill20, and G. Wuchterl17 (Affiliations can be found after the references) Received ?; accepted ? ABSTRACT Aims. We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. Methods. We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer??. Results. We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0:063 ± 0:001 AU. It has a radius of 0:57 ± 0:02 RJ, a mass of −3 0:22 ± 0:03 MJ, and therefore a mean density of 1:6 ± 0:1 g cm .
    [Show full text]
  • Downloaded From
    Review HEAVY METAL RULES. I. EXOPLANET INCIDENCE AND METALLICITY Vardan Adibekyan1 ID 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal; [email protected] Academic Editor: name Received: date; Accepted: date; Published: date Abstract: Discovery of only handful of exoplanets required to establish a correlation between giant planet occurrence and metallicity of their host stars. More than 20 years have already passed from that discovery, however, many questions are still under lively debate: What is the origin of that relation? what is the exact functional form of the giant planet – metallicity relation (in the metal-poor regime)?, does such a relation exist for terrestrial planets? All these question are very important for our understanding of the formation and evolution of (exo)planets of different types around different types of stars and are subject of the present manuscript. Besides making a comprehensive literature review about the role of metallicity on the formation of exoplanets, I also revisited most of the planet – metallicity related correlations reported in the literature using a large and homogeneous data provided by the SWEET-Cat catalog. This study lead to several new results and conclusions, two of which I believe deserve to be highlighted in the abstract: i) The hosts of sub-Jupiter mass planets (∼0.6 – 0.9 M ) are systematically less metallic than the hosts of Jupiter-mass planets. This result might be relatedX to the longer disk lifetime and higher amount of planet building materials available at high metallicities, which allow a formation of more massive Jupiter-like planets.
    [Show full text]
  • Comprehensive Time Series Analysis of the Transiting Extrasolar Planet WASP-33B,
    A&A 553, A44 (2013) Astronomy DOI: 10.1051/0004-6361/201219642 & c ESO 2013 Astrophysics Comprehensive time series analysis of the transiting extrasolar planet WASP-33b, G. Kovács1,2,T.Kovács1,J.D.Hartman3,G.Á.Bakos3,, A. Bieryla4,D.Latham4,R.W.Noyes4, Zs. Regály1, and G. A. Esquerdo4 1 Konkoly Observatory, 1121 Budapest, Hungary e-mail: [email protected] 2 Department of Physics and Astrophysics, University of North Dakota, 58202-7129 Grand Forks, ND, USA 3 Department of Astrophysical Sciences, Princeton University, 08544 Princeton, NJ, USA 4 Harvard–Smithsonian Center for Astrophysics, 02138 Cambridge, MA, USA Received 22 May 2012 / Accepted 5 March 2013 ABSTRACT Context. HD 15082 (WASP-33) is the hottest and fastest rotating star known to harbor a transiting extrasolar planet (WASP-33b). The lack of high precision radial velocity (RV) data stresses the need for precise light curve analysis and gathering further RV data. Aims. By using available photometric and RV data, we perform a blend analysis, compute more accurate system parameters, confine the planetary mass, and, attempt to cast light on the observed transit anomalies. Methods. We combined the original HATNet observations and various followup data to jointly analyze the signal content and extract the transit component and used our RV data to aid the global parameter determination. Results. The blend analysis of the combination of multicolor light curves yields the first independent confirmation of the planetary nature of WASP-33b. We clearly identify three frequency components in the 15–21 d−1 regime with amplitudes 7–5 mmag. These frequencies correspond to the δ Scuti-type pulsation of the host star.
    [Show full text]