Select SciPost Phys. 5, 037 (2018) Monitoring continuous spectrum observables: the strong measurement limit Michel Bauer1,2, Denis Bernard3? and Tony Jin3 1 Institut de Physique Théorique de Saclay, CEA-Saclay & CNRS, 91191 Gif-sur-Yvette, France. 2 Département de mathématiques et applications, École Normale Supérieure, PSL Research University, 75005 Paris, France 3 Laboratoire de Physique Théorique de l’École Normale Supérieure de Paris, CNRS, ENS, PSL University & Sorbonne Université, France. ?
[email protected] Abstract We revisit aspects of monitoring observables with continuous spectrum in a quantum system subject to dissipative (Lindbladian) or conservative (Hamiltonian) evolutions. After recalling some of the salient features of the case of pure monitoring, we deal with the case when monitoring is in competition with a Lindbladian evolution. We show that the strong measurement limit leads to a diffusion on the spectrum of the observable. For the case with competition between observation and Hamiltonian dynamics, we exhibit a scaling limit in which the crossover between the classical regime and a diffusive regime can be analyzed in details. Copyright M. Bauer et al. Received 01-06-2018 This work is licensed under the Creative Commons Accepted 01-10-2018 Check for Attribution 4.0 International License. Published 24-10-2018 updates Published by the SciPost Foundation. doi:10.21468/SciPostPhys.5.4.037 Contents 1 Introduction2 2 QND measurement of a continuous spectrum observable.3 2.1 Diagonal evolution and probabilistic interpretation4 2.2 Density matrix evolution6 3 Monitoring continuous spectrum observables with dissipative dynamics6 3.1 A simple example: Monitoring quantum diffusion.7 3.2 Generalization : General stochastic diffusion 10 4 Monitoring continuous spectrum observable with Hamiltonian dynamics 11 4.1 A simple case: Particle in a harmonic potential 12 4.2 Generalization: A particle in a smooth potential 14 A Exchangeable processes and QND measurements 15 A.1 Discrete time monitoring 15 1 Select SciPost Phys.