PDCO Johnson-Fast-PDCO NEOO Brief to PAC 9 March 2020 Final
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Defense Coordination Office
Planetary Defense Coordination Office Lindley Johnson NASA’s Planetary Defense Officer Planetary Defense Coordination Office Planetary Science Division NASA Headquarters Washington, DC Update to SMPAG February 6, 2020 n a s a . g o v / planetarydefense 2 Current Planetary Defense Flight Mission Projects NEOWISE • Continues in extended NEO survey operations • Expected to exceed maximum useful temperatures in ~Summer 2020 DART: Double Asteroid Redirection Test • Demonstration of kinetic impactor technique • Target - Moon of 65803 Didymos • Launch NET July 2021, impact September 2022 • Completed Mission-level PDR April 2018 • KDP-C “Confirmation” signed August 2018 • CDR completed June 2019, DPMC completed August 2019 • Phase C complete by 1 April 2020 3 Signatories to the International Asteroid Warning Network (IAWN) iawn.net European Southern China National Northolt Branch Zwicky Višnjan Observatory Observatory Space Administration Observatories (UK) Transient (Croatia) Facility (US) National Institute of Astrophysics, Optics & Electronics (México) Korean Astronomy Space Science Institute (KASI) University of Nariño Inst. of Solar- Sormano Astronomical Colombia Terrestrial Physics Observatory (Italy) (Siberian Branch, Russian Academy of Sciences) Crimean European Institute of Astronomy, Astrophysical Observatory National Aeronautics and SONEAR Observatory Russian Academy of Space (Brazil) (Russian Academy of Sciences) Space Administration Sciences (ИНАСАН) Agency Special Follow-up Observers Astrophysical Peter Birtwhistle (UK) Observatory (Russian David Balam (Canada) 5 Academy of Patrick Wiggins (USA) Sciences) Kourovka Astronomical Observatory (UrFU ) Currently 20 signatories n a s a . g o v / planetarydefense NASA’s search started in 1998 *Potentially Hazardous Asteroids come within 7.5 million km of Earth orbit n a s a . g o v / planetarydefense All Near-Earth Asteroids (NEAs) n a s a . -
Planetary Defense Coordination Office
Planetary Defense Coordination Office Lindley Johnson NASA’s Planetary Defense Officer Planetary Defense Coordination Office Planetary Science Division NASA Headquarters Washington, DC Update to AAAC January 23, 2020 n a s a . g o v / planetarydefense Planetary Defense Coordination Office The Planetary Defense Coordination Office (PDCO) was established in January 2016 at NASA HQ to manage planetary defense related activities across NASA, and coordinate with both U.S. interagency and international efforts to study and plan response to the asteroid impact hazard. Mission Statement Lead national and international efforts to: • Detect any potential for significant impact of planet Earth by natural objects • Appraise the range of potential effects by any possible impact • Develop strategies to mitigate impact effects on human welfare N e a r - Earth Object Observations Program – Interagency and International Partnerships – Mitigation Research 3 New White House Guidance released on 20 June 2018 https://www.whitehouse.gov/wp- content/uploads/2018/06/National-Near- Earth-Object-Preparedness-Strategy-and- Action-Plan-23-pages-1MB.pdf N e a r - Earth Object Observations Program – Interagency and International Partnerships – Mitigation Research National NEO Preparedness Strategy and Action Plan Goals in the New Action Plan • Enhance NEO detection, characterization, and tracking capabilities • Improve modeling, predictions, and information integration • Develop technologies for NEO deflection and disruption • Increase international cooperation on -
Impact Hazard Associated with Large Meteoroids from Disrupted Asteroids and Comets
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Impact hazard associated with large meteoroids from disrupted asteroids and comets Manuel Moreno Ib´a˜nez Institut de Ci`enciesde l’Espai (ICE, CSIC/IEEC) Advisors: Dr. Josep Ma. Trigo Rodr´ıguez & Dr. Maria Gritsevich Tutor: Prof. Dr. Jordi Mompart Penina Universitat Aut`onomade Barcelona Departament de F´ısica A thesis submitted for the degree of Doctor of Philosophy in Physics Bellaterra, September 2018 © September 2018 Science is simply common sense at its best, that is, rigidly accurate in observation, and merciless to fallacy in logic. — Thomas Huxley ABSTRACT Large meteoroid fragments disrupted from asteroids and comets may encounter the Earth along their orbits, posing extremely hazardous scenarios. Contemporary events like Chelyabinsk (2013), Carancas (2007) or Tunguska (1908) demonstrated that met- eoroids in the diameter range of 1 to 100 m can devastate large areas and injure local population through the associated energetic blast, or even produce casualties due to localized crater excavation. Despite the relatively low frequency of these events, they have become a major concern within space agencies and other planetary defense initi- atives which are currently developing impact mitigation tactics. -
February 2019 BRAS Newsletter
Monthly Meeting February 11th at 7PM at HRPO (Monthly meetings are on 2nd Mondays, Highland Road Park Observatory). Speaker: Chris Desselles on Astrophotography What's In This Issue? President’s Message Secretary's Summary Outreach Report Astrophotography Group Asteroid and Comet News Light Pollution Committee Report Recent BRAS Forum Entries Messages from the HRPO Science Academy International Astronomy Day Friday Night Lecture Series Globe at Night Adult Astronomy Courses Nano Days Observing Notes – Canis Major – The Great Dog & Mythology Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Newsletter of the Baton Rouge Astronomical Society February 2019 © 2019 President’s Message The highlight of January was the Total Lunar Eclipse 20/21 January 2019. There was a great turn out at HRPO, and it was a lot of fun. If any of the members wish to volunteer at HRPO, please speak to Chris Kersey, BRAS Liaison for BREC, to fill out the paperwork. MONTHLY SPEAKERS: One of the club’s needs is speakers for our monthly meetings if you are willing to give a talk or know of a great speaker let us know. UPCOMING BRAS MEETINGS: Light Pollution Committee - HRPO, Wednesday, February 6, 6:15 P.M. Business Meeting – HRPO, Wednesday, February 6, 7 P.M. Monthly Meeting – HRPO, Monday, February 11, 7 P.M. VOLUNTEERS: While BRAS members are not required to volunteer, if we do grow our volunteer core in 2019 we can do more fun activities without wearing out our great volunteers. Volunteering is an excellent opportunity to share what you know while increasing your skills. -
The Full Appendices with All References
Breakthrough Listen Exotica Catalog References 1 APPENDIX A. THE PROTOTYPE SAMPLE A.1. Minor bodies We classify Solar System minor bodies according to both orbital family and composition, with a small number of additional subtypes. Minor bodies of specific compositions might be selected by ETIs for mining (c.f., Papagiannis 1978). From a SETI perspective, orbital families might be targeted by ETI probes to provide a unique vantage point over bodies like the Earth, or because they are dynamically stable for long periods of time and could accumulate a large number of artifacts (e.g., Benford 2019). There is a large overlap in some cases between spectral and orbital groups (as in DeMeo & Carry 2014), as with the E-belt and E-type asteroids, for which we use the same Prototype. For asteroids, our spectral-type system is largely taken from Tholen(1984) (see also Tedesco et al. 1989). We selected those types considered the most significant by Tholen(1984), adding those unique to one or a few members. Some intermediate classes that blend into larger \complexes" in the more recent Bus & Binzel(2002) taxonomy were omitted. In choosing the Prototypes, we were guided by the classifications of Tholen(1984), Tedesco et al.(1989), and Bus & Binzel(2002). The comet orbital classifications were informed by Levison(1996). \Distant minor bodies", adapting the \distant objects" term used by the Minor Planet Center,1 refer to outer Solar System bodies beyond the Jupiter Trojans that are not comets. The spectral type system is that of Barucci et al. (2005) and Fulchignoni et al.(2008), with the latter guiding our Prototype selection. -
2019 Astrodynamics Specialist Conference Portland, ME, August 11-15, 2019 Aug 12, 2019 Hawthorne
2019 Astrodynamics Specialist Conference Portland, ME, August 11-15, 2019 Aug 12, 2019 Hawthorne Guidance, Navigation & Control I Chair: Anil Rao, University of Florida 8:00 AAS Multi-Sensor Management under Information Constraints 19- Kirsten Tuggle, The University of Texas at Austin; Maruthi R. Akella, The 663 University of Texas at Austin Within the modern aerospace domain, there has been a significant increase in the need for operating autonomously and adaptively as well the configurability of rapid, real- time, plug-and-play sensing systems supporting these operations. Even though most applications also enjoy increased computational power, these types of guidance, navigation, and control tasks can quickly overwhelm the ability to process them as the problem complexity increases over time and/or degrees of freedom. The current work offers an efficient algorithm for an information-penalized LQG problem when selections must be made among multiple sensors at each time-step. 8:20 AAS Uncertainty Analysis of a Generalized Coning Algorithm for Inertial 19- Navigation 827 James Brouk, Missouri University of Science and Technology; Kyle DeMars, Texas A&M University This paper investigates uncertainty propagation through a generalized coning algorithm used for inertial navigation systems. Coned measurements have often been considered uncertain variables as the statistics for raw measurements no longer apply to a coning algorithm’s result. Through the error analysis of a coning algorithm, two methods for mapping errors are introduced and an efficient and consistent propagation of state uncertainty is achieved, establishing that the errors in the algorithms need not be uncertain. Monte Carlo simulations reveal that the algorithms are shown to be consistent with typical methods of attitude dead-reckoning in simulations with and without coning motion. -
Status of Planetary Defense
Status of Planetary Defense Lindley Johnson NASA’s Planetary Defense Officer [email protected] Planetary Defense Coordination Office Planetary Science Division NASA Headquarters Washington, DC Space Portal Lecture Series May 20, 2020 n a s a . g o v / planetarydefense Near-Earth Objects (NEOs) Asteroids and comets with orbits that bring them within one-and-a-third times the distance from the Sun to Earth, or 1.3 astronomical units (blue zone) Earth Orbit Potentially Hazardous Objects • NEOs with orbits that bring them within 4.7 million miles (7.5 million km) of Earth’s orbit (red zone) and Venus Orbit • Size that could do regional damage should they impact Earth (~500 feet or ~140 meters in size and larger) Mercury Orbit Orbit of Bennu • Potentially hazardous Sun asteroid • Target of NASA’s OSIRIS-REx mission New White House Guidance released on 20 June 2018 https://www.whitehouse.gov/wp- content/uploads/2018/06/National-Near- Earth-Object-Preparedness-Strategy-and- Action-Plan-23-pages-1MB.pdf N e a r - Earth Object Observations Program – Interagency and International Partnerships – Mitigation Research National NEO Preparedness Strategy and Action Plan Goals in the New Action Plan • Enhance NEO detection, characterization, and tracking capabilities • Improve modeling, predictions, and information integration • Develop technologies for NEO deflection and disruption • Increase international cooperation on NEO preparation • Establish NEO impact emergency procedures and action protocols N e a r - Earth Object Observations Program -
Observational Constraints on the Optical and Near-Infrared Emission from the Neutron Star–Black Hole Binary Merger Candidate S190814bv K
Astronomy & Astrophysics manuscript no. s190814bv_20200519_nohighlight c ESO 2020 June 23, 2020 Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv K. Ackley1, L. Amati2, C. Barbieri3; 4; 5, F. E. Bauer6; 7; 8, S. Benetti9, M. G. Bernardini3, K. Bhirombhakdi10, M. T. Botticella11, M. Branchesi12; 13, E. Brocato14; 15, S. H. Bruun16, M. Bulla17, S. Campana3, E. Cappellaro9, A. J. Castro-Tirado18, K. C. Chambers19, S. Chaty20; 21, T.-W. Chen22; 23, R. Ciolfi9; 24, A. Coleiro20, C. M. Copperwheat25, S. Covino3, R. Cutter26, F. D’Ammando27, P. D’Avanzo3, G. De Cesare2, V. D’Elia14; 28, M. Della Valle11, L. Denneau19, M. De Pasquale29, V. S. Dhillon30; 31, M. J. Dyer30, N. Elias-Rosa9; 32, P. A. Evans33, R. A. J. Eyles-Ferris33, A. Fiore9; 34, M. Fraser35, A. S. Fruchter10, J. P. U. Fynbo36; 37, L. Galbany38, C. Gall16, D. K. Galloway1, F. I. Getman11, G. Ghirlanda3, J. H. Gillanders39, A. Gomboc40, B. P. Gompertz26, C. González-Fernández41, S. González-Gaitán42, A. Grado11, G. Greco43; 44, M. Gromadzki45, P. J. Groot46; 47; 48; 49, C. P. Gutiérrez50, T. Heikkilä51, K. E. Heintz52, J. Hjorth16, Y.-D. Hu18; 38, M. E. Huber19, C. Inserra53, L. Izzo16, J. Japelj54, A. Jerkstrand22, Z. P. Jin55, P. G. Jonker46; 56, E. Kankare51, D. A. Kann18, M. Kennedy57, S. Kim6; 58, S. Klose59, E. C. Kool22, R. Kotak51, H. Kuncarayakti51; 60, G. P. Lamb33, G. Leloudas61, A. J. Levan26; 46, F. Longo62, T. B. Lowe19, J. D. Lyman26, E. Magnier19, K. Maguire63, E.