Atti Del Museo Civico Di Storia Naturale Di Trieste

Total Page:16

File Type:pdf, Size:1020Kb

Atti Del Museo Civico Di Storia Naturale Di Trieste ISSN: 0335–1576 ATTI DEL MUSEO CIVICO DI STORIA NATURALE DI TRIESTE Supplemento al VOL. 53 – 2006 TRIESTE 2008 Atti Mus. Civ. Stor. Nat. Trieste Suppl. al 53 2008 3-12 novembre 2008 ISSN: 0335–1576 FOSSILI CRANIALI E MANDIBOLARI DI URSUS DA GROTTE DEL VENETO (ITALIA SETTENTRIONALE) NUOVE OSSERVAZIONI SUL QUADRO EVOLUTIVO DEGLI ORSI ITALIANI SANTI GIUSEPPE1 & ROSSI MARIO2 1 Dipartimento di Scienze della Terra, Università di Pavia, Via Ferrata 1, I–27100 Pavia (Italia): [email protected] 2 Museo Civico di Storia Naturale – Lungadige di Porta Vittoria 9, I–37127 Verona (Italia): [email protected] Abstract – Cranial and mandibular fossils of Ursus from caves of the Veneto region (North Italy). New observations on the evolutionary frame of the Italian bears. Caves of the Veneto region (North Italy) the Grotta del Ceré and Covoli di Velo (Verona province), are rich in bear’s fossils useful in the phyletic picture in particular. Considerations on a possible distinction of the two species (deningeri/spelaeus) and new morphological and morphometrical data mainly concerning the mandibular and dental (P4 e M1) remains, have been elaborated. The Ursus gr. deningeri–spelaeus from Grotta del Ceré should be Middle Pleistocene in age (proviously dated Upper Pleistocene), while fossils from Covoli di Velo are ascribed to the Late Pleistocene. Key word: Ursus gr. deningeri–spelaeus, mandibles, dentition, phylogenetic degree, Pleistocene, Northern Italy Riassunto – Sulla base di nuovi dati morfologici e morfometrici di resti di mandibole e denti (P4 e M1) attribuiti ad Ursus gr., deningeri–spelaeus raccolti nella Grotta del Cerè e ai Covoli di Velo (Veneto, Italia Settentrionale), sono proposte nuove considerazioni sul livello filetico raggiunto da questi orsi in questa parte dell’Italia. I fossili diU. deningeri (unicamente dalla Grotta del Cerè) avrebbero un’età riferita al Pleistocene medio, mentre quelli dai Covoli di Velo, al Pleistocene superiore. Inoltre, è fatto cenno al problema sulla possibile distinzione delle due specie di orso delle caverne: U. deningeri Von Reichenau, 1906 e U. spelaeus Rosenmüller, 1794. Parole chiave: Ursus gr. deningeri–spelaeus, mandibole, dentizione, grado filogenetico, Pleistocene, Italia Settentrionale 1. – Introduzione Le grotte del Veneto (Italia Settentrionale) (Fig. 1) hanno fornito una notevole quantità di resti di orso delle caverne (Ursus gr. deningeri–spelaeus) che sembrano coprire l’intero cammino evolutivo di questo plantigrado, dalle forme più antiche (U. deningeri Von Reichenau, 1906) a quelle più moderne (U. spelaeus Rosenmüller, 1794). Particolare interesse in questo senso rivestono le grotte del Cerè (Rossi, Santi, 2005) e dei Covoli di Velo (Zorzin et al., 2005) entrambe in provincia di Verona (Bon et al., 1991). Nella prima sono stati ritrovati diversi resti appartenenti alle tre specie tipiche del Quaternario europeo, U. deningeri, U. spelaeus ed U. arctos Linneo, 1758, mentre dalla seconda provengono abbondanti e ben conservati fossili di U. spelaeus del Pleistocene superiore, appartenenti quindi alle forme più evolute di questa specie. I reperti consentono di poter approfondire il quadro evolutivo disegnato dagli orsi “italiani”. 2. – Ursus deningeri Von Reichenau, 1906 (Fig. 2) A questa specie appartengono pochi resti mandibolari, alcuni denti isolati, tre crani, di cui uno fortemente deformato in corrispondenza delle orbite in seguito ai processi post mortem e diversi carpali e tarsali, quest’ultimi ancora in studio. 4 SANTI GIUSEPPE & ROSSI MARIO Fig. 1 – Posizione geografica delle principali grotte distribuite nel Veneto. Fig. 1 – Geographical position of the main caves located in the Veneto region (North Italy). Tutto il materiale proviene dalla Grotta del Cerè. Le mandibole sono caratterizzate da dimensioni molto piccole (Fig. 3), corrispondenti a quelle di esemplari medio–grandi di orso bruno. Rispetto alle forme “antiche” di questa specie (sensu Torres, 1988b), dal punto di vista morfologico questi reperti presentano però un maggior innalzamento del condilo e del processo angolare e soprattutto un bordo posteriore del ramo ascendente retto e non concavo, caratteri questi indicati da Torres (1988b) come tipici delle forme “moderne”, vicine alla transizione U. deningeri–U. spelaeus. La dentizione denota caratteri primitivi, particolarmente in P4 ed in M1. Il premolare è caratterizzato, infatti, dalla presenza del solo protoconide e di due cuspidi accessorie, appena accennate, una in corrispondenza del vertice anteriore della corona e la seconda (presente non i tutti i fossili) a ridosso del protoconide. Complessivamente i denti presentano notevoli somiglianze con quelli provenienti dalla Grotte de Fées ed appartenenti ad U. deningeri (Ballesio et al., 2003). Facendo riferimento ai morfotipi di Rabeder (1999), i reperti esaminati corrispondono al morfotipo B1. Il primo molare inferiore è caratterizzato da un’accentuata convergenza delle cuspidi, condizione questa tipica delle forme più primitive, ed un entoconide che OSSERVAZIONI SU FOSSILI DI URSUS DA GROTTE DEL VENETO, etc. 5 Fig. 2 – Ursus deningeri Von Reichenau, 1906. Grotta del Cerè (Verona). A. Cranio (Campione V 161), norma laterale sinistra, B. Mandibola destra (Campione V 4886), norma labiale. Entrambi i fossili sono custoditi presso il Museo Civico di Storia Naturale di Verona. Le parti contrassegnate con i numeri sono quelle che meglio identificano la specie. Per spiegazioni vedi testo. Fig. 2 – Ursus deningeri Von Reichenau, 1906. Grotta del Cerè (Verona). A. Skull (Specimen V 161), left lateral view, B. Right mandible (Specimen V 4886), labial view. Both fossils are stored into Museo Civico di Storia Naturale in Verona. Numbers sign the mandible parts useful for a identification of the species. Main explications in the text. mostra una cuspide principale preceduta da due cuspidi di dimensioni decrescenti, morfotipo considerato proprio della specie U. deningeri (Shütt, 1968; Bishop, 1982; Torres, 1988a; Argant, 1991, 1995; Grandal d’Anglade, López González, 2004). Dal punto di vista morfometrico (Figg. 4–5), i reperti rientrano completamente (P4) o parzialmente (M1) nel range tipico della specie, evidenziando complessivamente taglie medio–piccole. Nel caso del primo molare, la cui attribuzione è resa sicura dai caratteri morfologici presenti, il fatto che le dimensioni evidenziate dal grafico siano inferiori al range tipico di U. deningeri è molto probabilmente dovuto all’insufficienza di dati disponibili relativi ad altri depositi. 6 SANTI GIUSEPPE & ROSSI MARIO 85 U. arctos (AAVV) 80 U. spelaeus (AAVV) U. spelaeus (Cerè) 75 U. cfr. spelaeus (Cerè) U. deningeri (Cerè) 70 U. cfr. deningeri (Cerè) U. cfr. arctos (Cerè) 65 U. spelaeus (Velo) 60 55 50 45 40 Altezza della mandibola fra M2 e M3 35 65 70 75 80 85 90 95 100 105 110 115 Lunghezza della fila dentaria Fig. 3 – Relazione fra la “Lunghezza della fila dentaria” e l’“Altezza della mandibola fra 2M ed M3” (in mm) in orsi dalla Grotta del Cerè, Covoli di Velo e da grotte straniere. Fig. 3 – “Lenght of dental row” versus “Height of the mandible between M2 and M3” (in mm) in bears from Grotta del Cerè, Covoli di Velo and different foreigner caves also. 13 12 4 11 10 9 U. spelaeus (AAVV) U. deningeri (AAVV) 8 U. arctos (AAVV) U. arctos (Olocene) U. spelaeus (Cerè) Larghezza assoluta P 7 U. deningeri (Cerè) 6 U. arctos (Cerè) U. spelaeus (Velo) 5 10,5 11,5 12,5 13,5 14,5 15,5 16,5 17,5 18,5 Lunghezza assoluta P4 Fig. 4 – Relazione fra la “Lunghezza assoluta di P4” e la “Larghezza assoluta di P4 “(in mm) in orsi dalla Grotta del Cerè, Covoli di Velo e da grotte straniere. Fig. 4 – “Absolute lenght of P4” versus “Absolute breadth of P4” (in mm) in bears from Grotta del Cerè, Covoli di Velo and different foreigner caves also. OSSERVAZIONI SU FOSSILI DI URSUS DA GROTTE DEL VENETO, etc. 7 18 U. spelaeus (AAVV) 17 U. deningeri (AAVV) U. arctos (AAVV) 1 16 U. arctos (Olocene) U. spelaeus (Cerè) 15 U. deningeri (Cerè) U. arctos (Cerè) 14 U. spelaeus (Velo) 13 12 Larghezza assoluta M 11 10 9 20 22 24 26 28 30 32 Lunghezza assoluta M1 Fig. 5 – Relazione fra la “Lunghezza assoluta di M1” e la “Larghezza assoluta di M1” (in mm) in orsi dalla Grotta del Cerè, Covoli di Velo e da grotte straniere. Fig. 5 – “Aboslute lenght of M1” versus “Absolute breadth of M1” (in mm) in bears from Grotta del Cerè, Covoli di Velo and different foreigner caves also. 3. – Ursus spelaeus Rosenmüller, 1794 (Fig. 6) I resti relativi a questa specie provenienti dalla Grotta del Cerè hanno dimensioni piccole (Fig. 3), ma soprattutto presentano dentizioni con caratteri di arcaicità. L’unico quarto premolare, infatti, ha solo due cuspidi accessorie, seppure ben sviluppate, corrispondente al morfotipo C1 sensu Rabeder (1999). Il primo molare inferiore è caratterizzato da una convergenza delle cuspidi maggiore di quella che identifica i reperti provenienti dai giacimenti più recenti (Grandal d’Anglade, López González, 2004). Le mandibole provenienti dai Covoli di Velo presentano dimensioni (Fig. 3) e caratteri morfologici tipici delle forme più evolute. La dentizione, ancora in studio, fornisce invece, ad una prima analisi, elementi più contraddittori. Il quarto premolare, infatti, non presenta una particolare complicazione della superficie dentaria, simile a quella visibile nelle forme più evolute (Rabeder, 1999), mentre il primo molare ha una superficie triturante decisamente complessa ed un grado di convergenza delle cuspidi paragonabile a quella tipica delle forme più recenti (Grandal d’Anglade, López González, 2004). 4. – Discussione e conclusioni I fossili provenienti dalla Grotta del Cerè e dai Covoli di Velo sembrano rappresentare l’intera linea evolutiva dell’orso delle caverne: dalla prima, infatti, 8 SANTI GIUSEPPE & ROSSI MARIO Fig. 6 – Ursus spelaeus Rosenmüller, 1794. Covoli di Velo (Verona). A. Cranio (Campione V 9894), norma laterale destra, B. Mandibola sinistra (Campione 14.56928), norma linguale. Entrambi i fossili sono custoditi presso il Museo Civico di Storia Naturale di Verona. Fig. 6 – Ursus spelaeus Rosenmüller, 1794. Covoli di Velo (Verona). A. Skull (Specimen V 9894), right lateral view, B.
Recommended publications
  • Wattled Plovers Arrived to Breed at Carolina During September, Left During March (Little 1967), and the Timing Suggests That They Move to Zimbabwe
    400 Charadriidae: plovers be caused by seasonal changes in habitat quality, mostly the availability of short-grass habitat near water. Cold winters at high altitudes with heavy frosts may reduce prey levels to the extent that birds are forced to move. Numbers in Zimbabwe increase during the period late-March to August (Tree 1977). Wattled Plovers arrived to breed at Carolina during September, left during March (Little 1967), and the timing suggests that they move to Zimbabwe. In Zambia there is consider- able movement out of the country during the rains when habitat becomes flooded and overgrown, and it is likely to move to the Caprivi Strip and Okavango Delta (Tree 1969; Aspinwall 1986). Little (1967) found that birds were already in pairs when they arrived and that these pairs were philopatric. Breeding: The season is September–January, with most breeding recorded October–November. The nest site is usually in open grassland, with good visibility. It is highly territorial during the breeding season, excluding conspecifics and many other bird species from its territory which can be large (3–6 ha) Wattled Plover and does not necessarily include the nest site (Little 1967). Lelkiewiet Interspecific relationships: It does not breed within the habitat of any other plover and does not appear to compete Vanellus senegallus with them. It sometimes feeds in loose association with Black- smith V. armatus, Crowned V. coronatus, Blackwinged V. The Wattled Plover occurs widely in sub-Saharan Africa, but melanopterus and Lesser Blackwinged V. lugubris Plovers, is absent from tropical rainforest and arid regions in the north- and Temminck’s Courser Cursorius temminckii (Ward east and southwest.
    [Show full text]
  • PDF Viewing Archiving 300
    Bull. Soc. belge Géol., Paléont., Hydrol. T. 79 fasc. 2 pp. 167-174 Bruxelles 1970 Bull. Belg. Ver. Geol., Paleont., Hydrol. V. 79 deel 2 blz. 167-174 Brussel 1970 MAMMALS OF THE CRAG AND FOREST BED B. McW1LLIAMs SuMMARY. In the Red and Norwich Crags mastodonts gradually give way to the southern elephant, large caballine horses and deer of the Euctenoceros group become common. Large rodents are represented by Castor, Trogontherium and rarely Hystrix; small forms include species of Mimomys. Carnivores include hyaena, sabre-toothed cat, leopard, polecat, otter, bear, seal and walrus. The Cromer Forest Bed Series had steppe and forest forms of the southern elephant and the mastodont has been lost. Severa! species of giant deer become widespread and among the many rodents are a. number of voles which develop rootless cheek teeth. The mole is common. Warmth indicators include a monkey, and more commonly hippopotamus. Possible indicators of cold include glutton and musk ox. Rhinoceros is widespread, and it is a time of rapid evolution for the elk. Carnivores include hyaena, bear, glutton, polecat, marten, wold and seal. The interpretation of mammalian finds from is represented by bones which resemble the the Crags and Forest Bed is not an easy mole remains but are about twice their size. matter. A proportion of the remains have been derived from eatlier horizons, others are Order Primates discovered loose in modern coastal deposits, and early collectors often kept inadequate The order is represented at this period m records. Owing to the uncertain processes of England by a single record of Macaca sp., the fossilisation or inadequate collecting there are distal end of a teft humerus from a sandy many gaps in our knowledge of the mammal­ horizon of the Cromerian at West Runton, ian faunas of these times.
    [Show full text]
  • Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
    Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs.
    [Show full text]
  • Cave Bear Ecology and Interactions With
    CAVEBEAR ECOLOGYAND INTERACTIONSWITH PLEISTOCENE HUMANS MARYC. STINER, Department of Anthropology,Building 30, Universityof Arizona,Tucson, AZ 85721, USA,email: [email protected] Abstract:Human ancestors (Homo spp.), cave bears(Ursus deningeri, U. spelaeus), andbrown bears (U. arctos) have coexisted in Eurasiafor at least one million years, andbear remains and Paleolithic artifacts frequently are found in the same caves. The prevalenceof cave bearbones in some sites is especiallystriking, as thesebears were exceptionallylarge relative to archaichumans. Do artifact-bearassociations in cave depositsindicate predation on cave bearsby earlyhuman hunters, or do they testify simply to earlyhumans' and cave bears'common interest in naturalshelters, occupied on different schedules?Answering these and other questions aboutthe circumstancesof human-cave bear associationsis made possible in partby expectations developedfrom research on modem bearecology, time-scaledfor paleontologicand archaeologic applications. Here I review availableknowledge on Paleolithichuman-bear relations with a special focus on cave bears(Middle Pleistocene U. deningeri)from YarimburgazCave, Turkey.Multiple lines of evidence show thatcave bearand human use of caves were temporallyindependent events; the apparentspatial associations between human artifacts andcave bearbones areexplained principally by slow sedimentationrates relative to the pace of biogenicaccumulation and bears' bed preparationhabits. Hibernation-linkedbehaviors and population characteristics of cave
    [Show full text]
  • MAY^JUNE 1976 VOLUME 4, NUMBER 3 Scientific Notes And
    3 rpRvw\i*J 4iV V .JLU* A ' MAY^JUNE 1976 VOLUME 4, NUMBER 3 Scientific notes and summaries of investigations in geology, hydrology, and related fields OF THE INTERIOR UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director For sale by the Superintendent of Documents, U.S. Government The Journal of Research is Correspondence and inquiries concerning the Printing Office, Washington, DC published every 2 months by the Journal (other than subscription inquiries and 20402. Annual subscription rate U.S. Geological Survey. It con­ address changes) should be directed to Anna M. $18.90 (plus $4.75 for foreign tains papers by members of the Orellana, Managing Editor, Journal of Research, mailing). Single copy $3.15. Geological Survey and their pro­ Publications Division, U.S. Geological Survey, Make checks or money orders fessional colleagues on geologic, 321 National Center, Reston, VA 22092. payable to the Superintendent of hydrologic, topographic, and Documents. other scientific and technical Papers for the Journal should be submitted Send all subscription inquiries subjects. through regular Division publication channels. and address changes to the Su­ perintendent of Documents at the above address. Purchase orders should not be The Secretary of the Interior has determined that the publication of this periodi­ sent to the U.S. Geological Sur­ cal is necessary in the transaction of the public business required by law of this vey library. Department. Use of funds for printing this periodical has been approved by the Library of Congress Catalog- Director of the Office of Management and Budget through June 30, 1980.
    [Show full text]
  • Spur-Winged Lapwing Vanellus Spinosus
    Spur-winged Lapwing Vanellus spinosus Class: Aves Order: Charadriiformes Family: Charadriidae Characteristics: Also known as the spur-winged plover (not to be confused with the recently renamed masked lapwing of Australasia), this lapwing is a wading bird identified by their striking white cheek feathers, black head cap, brown wings against a black body and long black legs. Behavior: In Africa, lapwings don’t travel far outside their home area but merely make short movements to find wetter areas of their habitats. They spend Range & Habitat: their time searching the marshy ground for small invertebrates. Marshes and wetland habitats of central Africa Reproduction: Because of their large range, these birds have variable breeding seasons. Spur-winged lapwings nest in solitary monogamous pairs, often with other mixed species bird nesting colonies. The large nesting groups help protect the birds in the colonies against predation. The lapwing pair will build a nest in a scrape on the ground sometimes lined with vegetation. The female lays 2 eggs that are yellow with brownish black mottling. They hatch after a 28-day incubation period and both sexes help feed the young. If they double-clutch, the male tends the older chicks while the female incubates the second brood (Sacramento Zoo). Lifespan: over 15 years in Diet: captivity, up to 15 years in the Wild: Invertebrates wild. Zoo: softbill, feline diet, capelin, mealworms and insectivore diet Special Adaptations: Spur- Conservation: winged lapwings have a unique Spur-winged lapwings are abundant in their range in Africa and as such call that acts as an alert when are listed as Least Concern by IUCN.
    [Show full text]
  • 299947 108 1964.Pdf
    SOCIETAS PRO FAUNA ET FLORA FE.NNICA SOCIETAS PRO FAUNA ET FLORA FENNICA ACTA ZOOLOGICA FENNICA 108 Bjom Kurten: The evolution of the Polar Bear, U rsus maritimus Phipps p- ) A. ~NA ET • .P A .fJl!N'NICA_ HELSINKI-HELSINGFORS 1964 ACTA ZOOLOGICA FENNICA 1-45 vide Acta Zoologica Fennica 45-50. 46-59 vide Acta Zoologica Fennica 60-93. 60. Alex. Luther: Untersuchungen an rhahdocoelen Turbellarien. IX. Zur Kenntnis einiger Typhloplaniden. X. "Ober Astrotorhynchus bifidus (M'Int). 42 S. (1950). 61. T. H. Jilrri: Die Kleinmarlinenbestiinde in ihren Beziehungen zu der Umwelt (Coregonus albula L.). 116 S. (1950). 62. Pontus Palmgren: Die Spinnenfauna Finnlands und Ostfennoskandiens. Ill. Xysticidae und Philodromidae. 43 S. (1950). 63. Sven Nordberg: Researches on the bird fauna of the marine zone in the Aland Archipelago. 62 pp. (1950). 64. Floriano Papil "Ober einige Typhloplaninen (Turbellaria neorhabdocoela). 20 S. (1951). 65. Einari Merikallio: On the numbers of land-birds in Finland. 16 pp. (1951). 66. K. 0. Donner: The visual acuity of some Passerine birds. 40 pp. (1951). 67. Lars von Haartman: Der Trauerfliegenschniipper. II. Populationsprobleme. 60S. (1951). 68. Erie Fabrieius: Zur Ethologie junger Anatiden. 178 S. (1951). 69. Tor G. Karling: Studien iiber Kalyptorhynchien (Turbellaria). IV. Einige Euka­ lyptorhynchia. 49 S. (1952). 70. L. Benick t: Pilzkiifer und Kliferpilze. Okologische und statistische Untersuchun­ gen. 250 S. (1952). 71. Bo-Jungar Wikgren: Osmotic regulation in some aquatic animals with special reference to the influence of temperature. 102 pp. (1953). 72. Wollram Noodt: Entromostracen aus dem Litoral und dem Kiistengrundwasser des Finnischen Meerbusens. 12 S. (1953). 73.
    [Show full text]
  • (Squamata: Mosasauridae) from the Late Cretaceous Of
    C. R. Palevol 14 (2015) 483–493 Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) An halisaurine (Squamata: Mosasauridae) from the Late Cretaceous of Patagonia, with a preserved tympanic disc: Insights into the mosasaur middle ear Un halisauriné (Squamata : Mosasauridae) du Crétacé supérieur de Patagonie, à disque tympanique conservé : un aperc¸ u de l’oreille moyenne des mosasaures a,∗ b Marta S. Fernández , Marianella Talevi a CONICET - División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina b CONICET - Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Isidro Lobo y Belgrano, 8332 General Roca, Río Negro, Argentina a b s t r a c t a r t i c l e i n f o Article history: Halisaurinae is a subfamily of enigmatic, small- to medium-sized mosasauroids, which Received 15 September 2014 retain a mosaic of primitive and derived features. The first record of a South American Hal- Accepted after revision 13 May 2015 isaurus with precise stratigraphic information includes a quadrate carrying a tympanic disc together with twelve vertebrae, collected in the Late Maastrichtian of Jagüel Formation Handled by Nathalie Bardet in northern Patagonia (Argentina). The preservation of a tympanic disc allows exploring and discussing the mechanisms of sound transmission in these mosasauroids. The loca- Keywords: tion of the tympanic disc resembles that one formed by the extracolumella of aquatic Halisaurus turtles and at least one extant lizard. Based on morphological comparison of the middle Patagonia ear we discuss previous hypotheses on the modification of the tympanic middle ear system Late Maastrichtian of mosasauroids for underwater hearing, in a manner similar to that observed in aquatic Cretaceous turtles.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • Appendix A. Supplementary Material
    Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma.
    [Show full text]
  • Download Full Article in PDF Format
    comptes rendus palevol 2021 20 20 iles — Jean- pt Cl re au d d n e a R s a n g a e i — b i h P p a l a m e a o f b o i o y l h o p g a y r g a o n e d g p o i a l b a o e DIRECTEURS DE LA PUBLICATION / PUBLICATION DIRECTORS : Bruno David, Président du Muséum national d’Histoire naturelle Étienne Ghys, Secrétaire perpétuel de l’Académie des sciences RÉDACTEURS EN CHEF / EDITORS-IN-CHIEF : Michel Laurin (CNRS), Philippe Taquet (Académie des sciences) ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Adenise Lopes (Académie des sciences ; [email protected]) MISE EN PAGE / PAGE LAYOUT : Fariza Sissi (Muséum national d’Histoire naturelle ; [email protected]) RÉVISIONS LINGUISTIQUES DES TEXTES ANGLAIS / ENGLISH LANGUAGE REVISIONS : Kevin Padian (University of California at Berkeley) RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS : Micropaléontologie/Micropalaeontology Maria Rose Petrizzo (Università di Milano, Milano) Paléobotanique/Palaeobotany Cyrille Prestianni (Royal Belgian Institute of Natural Sciences, Brussels) Métazoaires/Metazoa Annalisa Ferretti (Università di Modena e Reggio Emilia, Modena) Paléoichthyologie/Palaeoichthyology Philippe Janvier (Muséum national d’Histoire naturelle, Académie des sciences, Paris) Amniotes du Mésozoïque/Mesozoic amniotes Hans-Dieter Sues (Smithsonian National Museum of Natural History, Washington) Tortues/Turtles Juliana Sterli (CONICET, Museo Paleontológico Egidio Feruglio, Trelew) Lépidosauromorphes/Lepidosauromorphs Hussam Zaher (Universidade de São Paulo) Oiseaux/Birds Eric Buffetaut (CNRS, École Normale Supérieure, Paris) Paléomammalogie (mammifères de moyenne et grande taille)/Palaeomammalogy (large and mid-sized mammals) Lorenzo Rook* (Università degli Studi di Firenze, Firenze) Paléomammalogie (petits mammifères sauf Euarchontoglires)/Palaeomammalogy (small mammals except for Euarchontoglires) Robert Asher (Cambridge University, Cambridge) Paléomammalogie (Euarchontoglires)/Palaeomammalogy (Euarchontoglires) K.
    [Show full text]
  • Final Copy 2019 10 01 Herrera
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.
    [Show full text]