Deformation Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rational Curves on Hypersurfaces
Rational curves on hypersurfaces ||||||{ Lecture notes for the II Latin American School of Algebraic Geometry and Applications 1{12 June 2015 Cabo Frio, Brazil ||||||{ Olivier Debarre January 4, 2016 Contents 1 Projective spaces and Grassmannians 3 1.1 Projective spaces . 3 1.2 The Euler sequence . 4 1.3 Grassmannians . 4 1.4 Linear spaces contained in a subscheme of P(V )................ 5 2 Projective lines contained in a hypersurface 9 2.1 Local study of F (X) ............................... 9 2.2 Schubert calculus . 10 2.3 Projective lines contained in a hypersurface . 12 2.3.1 Existence of lines in a hypersurface . 12 2.3.2 Lines through a point . 16 2.3.3 Free lines . 17 2.4 Projective lines contained in a quadric hypersurface . 18 2.5 Projective lines contained in a cubic hypersurface . 19 2.5.1 Lines on a smooth cubic surface . 20 2.5.2 Lines on a smooth cubic fourfold . 22 2.6 Cubic hypersurfaces over finite fields . 25 3 Conics and curves of higher degrees 29 3.1 Conics in the projective space . 29 3.2 Conics contained in a hypersurface . 30 3.2.1 Conics contained in a quadric hypersurface . 32 3.2.2 Conics contained in a cubic hypersurface . 33 3.3 Rational curves of higher degrees . 35 4 Varieties covered by rational curves 39 4.1 Uniruled and separably uniruled varieties . 39 4.2 Free rational curves and separably uniruled varieties . 41 4.3 Minimal free rational curves . 44 Abstract In the past few decades, it has become more and more obvious that rational curves are the primary player in the study of the birational geometry of projective varieties. -
The Jouanolou-Thomason Homotopy Lemma
The Jouanolou-Thomason homotopy lemma Aravind Asok February 9, 2009 1 Introduction The goal of this note is to prove what is now known as the Jouanolou-Thomason homotopy lemma or simply \Jouanolou's trick." Our main reason for discussing this here is that i) most statements (that I have seen) assume unncessary quasi-projectivity hypotheses, and ii) most applications of the result that I know (e.g., in homotopy K-theory) appeal to the result as merely a \black box," while the proof indicates that the construction is quite geometric and relatively explicit. For simplicity, throughout the word scheme means separated Noetherian scheme. Theorem 1.1 (Jouanolou-Thomason homotopy lemma). Given a smooth scheme X over a regular Noetherian base ring k, there exists a pair (X;~ π), where X~ is an affine scheme, smooth over k, and π : X~ ! X is a Zariski locally trivial smooth morphism with fibers isomorphic to affine spaces. 1 Remark 1.2. In terms of an A -homotopy category of smooth schemes over k (e.g., H(k) or H´et(k); see [MV99, x3]), the map π is an A1-weak equivalence (use [MV99, x3 Example 2.4]. Thus, up to A1-weak equivalence, any smooth k-scheme is an affine scheme smooth over k. 2 An explicit algebraic form Let An denote affine space over Spec Z. Let An n 0 denote the scheme quasi-affine and smooth over 2m Spec Z obtained by removing the fiber over 0. Let Q2m−1 denote the closed subscheme of A (with coordinates x1; : : : ; x2m) defined by the equation X xixm+i = 1: i Consider the following simple situation. -
Vector Bundles As Generators on Schemes and Stacks
Vector Bundles as Generators on Schemes and Stacks Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Philipp Gross aus D¨usseldorf D¨usseldorf,Mai 2010 Aus dem Mathematischen Institut der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Stefan Schr¨oer Koreferent: Prof. Dr. Holger Reich Acknowledgments The work on this dissertation has been one of the most significant academic challenges I have ever had to face. This study would not have been completed without the support, patience and guidance of the following people. It is to them that I owe my deepest gratitude. I am indebted to my advisor Stefan Schr¨oerfor his encouragement to pursue this project. He taught me algebraic geometry and how to write academic papers, made me a better mathematician, brought out the good ideas in me, and gave me the opportunity to attend many conferences and schools in Europe. I also thank Holger Reich, not only for agreeing to review the dissertation and to sit on my committee, but also for showing an interest in my research. Next, I thank the members of the local algebraic geometry research group for their time, energy and for the many inspiring discussions: Christian Liedtke, Sasa Novakovic, Holger Partsch and Felix Sch¨uller.I have had the pleasure of learning from them in many other ways as well. A special thanks goes to Holger for being a friend, helping me complete the writing of this dissertation as well as the challenging research that lies behind it. -
Twenty-Four Hours of Local Cohomology This Page Intentionally Left Blank Twenty-Four Hours of Local Cohomology
http://dx.doi.org/10.1090/gsm/087 Twenty-Four Hours of Local Cohomology This page intentionally left blank Twenty-Four Hours of Local Cohomology Srikanth B. Iyengar Graham J. Leuschke Anton Leykln Claudia Miller Ezra Miller Anurag K. Singh Uli Walther Graduate Studies in Mathematics Volume 87 |p^S|\| American Mathematical Society %\yyyw^/? Providence, Rhode Island Editorial Board David Cox (Chair) Walter Craig N. V.Ivanov Steven G. Krantz The book is an outgrowth of the 2005 AMS-IMS-SIAM Joint Summer Research Con• ference on "Local Cohomology and Applications" held at Snowbird, Utah, June 20-30, 2005, with support from the National Science Foundation, grant DMS-9973450. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. 2000 Mathematics Subject Classification. Primary 13A35, 13D45, 13H10, 13N10, 14B15; Secondary 13H05, 13P10, 13F55, 14F40, 55N30. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-87 Library of Congress Cataloging-in-Publication Data Twenty-four hours of local cohomology / Srikanth Iyengar.. [et al.]. p. cm. — (Graduate studies in mathematics, ISSN 1065-7339 ; v. 87) Includes bibliographical references and index. ISBN 978-0-8218-4126-6 (alk. paper) 1. Sheaf theory. 2. Algebra, Homological. 3. Group theory. 4. Cohomology operations. I. Iyengar, Srikanth, 1970- II. Title: 24 hours of local cohomology. QA612.36.T94 2007 514/.23—dc22 2007060786 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. -
NOTES on CARTIER and WEIL DIVISORS Recall: Definition 0.1. A
NOTES ON CARTIER AND WEIL DIVISORS AKHIL MATHEW Abstract. These are notes on divisors from Ravi Vakil's book [2] on scheme theory that I prepared for the Foundations of Algebraic Geometry seminar at Harvard. Most of it is a rewrite of chapter 15 in Vakil's book, and the originality of these notes lies in the mistakes. I learned some of this from [1] though. Recall: Definition 0.1. A line bundle on a ringed space X (e.g. a scheme) is a locally free sheaf of rank one. The group of isomorphism classes of line bundles is called the Picard group and is denoted Pic(X). Here is a standard source of line bundles. 1. The twisting sheaf 1.1. Twisting in general. Let R be a graded ring, R = R0 ⊕ R1 ⊕ ::: . We have discussed the construction of the scheme ProjR. Let us now briefly explain the following additional construction (which will be covered in more detail tomorrow). L Let M = Mn be a graded R-module. Definition 1.1. We define the sheaf Mf on ProjR as follows. On the basic open set D(f) = SpecR(f) ⊂ ProjR, we consider the sheaf associated to the R(f)-module M(f). It can be checked easily that these sheaves glue on D(f) \ D(g) = D(fg) and become a quasi-coherent sheaf Mf on ProjR. Clearly, the association M ! Mf is a functor from graded R-modules to quasi- coherent sheaves on ProjR. (For R reasonable, it is in fact essentially an equiva- lence, though we shall not need this.) We now set a bit of notation. -
Characterizing Gorenstein Rings Using Contracting Endomorphisms
CHARACTERIZING GORENSTEIN RINGS USING CONTRACTING ENDOMORPHISMS BRITTNEY FALAHOLA AND THOMAS MARLEY Dedicated to Craig Huneke on the occasion of his 65th birthday. Abstract. We prove several characterizations of Gorenstein rings in terms of vanishings of derived functors of certain modules or complexes whose scalars are restricted via contracting endomorphisms. These results can be viewed as analogues of results of Kunz (in the case of the Frobenius) and Avramov- Hochster-Iyengar-Yao (in the case of general contracting endomorphisms). 1. Introduction In 1969 Kunz [17] proved that a commutative Noetherian local ring of prime char- acteristic is regular if and only if some (equivalently, every) power of the Frobenius endomorphism is flat. Subsequently, the Frobenius map has been employed to great effect to study homological properties of commutative Noetherian local rings; see [20], [10], [23], [16], [4] and [3], for example. In this paper, we explore characteriza- tions of Gorenstein rings using the Frobenius map, or more generally, contracting endomorphisms. Results of this type have been obtained by Iyengar and Sather- Wagstaff [14], Goto [9], Rahmati [21], Marley [18], and others. Our primary goal is to obtain characterizations for a local ring to be Gorenstein in terms of one or more vanishings of derived functors in which one of the modules is viewed as an R-module by means of a contracting endomorphism (i.e., via restriction of scalars). A prototype of a result of this kind for regularity is given by Theorem 1.1 below. Let R be a commutative Noetherian local ring with maximal ideal m and φ : R ! R an endomorphism which is contracting, i.e., φi(m) ⊆ m2 for some i. -
Cohen-Macaulay Modules Over Gorenstein Local Rings
COHEN{MACAULAY MODULES OVER GORENSTEIN LOCAL RINGS RYO TAKAHASHI Contents Introduction 1 1. Associated primes 1 2. Depth 3 3. Krull dimension 6 4. Cohen{Macaulay rings and Gorenstein rings 9 Appendix A. Proof of Theorem 1.12 11 Appendix B. Proof of Theorem 4.8 13 References 17 Introduction Goal. The structure theorem of (maximal) Cohen{Macaulay modules over commutative Gorenstein local rings Throughout. • (R : a commutative Noetherian ring with 1 A = k[[X; Y ]]=(XY ) • k : a field B = k[[X; Y ]]=(X2;XY ) • x := X; y := Y 1. Associated primes Def 1.1. Let I ( R be an ideal of R (1) I is a maximal ideal if there exists no ideal J of R with I ( J ( R (2) I is a prime ideal if (ab 2 I ) a 2 I or b 2 I) (3) Spec R := fPrime ideals of Rg Ex 1.2. Spec A = f(x); (y); (x; y)g; Spec B = f(x); (x; y)g Prop 1.3. I ⊆ R an ideal (1) I is prime iff R=I is an integral domain (2) I is maximal iff R=I is a field 2010 Mathematics Subject Classification. 13C14, 13C15, 13D07, 13H10. Key words and phrases. Associated prime, Cohen{Macaulay module, Cohen{Macaulay ring, Ext module, Gorenstein ring, Krull dimension. 1 2 RYO TAKAHASHI (3) Every maximal ideal is prime Throughout the rest of this section, let M be an R-module. Def 1.4. p 2 Spec R is an associated prime of M if 9 x 2 M s.t p = ann(x) AssR M := fAssociated primes of Mg Ex 1.5. -
Program of the Sessions San Diego, California, January 9–12, 2013
Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes. -
Graduate Texts in Mathematics 52
Graduate Texts in Mathematics 52 Editorial Board S. Axler F.W. Gehring K.A. Ribet Graduate Texts in Mathematics most recent titles in the GTM series 129 FULTON/HARRIS. Representation Theory: 159 CONWAY. Functions of One A First Course. Complex Variable II. Readings in Mathematics 160 LANG. Differential and Riemannian 130 DODSON/PoSTON. Tensor Geometry. Manifolds. 131 LAM. A First Course in Noncommutative 161 BORWEINIERDEL Yl. Polynomials and Rings. Polynomial Inequalities. 132 BEARDON. Iteration of Rational Functions. 162 ALPERIN/BELL. Groups and 133 HARRIS. Algebraic Geometry: A First Representations. Course. 163 DIXON/MORTIMER. Permutation 134 RoMAN. Coding and Information Theory. Groups. 135 ROMAN. Advanced Linear Algebra. 164 NATHANSON. Additive Number Theory: 136 ADKINS/WEINTRAUB. Algebra: An The Classical Bases. Approach via Module Theory. 165 NATHANSON. Additive Number Theory: 137 AxLERIBouRDoN/RAMEY. Harmonic Inverse Problems and the Geometry of Function Theory. Sumsets. 138 CoHEN. A Course in Computational 166 SHARPE. Differential Geometry: Cartan's Algebraic Number Theory. Generalization of Klein's Erlangen 139 BREDON. Topology and Geometry. Program. 140 AUBIN. Optima and Equilibria. An 167 MORANDI. Field and Galois Theory. Introduction to Nonlinear Analysis. 168 EWALD. Combinatorial Convexity and 141 BECKERIWEISPFENNING/KREDEL. Grtibner Algebraic Geometry. Ba~es. A Computational Approach to 169 BHATIA. Matrix Analysis. Commutative Algebra. 170 BREDON. Sheaf Theory. 2nd ed. 142 LANG. Real and Functional Analysis. 171 PETERSEN. Riemannian Geometry. 3rd ed. 172 REMMERT. Classical Topics in Complex 143 DOOB. Measure Theory. Function Theory. 144 DENNISIFARB. Noncommutative 173 DIESTEL. Graph Theory. Algebra. 174 BRIDGES. Foundations of Real and 145 VICK. Homology Theory. An Abstract Analysis. Introduction to Algebraic Topology. -
Moduli of Curves 1
THE MODULI SPACE OF CURVES In this section, we will give a sketch of the construction of the moduli space Mg of curves of genus g and the closely related moduli space Mg;n of n-pointed curves of genus g using two different approaches. Throughout this section we always assume that 2g − 2 + n > 0. In the first approach, we will embed curves in a projective space PN using a sufficiently high power n of their dualizing sheaf. Then a locus in the Hilbert scheme parameterizes n-canonically embedded curves of genus g. The automorphism group PGL(N + 1) acts on the Hilbert scheme. Using Mumford's Geometric Invariant Theory, one can take the quotient of the appropriate locus in the Hilbert scheme by the action of PGL(N + 1) to construct Mg. In the second approach, one first constructs the moduli space of curves as a Deligne-Mumford stack. One then exhibits an ample line bundle on the coarse moduli scheme of this stack. 1. Basics about curves We begin by collecting basic facts and definitions about stable curves. A curve singularity (C; p) is called a node if locally analytically the singularity is isomophic to the plane curve singularity xy = 0. A curve C is called at-worst-nodal or more simply nodal if the only singularities of C are nodes. The dualizing sheaf !C of an at-worst-nodal curve C is an invertible sheaf that has a simple description. Let ν : Cν ! C be the nor- malization of the curve C. Let p1; : : : ; pδ be the nodes of C and let −1 fri; sig = ν (pi). -
Arxiv:1802.08409V2 [Math.AC]
CORRESPONDENCE BETWEEN TRACE IDEALS AND BIRATIONAL EXTENSIONS WITH APPLICATION TO THE ANALYSIS OF THE GORENSTEIN PROPERTY OF RINGS SHIRO GOTO, RYOTARO ISOBE, AND SHINYA KUMASHIRO Abstract. Over an arbitrary commutative ring, correspondences among three sets, the set of trace ideals, the set of stable ideals, and the set of birational extensions of the base ring, are studied. The correspondences are well-behaved, if the base ring is a Gorenstein ring of dimension one. It is shown that with one extremal exception, the surjectivity of one of the correspondences characterizes the Gorenstein property of the base ring, provided it is a Cohen-Macaulay local ring of dimension one. Over a commutative Noetherian ring, a characterization of modules in which every submodule is a trace module is given. The notion of anti-stable rings is introduced, exploring their basic properties. Contents 1. Introduction 1 2. Correspondence between trace ideals and birational extensionsofthebasering 5 3. The case where R is a Gorenstein ring of dimension one 9 4. Modules in which every submodule is a trace module 13 5. Surjectivity of the correspondence ρ in dimension one 17 6. Anti-stable rings 21 References 25 1. Introduction This paper aims to explore the structure of (not necessarily Noetherian) commutative arXiv:1802.08409v2 [math.AC] 7 Dec 2018 rings in connection with their trace ideals. Let R be a commutative ring. For R-modules M and X, let τM,X : HomR(M,X) ⊗R M → X denote the R-linear map defined by τM,X (f ⊗ m) = f(m) for all f ∈ HomR(M,X) and m ∈ M. -
Commutative Algebra
Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .