“A World of Pollinators” Poster
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distribution and Habitat of the Invasive Giant Day Gecko Phelsuma Grandis Gray 1870
Phelsuma 22 (2014); 13-28 Distribution and habitat of the invasive giant day gecko Phelsuma grandis Gray 1870 (Sauria: Gekkonidae) in Reunion Island, and conservation implication Mickaël Sanchez1,* and Jean-Michel Probst1,2 1 Nature Océan Indien, 6, Lotissement les Magnolias, Rivière des Roches, 97470 Saint-Benoît, La Réunion, France 2 Nature et Patrimoine, 2, Allée Mangaron, Dos d’Ane, 97419 La Possession, La Réunion, France * Corresponding author; e-mail: [email protected] Abstract. The giant day gecko Phelsuma grandis, endemic to Madagascar, was introduced to Reunion Island (Indian Ocean) in the mid-1990s. No studies have been conducted so far to define its precise distribution and habitat. To fill the knowledge gap about this invasive species, we compiled available data and performed field work during 2007-2014. We detected 13 distinct populations of P. grandis, occurring mainly in the northern part of Reunion Island and on the west coast. This gecko inhabits human disturbed areas (gardens, urban parks, bamboos, orchards, coconuts, and banana plantation) and secondary habitats (shrubby savanna, and secondary dry woodlands, secondary dry and wet thickets). Its distribution strongly suggests that saltatory dispersal (through deliberate and/or accidental transport) and natural colonization are the mechanisms of spreading through Reunion Island. All our data in combination with both P. grandis ecology and native environmental range suggested that this gecko may colonize native forest, and constitutes a potential important threat to the native biodiversity of Reunion Island (arthropods and lizards). Key words. Phelsuma grandis, Reunion Island, distribution, invasive species, conservation. Introduction Day geckos of the genus Phelsuma are distributed in the western Indian Ocean (Austin et al. -
The Gold Dust Or Flat Tailed Day Gecko)
British Herpetological Society Bulletin, No. 57, 1996 NOTES ON KEEPING AND BREEDING PHELSUMA LATICAUDA (THE GOLD DUST OR FLAT TAILED DAY GECKO) RICHARD HARLING 38 Twin Oaks Close, Broadstone, Dorset, BH18 8JF INTRODUCTION Gold Dust Geckoes are from the Comoros islands off Madagascar, as well as being introduced to other places including Madagascar itself. They are tropical lizards with an insectivorous diet, supplemented by fruit. During Easter 1995, I obtained three day geckos from a reptile shop in London. I wanted two females and a male but was unfortunately sent two males and a female - this I suspected quite quickly as the fully grown male would not tolerate one of the "females". "She" has now grown and become as big as him, has obvious femoral pores (always much more obvious that on the female) and is definitely a "him". It is generally recommended that captive-bred reptiles are best as they are tamer and more accustomed to captivity. DESCRIPTION In good light they are like living jewels. They have two horizontal bright red stripes across the top of their fairly blunt snouts up to their beautiful blue almost eye-shadowed eyes which do not have eyelids and are licked clean by their long pink tongue. There is often another red bar just behind the eyes. The posterior dorsal surface of the head and anterior half of the back is powdered with a yellowy-gold. Briefly the back is just green and then there are three bright red, "tear drops" which break up posteriorly into numerous small red spots which spread down the yellowy tail with a hint of green. -
MEET the BUTTERFLIES Identify the Butter Ies You've Seen at Butter Ies
MEET THE BUTTERFLIES Identify the butteries you’ve seen at Butteries LIVE! Learn the scientic, common name and country of origin. Experience the wonderful world of butteries with the help of Butteries LIVE! COMMON MORPHO Morpho peleides Family: Nymphalidae Range: Mexico to Colombia Wingspan: 5-8 in. (12.7 – 20.3 cm.) Fast Fact: Common morphos are attracted to fermenting fruits. WHITE MORPHO Morpho polyphemus Family: Nymphalidae Range: Mexico to Central America Wingspan: 4-4.75 in. (10-12 cm.) Fast Fact: Adult white morphos prefer to feed on rotting fruits or sap from trees. WHITENED BLUEWING Myscelia cyaniris Family: Nymphalidae Range: Mexico, parts of Central and South America Wingspan: 1.3-1.4 in. (3.3-3.6 cm.) Fast Fact: The underside of the whitened bluewing is silvery- gray, allowing it to blend in on bark and branches. MEXICAN BLUEWING Myscelia ethusa Family: Nymphalidae Range: Mexico, Central America, Colombia Wingspan: 2.5-3.0 in. (6.4-7.6 cm.) Fast Fact: Young caterpillars attach dung pellets and silk to a leaf vein to create a resting perch. NEW GUINEA BIRDWING Ornithoptera priamus Family: Papilionidae Range: Australia Wingspan: 5 in. (12.7 cm.) Fast Fact: New Guinea birdwings are sexually dimorphic. Females are much larger than the males, and their wings are black with white markings. LEARN MORE ABOUT SEXUAL DIMORPHISM IN BUTTERFLIES > MOCKER SWALLOWTAIL Papilio dardanus Family: Papilionidae Range: Africa Wingspan: 3.9-4.7 in. (10-12 cm.) Fast Fact: The male mocker swallowtail has a tail, while the female is tailless. LEARN MORE ABOUT SEXUALLY DIMORPHIC BUTTERFLIES > ORCHARD SWALLOWTAIL Papilio demodocus Family: Papilionidae Range: Africa and Arabia Wingspan: 4.5 in. -
BONNER ZOOLOGISCHE MONOGRAPHIEN, Nr
© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at NEW WORLD NECTAR-FEEDING BATS: BIOLOGY, MORPHOLOGY AND CRANIOMETRIC APPROACH TO SYSTEMATICS by ERNST-HERMANN SOLMSEN BONNER ZOOLOGISCHE MONOGRAPHIEN, Nr. 44 1998 Herausgeber: ZOOLOGISCHES FORSCHUNGSINSTITUT UND MUSEUM ALEXANDER KOENIG BONN © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at BONNER ZOOLOGISCHE MONOGRAPHIEN Die Serie wird vom Zoologischen Forschungsinstitut und Museum Alexander Koenig herausgegeben und bringt Originalarbeiten, die für eine Unterbringung in den „Bonner zoologischen Beiträgen" zu lang sind und eine Veröffentlichung als Monographie rechtfertigen. Anfragen bezüglich der Vorlage von Manuskripten sind an die Schriftleitung zu richten; Bestellungen und Tauschangebote bitte an die Bibliothek des Instituts. This series of monographs, published by the Zoological Research Institute and Museum Alexander Koenig, has been established for original contributions too long for inclu- sion in „Bonner zoologische Beiträge". Correspondence concerning manuscripts for pubhcation should be addressed to the editor. Purchase orders and requests for exchange please address to the library of the institute. LTnstitut de Recherches Zoologiques et Museum Alexander Koenig a etabh cette serie de monographies pour pouvoir publier des travaux zoologiques trop longs pour etre inclus dans les „Bonner zoologische Beiträge". Toute correspondance concernante -
Insect Pests
Crop Profile for Sweetpotatoes in Mississippi Prepared: May, 1999 General Production Information ● In 1997, sweetpotatoes were harvested from 8,400 acres in Mississippi. Production totaled 100 million lbs with a value of $18 million in 1997. Mississippi ranks fourth among states in sweetpotato production [8]. ● Commercial production is currently concentrated in Calhoun and Chickasaw Counties in north central Mississippi although sweetpotatoes are grown commercially in more than half of Mississippi’s counties. They can be grown throughout the state since all areas provide a frost-free period of more than 150 days [2]. Insect Pests Many insect pests have the potential to reduce the quality and yield of sweetpotatoes. Insects that damage the roots directly are the most trouble some and are referred to as soil insect pests. They can cause economic loss in relatively low numbers, and it is difficult to control then with insecticides because they live below the soil surface. Insects that injure the foliage reduce the yield of the plants indirectly and are referred to as foliage feeding insects. These insects can cause economic loss, but usually only at very high numbers, and it is relatively easy to control them with insecticides because they are exposed on the plant [1]. Sweetpotato Soil Insects: The sweetpotato root can be injured by several soil insects, including the sweetpotato weevil, rootworms, wireworms, white grubs, whitefringed beetles and flea beetles. The sweetpotato weevil larva is the only insect that tunnels throughout the root. Other soil insects feed on the surface on the developing sweetpotato root. The injury caused by rootworms and wireworms is similar and cannot be separated very easily. -
Decline of Native Bees (Apidae: Euglossa) in a Tropical Forest of Panama Álvaro Vega-Hidalgo, Yostin Añino, Erin Krichilsky, Adam R
Decline of native bees (Apidae: Euglossa) in a tropical forest of Panama Álvaro Vega-Hidalgo, Yostin Añino, Erin Krichilsky, Adam R. Smith, Alonso Santos-Murgas, Dumas Gálvez To cite this version: Álvaro Vega-Hidalgo, Yostin Añino, Erin Krichilsky, Adam R. Smith, Alonso Santos-Murgas, et al.. Decline of native bees (Apidae: Euglossa) in a tropical forest of Panama. Apidologie, 2020, 51 (6), pp.1038-1050. 10.1007/s13592-020-00781-2. hal-03265528 HAL Id: hal-03265528 https://hal.archives-ouvertes.fr/hal-03265528 Submitted on 21 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2020) 51:1038–1050 Original article * INRAE, DIB and Springer-Verlag France SAS, part of Springer Nature, 2020, corrected publication 2020 DOI: 10.1007/s13592-020-00781-2 Decline of native bees (Apidae: Euglossa )inatropical forest of Panama 1 2,3 4 5 Álvaro VEGA-HIDALGO , Yostin AÑINO , Erin KRICHILSKY , Adam R. SMITH , 2 6,7 Alonso SANTOS-MURGAS , Dumas GÁLVEZ 1Escuela de Ciencias Biológicas, Universidad Nacional de Costa Rica, Heredia, Costa Rica 2Museo -
En La Producción De Mariposas Morpho Helenor (Nymphalidae: Lepidoptera)
Efecto de un suplemento vitamínico y tres especies de plantas alimenticias (Fabaceae), en la producción de mariposas Morpho helenor (Nymphalidae: Lepidoptera) Olivier Castro Morales, Julio M. Arias-Reverón, Arnoldo Gadea-Rivas & Luis Alberto Camero Rey Sede San Carlos, Instituto Tecnológico de Costa Rica, 223-21001 Alajuela, San Carlos, Ciudad Quesada; [email protected], [email protected], [email protected], [email protected] Recibido 01-VI-2017 • Corregido 02-VIII-2017 • Aceptado 03-VIII-2017 ABSTRACT: Effect of a vitamin supplement and three species RESUMEN: El uso de dietas artificiales en la producción de mariposas of food plants (Fabaceae) on the production of Morpho helenor ha sido poco estudiado en la familia Nymphalidae, en este experimento butterflies (Nymphalidae:Lepidoptera). Little has been published evaluamos el efecto de un suplemento vitamínico comercial llamado on the use of artificial diets for the production of butterflies in the Farvital – 18, compuesto por aminoácidos, vitaminas y electrolitos, en Nymphalidae family. We evaluated the effect of a commercial vitamin la producción de mariposas Morpho helenor, el suplemento se aplicó supplement called Farvital - 18, composed of amino acids, vitamins and en tres plantas hospederas de la familia Fabaceae: Lonchocarpus oligan- electrolytes, on the production of the butterflyMorpho helenor. This thus, Erythrina berteroana y Arachis pintoi, el tamaño de la muestra fue supplement was applied on three host plants from the family Fabaceae: de 25 orugas para cada uno de los seis tratamientos, realizamos cuatro Lonchocarpus oliganthus, Erythrina berteroana and Arachis pintoi. We repeticiones, analizamos el tiempo del ciclo larval, la tasa de crecimien- analyzed the duration of the larval stages, the growth rate of the cater- to de las orugas en cada estadio, la tasa de supervivencia de las orugas pillars at each stage, the survival rate of the caterpillars, pupal weight, y en las pupas analizamos el peso, calidad y cantidad obtenida. -
Global Trends in Bumble Bee Health
EN65CH11_Cameron ARjats.cls December 18, 2019 20:52 Annual Review of Entomology Global Trends in Bumble Bee Health Sydney A. Cameron1,∗ and Ben M. Sadd2 1Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA; email: [email protected] 2School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA; email: [email protected] Annu. Rev. Entomol. 2020. 65:209–32 Keywords First published as a Review in Advance on Bombus, pollinator, status, decline, conservation, neonicotinoids, pathogens October 14, 2019 The Annual Review of Entomology is online at Abstract ento.annualreviews.org Bumble bees (Bombus) are unusually important pollinators, with approx- https://doi.org/10.1146/annurev-ento-011118- imately 260 wild species native to all biogeographic regions except sub- 111847 Saharan Africa, Australia, and New Zealand. As they are vitally important in Copyright © 2020 by Annual Reviews. natural ecosystems and to agricultural food production globally, the increase Annu. Rev. Entomol. 2020.65:209-232. Downloaded from www.annualreviews.org All rights reserved in reports of declining distribution and abundance over the past decade ∗ Corresponding author has led to an explosion of interest in bumble bee population decline. We Access provided by University of Illinois - Urbana Champaign on 02/11/20. For personal use only. summarize data on the threat status of wild bumble bee species across bio- geographic regions, underscoring regions lacking assessment data. Focusing on data-rich studies, we also synthesize recent research on potential causes of population declines. There is evidence that habitat loss, changing climate, pathogen transmission, invasion of nonnative species, and pesticides, oper- ating individually and in combination, negatively impact bumble bee health, and that effects may depend on species and locality. -
Bumble Bees in Montana
Bumble Bees in Montana by Amelia C. Dolan, Middle School Specialist at Athlos Academies, Boise, ID and former MSU Graduate Student; Casey M. Delphia, Research Scientist, Departments of Ecology and LRES; and Lauren M. Kerzicnik, Insect Diagnostician and Assistant IPM Specialist Bumble bees are important native pollinators in wildlands and agricultural systems. Creating habitat to support bumble bees in yards and gardens can MontGuide be easy and is a great way to get involved in native bee conservation. MT201611AG New 7/16 BUMBLE BEES ARE IMPORTANT NATIVE Bumble bees are one group of bees that are able to pollinators in wildlands and agricultural systems. They “buzz pollinate,” which is important for certain types are easily recognized by their large size and colorful, hairy of plants such as blueberries and tomatoes. Within bodies. Queens are active in the spring and workers can the flowers of these types of plants, pollen is held in be seen throughout the summer into early fall. Creating small tube-like anthers (i.e. poricidal anthers), and is habitat to support bumble bees in yards and gardens can not released unless the anthers are vibrated. Bumble be easy and is a great way to get involved in native bee bees buzz pollinate by landing on the flower, grabbing conservation. the anthers with their jaws (i.e. mandibles), and then Bumble bees are in the family Apidae (includes honey quickly vibrating their flight muscles. The vibration bees, bumble bees, carpenter bees, cuckoo bees, sunflower effect is similar to an electric toothbrush and the pollen bees, and digger bees) and the is released. -
Bats and Moths Contribute to the Reproductive Success of the Columnar Cactus Pilosocereus Leucocephalus
Journal of Arid Environments xxx (xxxx) xxxx Contents lists available at ScienceDirect Journal of Arid Environments journal homepage: www.elsevier.com/locate/jaridenv Bats and moths contribute to the reproductive success of the columnar cactus Pilosocereus leucocephalus ∗ Antonio Miranda-Jácomea, Ricardo Rodríguez-Garcíaa, Miguel A. Munguía-Rosasb, a Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, 91190, Mexico b Laboratorio de Ecología Terrestre, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Carretera Antigua a Progreso km 6, Mérida, 97310, Mexico ARTICLE INFO ABSTRACT Keywords: The pollination systems of columnar cacti in the dry tropics are often thought to be highly specialized to bats. Bat pollination This specialization is generally inferred when flowers that are only exposed to the activity of nocturnal visitors Columnar cactus set fruit and seed. Although moths are also common visitors to the flowers of columnar cacti at night, it is Moth pollination generally thought that their contribution to the reproductive success of this cactus is negligible. Using selective Pollination exclusions, we assessed the contribution of bats and moths to the reproductive success in a population of Pollination system Pilosocereus leucocephalus in central Mexico. Fruit set was 100% for bat-pollinated flowers and 34% in moth- pollinated flowers. Seed number per fruit was 1473 in bat-pollinated and 836 in moth pollinated flowers. Our results clearly show that in addition to bats, moths are effective pollinators of Pilosocereus leucocephalus in the study area. Therefore, bats are the main pollinators of P. leucocephalus, and moths are the secondary pollinators. Columnar cacti are the dominant elements in the plant communities fruit (e.g. -
Pollinator Specificity and Seasonal Patterns in the Euglossine Bee-Orchid Mutualism at La Gamba Biological Station
Acta ZooBot Austria 156, 2019, 171–181 Pollinator specificity and seasonal patterns in the euglossine bee-orchid mutualism at La Gamba Biological Station Santiago R. Ramirez The plant family Orchidaceae exhibits some of the most spectacular and intricate ad- aptations for insect pollination. Across the Neotropical region male euglossine bees provide pollination services to approx. 700 orchid species that have evolved scent pro- duction in exchange for sexual reproduction. Male orchid bees collect scents from flowers and other sources to concoct perfume mixtures that they use as pheromone analogs during courtship display. Although the pollination biology of some of these associations has been studied in detail for some orchid taxa, community-wide analyses of this mutualism are lacking. Here I present an analysis of the plant-pollinator affilia- tion patterns and phenology among scent-producing orchids and male euglossine bees based on 960 bee-orchid interactions obtained over the course of five years of sampling at La Gamba Biological Station (south-western Costa Rica). I identify a highly nested plant-pollinator network that is composed of 24 bee species and 17 orchid genera. Some orchid genera exhibit pronounced flowering seasonality, with most of the diver- sity of interactions taking place during the dry season (March-April) and few orchid taxa blooming throughout the year. The architecture of the plant-pollinator network also revealed a substantial degree of pollinator sharing among orchid genera, suggest- ing that distantly related lineages independently converged on the use of similar pol- linator bee assemblages. RAMIREZ S.R., 2019: Bestäuberspezifizität und jahreszeitliche Variation in Pracht- bienen-Orchideen Mutualismen an der Tropenstation La Gamba. -
A Trait-Based Approach Laura Roquer Beni Phd Thesis 2020
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Pollinator communities and pollination services in apple orchards: a trait-based approach Laura Roquer Beni PhD Thesis 2020 Pollinator communities and pollination services in apple orchards: a trait-based approach Tesi doctoral Laura Roquer Beni per optar al grau de doctora Directors: Dr. Jordi Bosch i Dr. Anselm Rodrigo Programa de Doctorat en Ecologia Terrestre Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Universitat de Autònoma de Barcelona Juliol 2020 Il·lustració de la portada: Gala Pont @gala_pont Al meu pare, a la meva mare, a la meva germana i al meu germà Acknowledgements Se’m fa impossible resumir tot el que han significat per mi aquests anys de doctorat. Les qui em coneixeu més sabeu que han sigut anys de transformació, de reptes, d’aprendre a prioritzar sense deixar de cuidar allò que és important. Han sigut anys d’equilibris no sempre fàcils però molt gratificants. Heu sigut moltes les persones que m’heu acompanyat, d’una manera o altra, en el transcurs d’aquest projecte de creixement vital i acadèmic, i totes i cadascuna de vosaltres, formeu part del resultat final.