A Review of Dissolved Gas Supersaturation Literature Don E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Water Quality: a Field-Based Quality Testing Program for Middle Schools and High Schools
DOCUMENT RESUME ED 433 223 SE 062 606 TITLE Water Quality: A Field-Based Quality Testing Program for Middle Schools and High Schools. INSTITUTION Massachusetts State Water Resources Authority, Boston. PUB DATE 1999-00-00 NOTE 75p. PUB TYPE Guides Classroom - Teacher (052) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS Bacteria; Environmental Education; *Field Studies; High Schools; Middle Schools; Physical Environment; Pollution; *Science Activities; *Science and Society; Science Instruction; Scientific Concepts; Temperature; *Water Pollution; *Water Quality; Water Resources IDENTIFIERS pH ABSTRACT This manual contains background information, lesson ideas, procedures, data collection and reporting forms, suggestions for interpreting results, and extension activities to complement a water quality field testing program. Information on testing water temperature, water pH, dissolved oxygen content, biochemical oxygen demand, nitrates, total dissolved solids and salinity, turbidity, and total coliform bacteria is also included.(WRM) ******************************************************************************** * Reproductions supplied by EDRS are the best that can be made * * from the original document. * ******************************************************************************** SrE N N Water A Field-Based Water Quality Testing Program for Middle Schools and High Schools U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improvement PERMISSION TO REPRODUCE AND EDUCATIONAL RESOURCES INFORMATION DISSEMINATE THIS MATERIAL -
Oxygen Concentration of Blood: PO
Oxygen Concentration of Blood: PO2, Co-Oximetry, and More Gary L. Horowitz, MD Beth Israel Deaconess Medical Center Boston, MA Objectives • Define “O2 Content”, listing its 3 major variables • Define the limitations of pulse oximetry • Explain why a normal arterial PO2 at sea level on room air is ~100 mmHg (13.3 kPa) • Describe the major features of methemogobin and carboxyhemglobin O2 Concentration of Blood • not simply PaO2 – Arterial O2 Partial Pressure ~100 mm Hg (~13.3 kPa) • not simply Hct (~40%) – or, more precisely, Hgb (14 g/dL, 140 g/L) • not simply “O2 saturation” – i.e., ~89% O2 Concentration of Blood • rather, a combination of all three parameters • a value labs do not report • a value few medical people even know! O2 Content mm Hg g/dL = 0.003 * PaO2 + 1.4 * [Hgb] * [%O2Sat] = 0.0225 * PaO2 + 1.4 * [Hgb] * [%O2Sat] kPa g/dL • normal value: about 20 mL/dL Why Is the “Normal” PaO2 90-100 mmHg? • PAO2 = (FiO2 x [Patm - PH2O]) - (PaCO2 / R) – PAO2 is alveolar O2 pressure – FiO2 is fraction of inspired oxygen (room air ~0.20) – Patm is atmospheric pressure (~760 mmHg at sea level) o – PH2O is vapor pressure of water (47 mmHg at 37 C) – PaCO2 is partial pressure of CO2 – R is the respiratory quotient (typically ~0.8) – 0.21 x (760-47) - (40/0.8) – ~100 mm Hg • Alveolar–arterial (A-a) O2 gradient is normally ~ 10, so PaO2 (arterial PO2) should be ~90 mmHg NB: To convert mm Hg to kPa, multiply by 0.133 Insights from PAO2 Equation (1) • PaO2 ~ PAO2 = (0.21x[Patm-47]) - (PaCO2 / 0.8) – At lower Patm, the PaO2 will be lower • that’s -
Gas Bubble Disease
CONF-741033 Gas Bubble Disease Proceedings of a Workshop held at Richland, Washington, October 8-9, 1974 Cosponsored by Battelle, Pacific Northwest Laboratories, and U.S. Atomic Energy Commission Editors D. H. Fickeisen and M. J. Schneider 1976 Published by Technical Information Center, Office of Public Affairs Energy Research and Development Administration E. M. Dawley Effec s of ong M. Schiewe Term Exposure to B. Monk Supersaturation of Dissolved Atmospheric Gases on Juvenile Chinook Salmon and Steelhead Trout in Deep and Shallow Test Tanks ABSTRACT Dawley and Ebel, 1974) but there are still many un Bioassays in shallow (0.25 m) and deep (2.5 m) tanks with dis Jnswered questions regarding the effects of chronic solved atmospheric gas concentrations ranging from 100 to low-level exposure on survival. Fish may be subjected ° 127% of saturation in water at 10 C were conducted to deter to low levels of supersaturation in two ways. They mine the lethal and sublethal effects on juvenile fall chinook Oncorhynchus tschawytscha and steelhead trout Sa/mo gairdneri. may inhabit water areas where they cannot com Juvenile fall chinook (38.7 to 41.3 mm) were much more pensate for gas saturation by sounding, or they resistant to supersaturation than juvenile steelhead (164 to may inhabit deep water areas where hydrostatic 196 mm). Chinook tested in the shallow tanks at 120% of super pressure offsets the effects of high gas levels. saturation incurred 50% mortality after 22 days, whereas steel head tested at the same level incurred 50% mortality in 30 hr. The National Marine Fisheries Service, funded Gas bubble disease signs were noted on mortalities and on live in part by the Environmental Protection Agency subsamples taken every 28 days. -
Oxygenation and Oxygen Therapy
Rules on Oxygen Therapy: Physiology: 1. PO2, SaO2, CaO2 are all related but different. 2. PaO2 is a sensitive and non-specific indicator of the lungs’ ability to exchange gases with the atmosphere. 3. FIO2 is the same at all altitudes 4. Normal PaO2 decreases with age 5. The body does not store oxygen Therapy & Diagnosis: 1. Supplemental O2 is an FIO2 > 21% and is a drug. 2. A reduced PaO2 is a non-specific finding. 3. A normal PaO2 and alveolar-arterial PO2 difference (A-a gradient) do NOT rule out pulmonary embolism. 4. High FIO2 doesn’t affect COPD hypoxic drive 5. A given liter flow rate of nasal O2 does not equal any specific FIO2. 6. Face masks cannot deliver 100% oxygen unless there is a tight seal. 7. No need to humidify if flow of 4 LPM or less Indications for Oxygen Therapy: 1. Hypoxemia 2. Increased work of breathing 3. Increased myocardial work 4. Pulmonary hypertension Delivery Devices: 1. Nasal Cannula a. 1 – 6 LPM b. FIO2 0.24 – 0.44 (approx 4% per liter flow) c. FIO2 decreases as Ve increases 2. Simple Mask a. 5 – 8 LPM b. FIO2 0.35 – 0.55 (approx 4% per liter flow) c. Minimum flow 5 LPM to flush CO2 from mask 3. Venturi Mask a. Variable LPM b. FIO2 0.24 – 0.50 c. Flow and corresponding FIO2 varies by manufacturer 4. Partial Rebreather a. 6 – 10 LPM b. FIO2 0.50 – 0.70 c. Flow must be sufficient to keep reservoir bag from deflating upon inspiration 5. -
Use of Oxygen Readings to Avoid Gas Bubble Disease in Clam Hatcheries
I.OAtlCOPY ONg NJNSC-G-98-001 C3 g k ~ February 1998 FS906 Use of Oxygen Readings to Avoid Gas Bubble Disease in Clam Hatcheries By Dr. John N. Kraeuter, Haskin Shellfish ResearchLab Rutgers Uni versity and Gef Flimlin New Jersey Sea Grant Marine Advisory Service The major gases in air and water are nitrogen because nitrogen is the dominant gas in air and 8%! and oxygen 1%!. It is obvious that bay water water, and it is not metabolized by the shellfish, contains oxygen, because if it didn't phytoplankton, Nitrogen, like oxygen, enters the organism through shellfish and fish couldn't live there. Everyone has the gills, and then is carried to the tissue by the seen summer fish kills from insufficient oxygen, or blood. Once distributed, nitrogen remains in the suffocated clams under dense piles of seaweed. These tissue while oxygen is used iip. If nitrogen enters the organisms, like humans, need oxygen to carry on the tissue in a supersaturated condition and accumulates, normal functions; however, water of different it will respond by coming out of solution into the temperature, salinity and pressure holds differing organism in the form of bubbles. Divers call these ainounts of oxygen and other gases called air. Too bubbles the bends, in shellfish it is called gas bubble high a concentration of gas or too low a concentration disease. can cause an organism to die. When the concentration of a gas, like oxygen, is the exact amount the water can hold for the pressure, temperature, and salinity; the water is considered "saturated". -
And Crassostrea Virginica (Gmelin)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks VIMS Articles 1987 Effect Of Air-Supersaturated Sea Water On Argopecten irradians concentricus (Say) And Crassostrea virginica (Gmelin) Robert Bisker Virginia Institute of Marine Science Michael Castagna Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Bisker, Robert and Castagna, Michael, "Effect Of Air-Supersaturated Sea Water On Argopecten irradians concentricus (Say) And Crassostrea virginica (Gmelin)" (1987). VIMS Articles. 1289. https://scholarworks.wm.edu/vimsarticles/1289 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 6, No. 2, 79-83, 1987. EFFECT OF AIR-SUPERSATURATED SEAWATER ON ARGOPECTEN IRRADIANS CONCENTRICUS (SAY) AND CRASSOSTREA VIRGIN/CA (GMELIN) ROBERT BISKER & MICHAEL CASTAGNA Virginia Institute of Marine Science School of Marine Science College of William and Mary Wachapreague, Virginia 23480 ABSTRACT Argopecten irradians concentricus and Crassostrea virginica were exposed to several different levels of supersaturated seawater at temperatures ranging from 10 to 2!°C. Gas bubble trauma occurred at a total gas saturation level of 116%, causing mortality in juvenile A. i. concentricus and reduced growth in juvenile C. virginica. KEY WORDS: Gas bubble trauma, air-supersaturated seawater, Argopecten, Crassostrea, cultured bivalves. INTRODUCTION bubble formation (Colt 1983). -
Fisheries Full Issue PDF Volume 39, Issue 3
This article was downloaded by: [American Fisheries Society] On: 24 March 2014, At: 13:30 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Fisheries Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ufsh20 Full Issue PDF Volume 39, Issue 3 Published online: 21 Mar 2014. To cite this article: (2014) Full Issue PDF Volume 39, Issue 3, Fisheries, 39:3, 97-144, DOI: 10.1080/03632415.2014.902705 To link to this article: http://dx.doi.org/10.1080/03632415.2014.902705 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. -
Oxygen Saturation in High-Altitude Pulmonary Edema
Oxygen Saturation In High-Altitude Pulmonary J Am Board Fam Pract: first published as 10.3122/jabfm.5.4.429 on 1 July 1992. Downloaded from Edema James]. Bachman, M.D., Todd Beatty, M.D., and Daniel E. Levene High altitude, defined as elevations greater than Methods or equal to 8000 feet (2438 m) above sea level, is The 126 subjects for this study were all patients responsible for a variety of medical problems both who came to the Summit Medical Center Emer chronic and acute. The spectrum of altitude ill gency Department or to the Frisco Medical ness ranges from the common, mild symptoms of Center. Both units serve Summit County, Colo acute mountain sickness, such as insomnia, head rado. The base elevation of Summit County ache, and nausea, to severe and potentially fatal ranges from roughly 9000 to 11,000 feet (2743 to conditions, such as high-altitude pulmonary 3354 m). Between 1 November 1990 and 26Janu edema (HAPE) and high-altitude cerebral edema ary 1991, a record was maintained of the age, sex, (RACE).l room air pulse oximeter measure of oxygen satu HAPE is a noncardiogenic form of pulmonary ration (Sa 02)' chest radiograph findings, and final edema that predominantly affects young, physi diagnoses of all patients who underwent a chest cally active, previously healthy individuals who radiograph examination. arrived at high altitude between 1 and 4 days There were 152 patients who underwent chest before developing symptoms. Symptoms of early, radiography during the study period. Twenty-six milder cases include dry nonproductive cough, patients were excluded from the study: 18 had no decreased exercise tolerance, and dyspnea on ex oxygen saturation measurement taken or re ertion. -
Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting
Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting Techniques and Methods 1–D3 U.S. Department of the Interior U.S. Geological Survey Front Cover. Upper left—South Fork Peachtree Creek at Johnson Road near Atlanta, Georgia, site 02336240 (photograph by Craig Oberst, USGS) Center—Lake Mead near Sentinel Island, Nevada, site 360314114450500 (photograph by Ryan Rowland, USGS) Lower right—Pungo River at channel light 18, North Carolina, site 0208455560 (photograph by Sean D. Egen, USGS) Back Cover. Lake Mead near Sentinel Island, Nevada, site 360314114450500 (photograph by Ryan Rowland, USGS) Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting By Richard J. Wagner, Robert W. Boulger, Jr., Carolyn J. Oblinger, and Brett A. Smith Techniques and Methods 1–D3 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior P. Lynn Scarlett, Acting Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. -
Issue 4: July 2018
Fish Health News You Can Use Brought to you by the Pacific Region Fish Health Program July 2018, edition Salt Use, Parasites, Stress, and This Issue Page 1 - Salt use, parasites, stress, and Osmoregulation osmoregulation Maintaining adequate amounts of salt in their Page 4 - Fungi blood is a critical, difficult, and energy intensive Page 6 - Fun fungi factoids task for all fish. Like us, fish have almost 9 Page 7 - PRFHP updates grams per liter (9 parts per thousand or 9 ppt) Page 9 - Another long (but understandable and of salt in their blood. However, the freshwater important) gas bubble disease essay environment (especially here in the Pacific Page 16 - Mystery parasite of the day Northwest) has almost no salt. This means that fish are constantly loosing salt as it leaks from Contact Us their skin and gills into the water. The only way Pacific Region Fish Health Program Manager to keep up with that salt loss is to either 1) take Andrew Goodwin in new salt in food, or 2) to use energy to pump US Fish and Wildlife Service, Pacific Region salts from the environment in through the gills 911 N.E. 11th Avenue and back into the blood. Portland, OR 97232 Phone: (503) 231-6784 Fish gills are an especially critical area for salt management. In the gills of the fish, the only Email: [email protected] Website barrier between the blood and the environment www.fws.gov/pacific/Fisheries/fishhealth/ is the gill membrane. That membrane is super thin (a few thousandths of a millimeter thick) to efficiently allow oxygen in and carbon dioxide out. -
A Meta‐Analysis of Gas Bubble Trauma in Fish
Received: 24 April 2020 | Revised: 23 June 2020 | Accepted: 23 July 2020 DOI: 10.1111/faf.12496 ORIGINAL ARTICLE A meta-analysis of gas bubble trauma in fish Naomi K. Pleizier1 | Dirk Algera2 | Steven J. Cooke2 | Colin J. Brauner1 1Department of Zoology, University of British Columbia, Vancouver, BC, Canada Abstract 2Fish Ecology and Conservation Physiology Total dissolved gas (TDG) supersaturation generated by dams is known to cause gas Laboratory, Department of Biology, Carleton bubble trauma (GBT) and mortality in fish, but despite many studies on the topic, University, Ottawa, ON, Canada there have been no recent attempts to systematically review the data. We con- Correspondence ducted a systematic review and meta-analysis to determine how different levels of Naomi K. Pleizier, Department of Zoology, University of British Columbia, #4200 - TDG supersaturation in laboratory experiments impact mortality and GBT outcomes 6270, University Blvd., Vancouver, British of freshwater fishes. We also examined all TDG laboratory studies on freshwater Columbia, Canada. Email: [email protected] fish to identify research gaps in the GBT literature. Factors that improved the linear mixed-effects models and Cox proportional hazards models of the relationship be- Funding information Natural Sciences and Engineering Research tween TDG supersaturation and time to 50% mortality, time to 10% mortality, time Council of Canada to the appearance of bubbles in the gills and time to external GBT symptoms include depth, temperature, oxygen-to-nitrogen ratios, species, body mass, the interaction between TDG and depth and author group for one or more of the models of the relationship between TDG and GBT outcomes. -
Is Your Fish “Bent” and Will It Survive? Jill St John1
SPC Live Reef Fish Information Bulletin #11 – April 2003 31 Is your fish “bent” and will it survive? Jill St John1 Fish, like humans, can get “bent” when exposed to at 10 m, reduce it to one-third its volume at 20 m, rapid changes in pressure during capture. The and so on (Fig. 1). The balloon represents the swim bends, or decompression sickness, is a syndrome bladder in a fish, which must be kept at a constant associated with a rapid and extensive reduction in volume to maintain neutral buoyancy (Pelster environmental barometric pressure (Philp 1974). 1997). As the ambient pressure changes, gas is Because the bends is caused by the application of moved in or out of the swim bladder, so when the basic physics to living organisms, it is reasonable to fish swims deeper, gas is taken into the swim blad- expect that fish suffer bends in a manner similar to der from the bloodstream. The reverse occurs humans. Bends has been studied in humans when the fish swims upwards in the water column. involved in deep-sea diving, high altitude aviation, As the greatest change of pressure occurs in the top and underground engineering projects since the 10 m, most of the damage to captured fish occurs beginning of last century. Indeed, the early theories during the last part of their ascent. of Haldane and associates (Boycott et al. 1908) are still used today for modelling decompression schedules. Most of our limited understanding of the effects of the bends in fish is based on our knowledge of the bends in humans.