Klucz Do Oznaczania Makrobezkręgowców Bentosowych Dla Potrzeb Oceny Stanu Ekologicznego Wód Powierzchniowych

Total Page:16

File Type:pdf, Size:1020Kb

Klucz Do Oznaczania Makrobezkręgowców Bentosowych Dla Potrzeb Oceny Stanu Ekologicznego Wód Powierzchniowych INSPEKCJA OCHRONY ŚRODOWISKA KLUCZ DO OZNACZANIA MAKROBEZKRĘGOWCÓW BENTOSOWYCH DLA POTRZEB OCENY STANU EKOLOGICZNEGO WÓD POWIERZCHNIOWYCH opracowanie zbiorowe pod redakcją Grzegorza Tończyka i Jacka Sicińskiego BIBLIOTEKA MONITORINGU ŚRODOWISKA Warszawa 2013 Pracę wykonano na zlecenie Głównego Inspektoratu Ochrony Środowiska i wydano nakładem GIOŚ ze środków finansowych Państwowego Monitoringu Środowiska REDAKCJA: Grzegorz Tończyk, Jacek Siciński Uniwersytet Łódzki Katedra Zoologii Bezkręgowców I Hydrobiologii ZESPÓŁ AUTORÓW: Michał Grabowski, Aleksandra Jabłońska, Krzysztof Jażdżewski, Wojciech Jurasz, Małgorzata Klukowska, Małgorzata Kłonowska-Olejnik, Alicja Konopacka, Janusz Majecki, Katarzyna Majecka, Krzysztof Pabis, Andrzej Piechocki, Marek Przewoźny, Jacek Siciński, Bronisław Szczęsny, Jolanta Wiedeńska, Grzegorz Tończyk FOTOGRAFIE: Karolina Chaniecka, Michał Grabowski, Aleksandra Jabłońska, Radomir Jaskuła, Małgorzata Klonowska-Olejnik, Janusz Majecki, Katarzyna Majecka, Krzysztof Pabis, Marek Przewoźny, Bronisław Szczęsny, Mariusz Tszydel, Grzegorz Tończyk RYSUNKI: Aleksandra Jabłońska, Małgorzata Kłonowska-Olejnik, Ewa Matusiak, Tomasz Mamos, Krzysztof Pabis, Michał Rachalewski, Grzegorz Tończyk © Copyright by Główny Inspektorat Ochrony Środowiska, Warszawa 2013 r. ISBN: 978-83-61227-25-0 Wydanie I Nakład 500 egzemplarzy. Format A4. Przygotowanie do druku i druk: Agencja Wydawniczo-Reklamowa Magic ul. Mełgiewska 32, 20-234 Lublin www.magic.lublin.pl SPIS TREŚCI WSTĘP ………………………………………………………………………….…………….................................………………………………………… 5 MAKROBEZKRĘGOWCE BENTOSOWE …………….......................………………………..…………………………………………………….. 6 CHARAKTERYSTYKA DUŻYCH GRUP TAKSONOMICZNYCH ……………………..………………………………...................…………….. 7 GĄBKI – PORIFERA, SPONGIAE ……......................................…………………………………………………………………………………… 8 PARZYDEŁKOWCE – CNIDARIA ……………………………………….......................................…………………………………….………… 11 WIRKI – TURBELLARIA ….....………......................................……………………………………………………………………………………… 14 NITNIKOWCE – NEMATOMORPHA ……......................................…………………………………………………………………………….. 16 MIĘCZAKI – MOLLUSCA ……………….......................................……………………………………………………………………………….. 18 ŚLIMAKI – GASTROPODA …………………………………………………………………………....................................................……….. 19 MAŁŻE – BIVALVIA …………………………………………………………………………......................................................……………….. 24 PIERŚCIENICE – ANNELIDA …………………………………………………………………………………........................................…………. 28 WIELOSZCZETY – POLYCHAETA …………………...................................................………………………………………………………… 29 SKĄPOSZCZETY – OLIGOCHAETA …………………………………………………………………...................................................………. 33 PIJAWKI – HIRUDINEA ……………......................................................………………………………………………………………………… 38 SKORUPIAKI – CRUSTACEA …………………………………........................................…………………………………………………………. 41 SKRZELONOGI – BRANCHIOPODA ……………………………………………………………………..................................................….. 44 BEZPANCERZOWCE – ANOSTRACA …………………………………..............................................................………………………… 45 MUSZLORACZKI – CONCHOSTRACA ……….............................................................………………………………………………….. 47 PRZEKOPNICE – NOTOSTRACA ……………...............................................................…………………………………………………… 49 TARCZENICE, SPLEWKI – BRANCHIURA ………………………............................................................……………………………… 51 WĄSONOGI – CIRRIPEDIA ………………………………................................................................……………………………………… 53 PANCERZOWCE – MALACOSTRACA ………………….……………………..…………………..................................................……….. 55 LASONOGI – MYSIDACEA …………………................................................................……………………………………………………. 57 RÓWNONOGI – ISOPODA …………………………………………...............................................................……………………………. 59 OBUNOGI – AMPHIPODA ………................................................................………………………………………………………………. 61 DZIESIĘCIONOGI – DECAPODA ………..............................................................………………………………………………………… 64 SZCZĘKOCZUŁKOWCE – CHELICERATA. ARACHNIDA – PAJĘCZAKI …….....................................…………………………………… 67 OWADY – INSECTA ……………………...........................................………………………………………………………………………………… 69 JĘTKI – EPHEMEROPTERA ………....................................................…………………………………………………………………………. 74 WAŻKI – ODONATA …………………………………………………………….......................................................………………………..…. 80 WIDELNICE – PLECOPTERA …………………....................................................………………………………………………………….. 85 PLUSKWIAKI RÓŻNOSKRZYDŁE – HETEROPTERA ……………..............................................…………………………………..…. 88 WIELKOSKRZYDŁE – MEGALOPTERA ……………………………………...................................................……………..…………….. 94 SIATKOSKRZYDŁE – NEUROPTERA ………………………….……………………...................................................……………………. 97 MOTYLE – LEPIDOPTERA …………………....................................................……………………………………………………………… 100 CHRUŚCIKI – TRICHOPTERA ………………....................................................…………………………………………………………..… 104 CHRZĄSZCZE – COLEOPTERA ………....................................................……………………………………………………………………. 112 MUCHÓWKI – DIPTERA ………………………….....................................................…………………………………………………….…. 117 ATHERICIDAE (DIPTERA) ………………................................................................................................................…….… 119 BLEPHARICERIDAE (DIPTERA NEMATOCERA) – MIKOZKOWATE ……………….............................................................. 120 CERATOPOGONIDAE (DIPTERA NEMATOCERA) – KUCZMANY ………………........................................................……... 120 CHAOBORIDAE (DIPTERA NEMATOCERA) – WODZIENIE ………………….............................................................….…… 120 CHIRONOMIDAE (DIPTERA NEMATOCERA) – OCHOTKOWATE ……….......................................................…………..…. 121 CULICIDAE (DIPTERA NEMATOCERA) – KOMARY …………………………...........................................................…………... 122 CYLINDROTOMIDAE (DIPTERA NEMATOCERA) …………………………...........................................................…………..…. 122 DIXIDAE (DIPTERA NEMATOCERA) – NIKŁONIE ………………………............................................……………………………….. 122 DOLICHOPODIDAE (DIPTERA BRACHYCERA) – BŁYSKLENIOWATE ………….......................................................…..…. 123 EMPIDIDAE (DIPTERA BRACHYCERA) – WUJKOWATE ………………………..........................................................………… 123 EPHYDRIDAE (DIPTERA BRACHYCERA) – WODARKOWATE ………………..........................................................……….… 124 LIMONIIDAE (DIPTERA NEMATOCERA) – SYGACZOWATE …….............................................................................…… 124 MUSCIDAE (DIPTERA BRACHYCERA) – MUCHOWATE …………............................................................…………………….. 125 PEDICIIDAE (DIPTERA NEMATOCERA) KREŚLOWATE …………………......................................………………………………..… 125 PSYCHODIDAE (DIPTERA NEMATOCERA) …………………….…...................................................................................... 126 PTYCHOPTERIDAE (DIPTERA NEMATOCERA) ……………………………....................................................................……….. 127 RHAGIONIDAE (DIPTERA BRACHYCERA) – KOBYLICZKOWATE ….........................................................…………………… 127 SCIOMYZIDAE (DIPTERA BRACHYCERA) – SMĘTKOWATE …………...................................……………………………………….. 127 SIMULIIDAE (DIPTERA NEMATOCERA) – MESZKI ………….................…......................................……………………….. 128 STRATIOMYIDAE (DIPTERA BRACHYCERA) – LWINKOWATE …..................................................……………………… 128 SYRPHIDAE (DIPTERA BRACHYCERA) – BZYGOWATE ………........................................................…………………………. 129 TABANIDAE (DIPTERA BRACHYCERA) – ŚLEPAKI ………….......................................................…………………………... 129 THAUMALEIDAE (DIPTERA NEMATOCERA) ……………………..........................................................………………………... 130 TIPULIDAE (DIPTERA NEMATOCERA) – KOZIUŁKOWATE …........................................................……………………….... 130 MSZYWIOŁY – BRYOZOA ………………………………………………….......................................……………………………………….… 132 KLUCZ DO OZNACZANIA ……………………………………………………............................…………………………………………………… 135 KLUCZ DO OZNACZANIA DUŻYCH GRUP (TYPÓW, PODTYPÓW I GROMAD) …………………...........................…………... 136 GĄBKI – PORIFERA, SPONGIAE – KLUCZ DO OZNACZANIA …………………………………............................................….….. 139 PARZYDEŁKOWCE – CNIDARIA – KLUCZ DO OZNACZANIA ………………………............................................…………………. 140 WIRKI – TURBELLARIA – KLUCZ DO OZNACZANIA ……………………………………………..............................................…..… 141 NITNIKOWCE – NEMATOMORPHA – KLUCZ DO OZNACZANIA …………………………….............................................….…. 142 ŚLIMAKI – GASTROPODA – KLUCZ DO OZNACZANIA …………………………..........................................................…….…. 143 MAŁŻE – BIVALVIA – KLUCZ DO OZNACZANIA ………………………………………..............................................................…. 148 PIERŚCIENICE – ANNELIDA – KLUCZ DO OZNACZANIA …………………………................................................……………..….
Recommended publications
  • Grasmotten 07-09-2021
    Grasmotten 07-09-2021 Jean Werts & Joke De Sutter Grasmotten - Crambidae • Alfabetische index • Grasmotten subfamilies • Grasmotten foto’s & hyperlinken • Bibliografie Grasmotten subfamilies Acentropinae Crambinae Grasmotten Evergestinae Valkmotten Glaphyriinae Verkennertje Odontiniiae Pyraurtinae Schoenobinae Scopariinae Spilomelinae subfamilie Acentropinae genera alfabetisch Acentria Cataclysta Elophila Nymphula Parapoynx genus Acentria Acentria ephemerella Duikermot genus Cataclysta Cataclysta lemnata Kroosvlindertje genus Elophila Elophila nymphaeata Waterleliemot Elophila rivulalis Melkwitte waterleliemot genus Nymphula Nymphula nitidulata Egelskopmot genus Parapoynx Parapoynx stratiotata Krabbenscheervlinder subfamilie Crambinae genera alfabetisch Agriphila Calamotropha Catoptria Vlakjesmot Chilo Rietmot Chrysoteuchia Gewone grasmot Crambus Euchromius Friedlanderia Pediasia Platytes Thisanotia genus Agriphila Agriphila deliella Zwartstreepgrasmot Agriphila geniculea Gepijlde grasmot Agriphila inquinatella Moerasgrasmot Agriphila latistria Witlijngrasmot Agriphila selasella Smalle witlijngrasmot Agriphila straminella Blauwooggrasmot Agriphila tristella Variabele grasmot genus Calamotropha Calamotropha paludella Lisdoddesnuitmot genus Catoptria - Vlakjesmot Catoptria falsella Drietandvlakjesmot Catoptria fulgidella Getande vlakjesmot Catoptria lythargyrella Satijnvlakjesmot Catoptria margaritella Gelijnde vlakjesmot Catoptria osthelderi Smalle vlakjesmot Catoptria permutatellus Brede vlakjesmot Catoptria pinella Egale vlakjesmot Catoptria
    [Show full text]
  • Additions, Deletions and Corrections to An
    Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe.
    [Show full text]
  • Download This Article in PDF Format
    Knowl. Manag. Aquat. Ecosyst. 2018, 419, 42 Knowledge & © K. Pabis, Published by EDP Sciences 2018 Management of Aquatic https://doi.org/10.1051/kmae/2018030 Ecosystems www.kmae-journal.org Journal fully supported by Onema REVIEW PAPER What is a moth doing under water? Ecology of aquatic and semi-aquatic Lepidoptera Krzysztof Pabis* Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland Abstract – This paper reviews the current knowledge on the ecology of aquatic and semi-aquatic moths, and discusses possible pre-adaptations of the moths to the aquatic environment. It also highlights major gaps in our understanding of this group of aquatic insects. Aquatic and semi-aquatic moths represent only a tiny fraction of the total lepidopteran diversity. Only about 0.5% of 165,000 known lepidopterans are aquatic; mostly in the preimaginal stages. Truly aquatic species can be found only among the Crambidae, Cosmopterigidae and Erebidae, while semi-aquatic forms associated with amphibious or marsh plants are known in thirteen other families. These lepidopterans have developed various strategies and adaptations that have allowed them to stay under water or in close proximity to water. Problems of respiratory adaptations, locomotor abilities, influence of predators and parasitoids, as well as feeding preferences are discussed. Nevertheless, the poor knowledge on their biology, life cycles, genomics and phylogenetic relationships preclude the generation of fully comprehensive evolutionary scenarios. Keywords: Lepidoptera / Acentropinae / caterpillars / freshwater / herbivory Résumé – Que fait une mite sous l'eau? Écologie des lépidoptères aquatiques et semi-aquatiques. Cet article passe en revue les connaissances actuelles sur l'écologie des mites aquatiques et semi-aquatiques, et discute des pré-adaptations possibles des mites au milieu aquatique.
    [Show full text]
  • The Entomologist's Record and Journal of Variation
    M DC, — _ CO ^. E CO iliSNrNVINOSHilWS' S3ldVyan~LIBRARlES*"SMITHS0N!AN~lNSTITUTl0N N' oCO z to Z (/>*Z COZ ^RIES SMITHSONIAN_INSTITUTlON NOIiniIiSNI_NVINOSHllWS S3ldVaan_L: iiiSNi'^NviNOSHiiNS S3iavyan libraries Smithsonian institution N( — > Z r- 2 r" Z 2to LI ^R I ES^'SMITHSONIAN INSTITUTlON'"NOIini!iSNI~NVINOSHilVMS' S3 I b VM 8 11 w </» z z z n g ^^ liiiSNi NviNOSHims S3iyvyan libraries Smithsonian institution N' 2><^ =: to =: t/J t/i </> Z _J Z -I ARIES SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHilWS SSIdVyan L — — </> — to >'. ± CO uiiSNi NViNosHiiws S3iyvaan libraries Smithsonian institution n CO <fi Z "ZL ~,f. 2 .V ^ oCO 0r Vo^^c>/ - -^^r- - 2 ^ > ^^^^— i ^ > CO z to * z to * z ARIES SMITHSONIAN INSTITUTION NOIinillSNl NVINOSHllWS S3iaVdan L to 2 ^ '^ ^ z "^ O v.- - NiOmst^liS^> Q Z * -J Z I ID DAD I re CH^ITUCnMIAM IMOTtTIITinM / c. — t" — (/) \ Z fj. Nl NVINOSHIIINS S3 I M Vd I 8 H L B R AR I ES, SMITHSONlAN~INSTITUTION NOIlfl :S^SMITHS0NIAN_ INSTITUTION N0liniliSNI__NIVIN0SHillMs'^S3 I 8 VM 8 nf LI B R, ^Jl"!NVINOSHimS^S3iavyan"'LIBRARIES^SMITHS0NIAN~'lNSTITUTI0N^NOIin L '~^' ^ [I ^ d 2 OJ .^ . ° /<SS^ CD /<dSi^ 2 .^^^. ro /l^2l^!^ 2 /<^ > ^'^^ ^ ..... ^ - m x^^osvAVix ^' m S SMITHSONIAN INSTITUTION — NOIlfliliSNrNVINOSHimS^SS iyvyan~LIBR/ S "^ ^ ^ c/> z 2 O _ Xto Iz JI_NVIN0SH1I1/MS^S3 I a Vd a n^LI B RAR I ES'^SMITHSONIAN JNSTITUTION "^NOlin Z -I 2 _j 2 _j S SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHilWS S3iyVaan LI BR/ 2: r- — 2 r- z NVINOSHiltNS ^1 S3 I MVy I 8 n~L B R AR I Es'^SMITHSONIAN'iNSTITUTIOn'^ NOlin ^^^>^ CO z w • z i ^^ > ^ s smithsonian_institution NoiiniiiSNi to NviNosHiiws'^ss I dVH a n^Li br; <n / .* -5^ \^A DO « ^\t PUBLISHED BI-MONTHLY ENTOMOLOGIST'S RECORD AND Journal of Variation Edited by P.A.
    [Show full text]
  • Diversity of the Moth Fauna (Lepidoptera: Heterocera) of a Wetland Forest: a Case Study from Motovun Forest, Istria, Croatia
    PERIODICUM BIOLOGORUM UDC 57:61 VOL. 117, No 3, 399–414, 2015 CODEN PDBIAD DOI: 10.18054/pb.2015.117.3.2945 ISSN 0031-5362 original research article Diversity of the moth fauna (Lepidoptera: Heterocera) of a wetland forest: A case study from Motovun forest, Istria, Croatia Abstract TONI KOREN1 KAJA VUKOTIĆ2 Background and Purpose: The Motovun forest located in the Mirna MITJA ČRNE3 river valley, central Istria, Croatia is one of the last lowland floodplain 1 Croatian Herpetological Society – Hyla, forests remaining in the Mediterranean area. Lipovac I. n. 7, 10000 Zagreb Materials and Methods: Between 2011 and 2014 lepidopterological 2 Biodiva – Conservation Biologist Society, research was carried out on 14 sampling sites in the area of Motovun forest. Kettejeva 1, 6000 Koper, Slovenia The moth fauna was surveyed using standard light traps tents. 3 Biodiva – Conservation Biologist Society, Results and Conclusions: Altogether 403 moth species were recorded Kettejeva 1, 6000 Koper, Slovenia in the area, of which 65 can be considered at least partially hygrophilous. These results list the Motovun forest as one of the best surveyed regions in Correspondence: Toni Koren Croatia in respect of the moth fauna. The current study is the first of its kind [email protected] for the area and an important contribution to the knowledge of moth fauna of the Istria region, and also for Croatia in general. Key words: floodplain forest, wetland moth species INTRODUCTION uring the past 150 years, over 300 papers concerning the moths Dand butterflies of Croatia have been published (e.g. 1, 2, 3, 4, 5, 6, 7, 8).
    [Show full text]
  • Characterisation of Pristine Polish River Systems and Their Use As Reference Conditions for Dutch River Systems
    1830 Rapport 1367.qxp 20-9-2006 16:49 Pagina 1 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Rebi Nijboer Piet Verdonschot Andrzej Piechocki Grzegorz Tonczyk´ Malgorzata Klukowska Alterra-rapport 1367, ISSN 1566-7197 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Commissioned by the Dutch Ministry of Agriculture, Nature and Food Quality, Research Programme ‘Aquatic Ecology and Fisheries’ (no. 324) and by the project Euro-limpacs which is funded by the European Union under2 Thematic Sub-Priority 1.1.6.3. Alterra-rapport 1367 Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems Rebi Nijboer Piet Verdonschot Andrzej Piechocki Grzegorz Tończyk Małgorzata Klukowska Alterra-rapport 1367 Alterra, Wageningen 2006 ABSTRACT Nijboer, Rebi, Piet Verdonschot, Andrzej Piechocki, Grzegorz Tończyk & Małgorzata Klukowska, 2006. Characterisation of pristine Polish river systems and their use as reference conditions for Dutch river systems. Wageningen, Alterra, Alterra-rapport 1367. 221 blz.; 13 figs.; 53 tables.; 26 refs. A central feature of the European Water Framework Directive are the reference conditions. The ecological quality status is determined by calculating the distance between the present situation and the reference conditions. To describe reference conditions the natural variation of biota in pristine water bodies should be measured. Because pristine water bodies are not present in the Netherlands anymore, water bodies (springs, streams, rivers and oxbow lakes) in central Poland were investigated. Macrophytes and macroinvertebrates were sampled and environmental variables were measured. The water bodies appeared to have a high biodiversity and a good ecological quality.
    [Show full text]
  • See Possil Marsh Species List
    1 of 37 Possil Marsh Reserve 07/09/2020 species list Group Taxon Common Name Earliest Latest Records acarine Tetranychidae 1913 1914 1 alga Cladophora glomerata 2017 2017 1 amphibian Bufo bufo Common Toad 2007 2019 3 amphibian Lissotriton vulgaris Smooth Newt 1 amphibian Rana temporaria Common Frog 1966 2019 8 annelid Alboglossiphonia heteroclita 1959 1982 4 annelid Dina lineata 1972 1973 2 annelid Erpobdella octoculata leeches 1913 1914 1 annelid Glossiphonia complanata 1959 1961 2 annelid Haemopis sanguisuga horse leech 1913 1914 1 annelid Helobdella stagnalis 1959 1961 2 annelid Oligochaeta Aquatic Worm 1982 1982 1 annelid Theromyzon tessulatum duck leech 1959 1982 6 bacterium Pseudanabaena 2008 2008 1 bacterium Synechococcus 2008 2008 1 bird Acanthis flammea Common (Mealy) Redpoll 1879 1952 3 bird Acanthis flammea subsp. rostrata Greenland Redpoll 1913 1914 1 bird Accipiter nisus Sparrowhawk 1900 2019 8 bird Acrocephalus schoenobaenus Sedge Warbler 1879 2020 19 bird Actitis hypoleucos Common Sandpiper 1913 1930 2 bird Aegithalos caudatus Long-tailed Tit 1913 2020 13 bird Alauda arvensis Skylark 1913 2012 4 bird Alcedo atthis Kingfisher 1863 2018 10 bird Anas acuta Pintail 1900 1981 4 bird Anas clypeata Shoveler 1913 2019 34 bird Anas crecca Teal 1913 2020 51 bird Anas penelope Wigeon 1913 2020 65 bird Anas platyrhynchos Mallard 1913 2020 34 bird Anas querquedula Garganey 1900 1978 3 bird Anas strepera Gadwall 1982 2018 15 bird Anser albifrons White-fronted Goose 1900 1952 1 bird Anser anser Greylag Goose 1900 2012 5 bird Anthus pratensis
    [Show full text]
  • Database of Irish Lepidoptera. 1 - Macrohabitats, Microsites and Traits of Noctuidae and Butterflies
    Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies Irish Wildlife Manuals No. 35 Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies Ken G.M. Bond and Tom Gittings Department of Zoology, Ecology and Plant Science University College Cork Citation: Bond, K.G.M. and Gittings, T. (2008) Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies. Irish Wildlife Manual s, No. 35. National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Dublin, Ireland. Cover photo: Merveille du Jour ( Dichonia aprilina ) © Veronica French Irish Wildlife Manuals Series Editors: F. Marnell & N. Kingston © National Parks and Wildlife Service 2008 ISSN 1393 – 6670 Database of Irish Lepidoptera ____________________________ CONTENTS CONTENTS ........................................................................................................................................................1 ACKNOWLEDGEMENTS ....................................................................................................................................1 INTRODUCTION ................................................................................................................................................2 The concept of the database.....................................................................................................................2 The structure of the database...................................................................................................................2
    [Show full text]
  • Thesis Reference
    Thesis Aquatic macroinvertebrate diversity along the lateral dimension of a large river floodplain : application to the Rhône River restoration PAILLEX, Amael Abstract Hydrological connectivity plays a major role in shaping both the habitat conditions and the biota in floodplain ecosystems. Current restoration strategies in large river floodplains often focus on the increase in lateral connectivity of secondary channels. However, the knowledge on the effect of restoration strategies on biodiversity remains limited. In this study, a framework was constructed to assess the level of lateral connectivity in thirteen cut-off channels of two braided sectors of the Rhône River (France). The effect of restoration measures on macroinvertebrate diversity was assessed. Changes were measured within (i.e. alpha diversity) and between channels (i.e. beta diversity). The coherence of the relationships established for some of the richness and trait-based metrics demonstrated their potential for the development of invertebrate-based tools to predict and monitor river-floodplain changes associated with restoration. At the channel scale, an increase in lateral connectivity induced a significant change in macroinvertebrate composition, a decrease of total richness and functional diversity. It is [...] Reference PAILLEX, Amael. Aquatic macroinvertebrate diversity along the lateral dimension of a large river floodplain : application to the Rhône River restoration. Thèse de doctorat : Univ. Genève, 2010, no. Sc. 4211 URN : urn:nbn:ch:unige-129388 DOI : 10.13097/archive-ouverte/unige:12938 Available at: http://archive-ouverte.unige.ch/unige:12938 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Institut Forel Dr. Emmanuel Castella Aquatic Macroinvertebrate Diversity along the Lateral Dimension of a Large River Floodplain.
    [Show full text]
  • Chapter 2. the Role of Macrophyte Structural Complexity and Water
    Universiteit Antwerpen Faculteit Wetenschappen Departement Biologie Onderzoeksgroep Ecosysteembeheer Trophic and non-trophic interactions between macrophytes and macroinvertebrates in lowland streams Trofische en non-trofische interacties tussen macrofyten en macroinvertebraten in laaglandbeken Proefschrift voorgedragen tot het behalen van de graad van doctor in de Wetenschappen te verdedigen door Jan-Willem Wolters Antwerpen, 2019 Promotoren: Dr. Ralf C.M. Verdonschot Dr. Jonas Schoelynck Prof Dr. Patrick Meire Cover design: Anita Muys Cover pictures: ‘Waterjufferlarve op lelieblad’ and ‘Drijvend fonteinkruid (Potamogeton natans)’ by Willem Kolvoort Drawings before Chapter 2, 3, 4, 5 and 6: Rosanne Reitsema Lay-out: Jan-Willem Wolters "We snatch in vain at Nature's veil, She is mysterious in broad daylight, No screws or levers can compel her to reveal The secrets she has hidden from our sight." Faust, Part One Johann Wolfgang von Goethe (1808) Table of contents Abstract – Samenvatting 7 Chapter 1 11 General introduction Chapter 2 25 The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream Chapter 3 83 Stable isotope measurements confirm consumption of submerged macrophytes by macroinvertebrate and fish taxa Chapter 4 103 Seasonal changes in fatty acid composition indicate consumption of submerged macrophyte-derived organic matter by macroinvertebrates in a Belgian lowland stream Chapter 5 119 Experimental evidence for decimation of submerged vegetation in freshwater ecosystems by the invasive Chinese mitten crab (Eriocheir sinensis) Chapter 6 151 Macrophyte-specific effects on epiphyton quality and quantity and resulting effects on grazing macroinvertebrates Chapter 7 177 Synthesis References 195 Acknowledgements 219 Curriculum vitae 225 Abstract - Samenvatting Abstract Through their form and ecosystem functions, aquatic macrophytes can have a great impact on their environment and also on the macroinvertebrate community present within macrophyte stands.
    [Show full text]
  • Insect Herbivory on Native and Exotic Aquatic Plants
    Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release Bart Grutters, Elisabeth Maria Gross, Elisabeth Bakker To cite this version: Bart Grutters, Elisabeth Maria Gross, Elisabeth Bakker. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release. Hydrobiologia, Springer, 2016, 778 (1), pp.209-220. 10.1007/s10750-015-2448-1. hal-03208952 HAL Id: hal-03208952 https://hal.univ-lorraine.fr/hal-03208952 Submitted on 27 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Hydrobiologia (2016) 778:209–220 DOI 10.1007/s10750-015-2448-1 SHALLOW LAKES Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release Bart M. C. Grutters . Elisabeth M. Gross . Elisabeth S. Bakker Received: 15 April 2015 / Revised: 16 July 2015 / Accepted: 13 August 2015 / Published online: 27 October 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Eutrophication and globalisation facilitate stratiotata consumed seven out of eleven plant the dominance of exotic plants in aquatic ecosystems species, and their growth was related to plant nutrient worldwide.
    [Show full text]
  • Variability in the Dynamics of Mortality and Immobility Responses of Freshwater Arthropods Exposed to Chlorpyrifos
    Arch Environ Contam Toxicol (2011) 60:708–721 DOI 10.1007/s00244-010-9582-6 Variability in the Dynamics of Mortality and Immobility Responses of Freshwater Arthropods Exposed to Chlorpyrifos Mascha N. Rubach • Steven J. H. Crum • Paul J. Van den Brink Received: 26 February 2010 / Accepted: 19 July 2010 / Published online: 15 August 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract The species sensitivity distribution (SSD) exposure. As expected immobility was consistently the concept is an important probabilistic tool for environmental more sensitive end point and less variable across the tested risk assessment (ERA) and accounts for differences in species and may therefore be considered as the relevant end species sensitivity to different chemicals. The SSD model point for population of SSDs and ERA, although an assumes that the sensitivity of the species included is immobile animal may still potentially recover. This is even randomly distributed. If this assumption is violated, indi- more relevant because an immobile animal is unlikely to cator values, such as the 50% hazardous concentration, can survive for long periods under field conditions. This and potentially change dramatically. Fundamental research, other such considerations relevant to the decision-making however, has discovered and described specific mecha- process for a particular end point are discussed. nisms and factors influencing toxicity and sensitivity for several model species and chemical combinations. Further knowledge on how these mechanisms and factors relate to Decades of ecotoxicologic testing have repeatedly showed toxicologic standard end points would be beneficial for large differences in the response of species toward toxicants, ERA.
    [Show full text]