Numerical Evaluation of Elliptic Functions, Elliptic Integrals and Modular Forms Fredrik Johansson
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generalized Modular Forms Representable As Eta Products
Modular Forms Representable As Eta Products A Dissertation Submitted to the Temple University Graduate Board in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Wissam Raji August, 2006 iii c by Wissam Raji August, 2006 All Rights Reserved iv ABSTRACT Modular Forms Representable As Eta Products Wissam Raji DOCTOR OF PHILOSOPHY Temple University, August, 2006 Professor Marvin Knopp, Chair In this dissertation, we discuss modular forms that are representable as eta products and generalized eta products . Eta products appear in many areas of mathematics in which algebra and analysis overlap. M. Newman [15, 16] published a pair of well-known papers aimed at using eta-product to construct forms on the group Γ0(n) with the trivial multiplier system. Our work here divides into three related areas. The first builds upon the work of Siegel [23] and Rademacher [19] to derive modular transformation laws for functions defined as eta products (and related products). The second continues work of Kohnen and Mason [9] that shows that, under suitable conditions, a generalized modular form is an eta product or generalized eta product and thus a classical modular form. The third part of the dissertation applies generalized eta-products to rederive some arithmetic identities of H. Farkas [5, 6]. v ACKNOWLEDGEMENTS I would like to thank all those who have helped in the completion of my thesis. To God, the beginning and the end, for all His inspiration and help in the most difficult days of my life, and for all the people listed below. To my advisor, Professor Marvin Knopp, a great teacher and inspirer whose support and guidance were crucial for the completion of my work. -
13 Elliptic Function
13 Elliptic Function Recall that a function g : C → Cˆ is an elliptic function if it is meromorphic and there exists a lattice L = {mω1 + nω2 | m, n ∈ Z} such that g(z + ω)= g(z) for all z ∈ C and all ω ∈ L where ω1,ω2 are complex numbers that are R-linearly independent. We have shown that an elliptic function cannot be holomorphic, the number of its poles are finite and the sum of their residues is zero. Lemma 13.1 A non-constant elliptic function f always has the same number of zeros mod- ulo its associated lattice L as it does poles, counting multiplicites of zeros and orders of poles. Proof: Consider the function f ′/f, which is also an elliptic function with associated lattice L. We will evaluate the sum of the residues of this function in two different ways as above. Then this sum is zero, and by the argument principle from complex analysis 31, it is precisely the number of zeros of f counting multiplicities minus the number of poles of f counting orders. Corollary 13.2 A non-constant elliptic function f always takes on every value in Cˆ the same number of times modulo L, counting multiplicities. Proof: Given a complex value b, consider the function f −b. This function is also an elliptic function, and one with the same poles as f. By Theorem above, it therefore has the same number of zeros as f. Thus, f must take on the value b as many times as it does 0. -
ELLIPTIC FUNCTIONS (Approach of Abel and Jacobi)
Math 213a (Fall 2021) Yum-Tong Siu 1 ELLIPTIC FUNCTIONS (Approach of Abel and Jacobi) Significance of Elliptic Functions. Elliptic functions and their associated theta functions are a new class of special functions which play an impor- tant role in explicit solutions of real world problems. Elliptic functions as meromorphic functions on compact Riemann surfaces of genus 1 and their associated theta functions as holomorphic sections of holomorphic line bun- dles on compact Riemann surfaces pave the way for the development of the theory of Riemann surfaces and higher-dimensional abelian varieties. Two Approaches to Elliptic Function Theory. One approach (which we call the approach of Abel and Jacobi) follows the historic development with motivation from real-world problems and techniques developed for solving the difficulties encountered. One starts with the inverse of an elliptic func- tion defined by an indefinite integral whose integrand is the reciprocal of the square root of a quartic polynomial. An obstacle is to show that the inverse function of the indefinite integral is a global meromorphic function on C with two R-linearly independent primitive periods. The resulting dou- bly periodic meromorphic functions are known as Jacobian elliptic functions, though Abel was actually the first mathematician who succeeded in inverting such an indefinite integral. Nowadays, with the use of the notion of a Rie- mann surface, the inversion can be handled by using the fundamental group of the Riemann surface constructed to make the square root of the quartic polynomial single-valued. The great advantage of this approach is that there is vast literature for the properties of the Jacobain elliptic functions and of their associated Jacobian theta functions. -
Lecture 9 Riemann Surfaces, Elliptic Functions Laplace Equation
Lecture 9 Riemann surfaces, elliptic functions Laplace equation Consider a Riemannian metric gµν in two dimensions. In two dimensions it is always possible to choose coordinates (x,y) to diagonalize it as ds2 = Ω(x,y)(dx2 + dy2). We can then combine them into a complex combination z = x+iy to write this as ds2 =Ωdzdz¯. It is actually a K¨ahler metric since the condition ∂[i,gj]k¯ = 0 is trivial if i, j = 1. Thus, an orientable Riemannian manifold in two dimensions is always K¨ahler. In the diagonalized form of the metric, the Laplace operator is of the form, −1 ∆=4Ω ∂z∂¯z¯. Thus, any solution to the Laplace equation ∆φ = 0 can be expressed as a sum of a holomorphic and an anti-holomorphid function. ∆φ = 0 φ = f(z)+ f¯(¯z). → In the following, we assume Ω = 1 so that the metric is ds2 = dzdz¯. It is not difficult to generalize our results for non-constant Ω. Now, we would like to prove the following formula, 1 ∂¯ = πδ(z), z − where δ(z) = δ(x)δ(y). Since 1/z is holomorphic except at z = 0, the left-hand side should vanish except at z = 0. On the other hand, by the Stokes theorem, the integral of the left-hand side on a disk of radius r gives, 1 i dz dxdy ∂¯ = = π. Zx2+y2≤r2 z 2 I|z|=r z − This proves the formula. Thus, the Green function G(z, w) obeying ∆zG(z, w) = 4πδ(z w), − should behave as G(z, w)= log z w 2 = log(z w) log(¯z w¯), − | − | − − − − near z = w. -
NOTES on ELLIPTIC CURVES Contents 1
NOTES ON ELLIPTIC CURVES DINO FESTI Contents 1. Introduction: Solving equations 1 1.1. Equation of degree one in one variable 2 1.2. Equations of higher degree in one variable 2 1.3. Equations of degree one in more variables 3 1.4. Equations of degree two in two variables: plane conics 4 1.5. Exercises 5 2. Cubic curves and Weierstrass form 6 2.1. Weierstrass form 6 2.2. First definition of elliptic curves 8 2.3. The j-invariant 10 2.4. Exercises 11 3. Rational points of an elliptic curve 11 3.1. The group law 11 3.2. Points of finite order 13 3.3. The Mordell{Weil theorem 14 3.4. Isogenies 14 3.5. Exercises 15 4. Elliptic curves over C 16 4.1. Ellipses and elliptic curves 16 4.2. Lattices and elliptic functions 17 4.3. The Weierstrass } function 18 4.4. Exercises 22 5. Isogenies and j-invariant: revisited 22 5.1. Isogenies 22 5.2. The group SL2(Z) 24 5.3. The j-function 25 5.4. Exercises 27 References 27 1. Introduction: Solving equations Solving equations or, more precisely, finding the zeros of a given equation has been one of the first reasons to study mathematics, since the ancient times. The branch of mathematics devoted to solving equations is called Algebra. We are going Date: August 13, 2017. 1 2 DINO FESTI to see how elliptic curves represent a very natural and important step in the study of solutions of equations. Since 19th century it has been proved that Geometry is a very powerful tool in order to study Algebra. -
Lectures on the Combinatorial Structure of the Moduli Spaces of Riemann Surfaces
LECTURES ON THE COMBINATORIAL STRUCTURE OF THE MODULI SPACES OF RIEMANN SURFACES MOTOHICO MULASE Contents 1. Riemann Surfaces and Elliptic Functions 1 1.1. Basic Definitions 1 1.2. Elementary Examples 3 1.3. Weierstrass Elliptic Functions 10 1.4. Elliptic Functions and Elliptic Curves 13 1.5. Degeneration of the Weierstrass Elliptic Function 16 1.6. The Elliptic Modular Function 19 1.7. Compactification of the Moduli of Elliptic Curves 26 References 31 1. Riemann Surfaces and Elliptic Functions 1.1. Basic Definitions. Let us begin with defining Riemann surfaces and their moduli spaces. Definition 1.1 (Riemann surfaces). A Riemann surface is a paracompact Haus- S dorff topological space C with an open covering C = λ Uλ such that for each open set Uλ there is an open domain Vλ of the complex plane C and a homeomorphism (1.1) φλ : Vλ −→ Uλ −1 that satisfies that if Uλ ∩ Uµ 6= ∅, then the gluing map φµ ◦ φλ φ−1 (1.2) −1 φλ µ −1 Vλ ⊃ φλ (Uλ ∩ Uµ) −−−−→ Uλ ∩ Uµ −−−−→ φµ (Uλ ∩ Uµ) ⊂ Vµ is a biholomorphic function. Remark. (1) A topological space X is paracompact if for every open covering S S X = λ Uλ, there is a locally finite open cover X = i Vi such that Vi ⊂ Uλ for some λ. Locally finite means that for every x ∈ X, there are only finitely many Vi’s that contain x. X is said to be Hausdorff if for every pair of distinct points x, y of X, there are open neighborhoods Wx 3 x and Wy 3 y such that Wx ∩ Wy = ∅. -
Applications of Elliptic Functions in Classical and Algebraic Geometry
APPLICATIONS OF ELLIPTIC FUNCTIONS IN CLASSICAL AND ALGEBRAIC GEOMETRY Jamie Snape Collingwood College, University of Durham Dissertation submitted for the degree of Master of Mathematics at the University of Durham It strikes me that mathematical writing is similar to using a language. To be understood you have to follow some grammatical rules. However, in our case, nobody has taken the trouble of writing down the grammar; we get it as a baby does from parents, by imitation of others. Some mathe- maticians have a good ear; some not... That’s life. JEAN-PIERRE SERRE Jean-Pierre Serre (1926–). Quote taken from Serre (1991). i Contents I Background 1 1 Elliptic Functions 2 1.1 Motivation ............................... 2 1.2 Definition of an elliptic function ................... 2 1.3 Properties of an elliptic function ................... 3 2 Jacobi Elliptic Functions 6 2.1 Motivation ............................... 6 2.2 Definitions of the Jacobi elliptic functions .............. 7 2.3 Properties of the Jacobi elliptic functions ............... 8 2.4 The addition formulæ for the Jacobi elliptic functions . 10 2.5 The constants K and K 0 ........................ 11 2.6 Periodicity of the Jacobi elliptic functions . 11 2.7 Poles and zeroes of the Jacobi elliptic functions . 13 2.8 The theta functions .......................... 13 3 Weierstrass Elliptic Functions 16 3.1 Motivation ............................... 16 3.2 Definition of the Weierstrass elliptic function . 17 3.3 Periodicity and other properties of the Weierstrass elliptic function . 18 3.4 A differential equation satisfied by the Weierstrass elliptic function . 20 3.5 The addition formula for the Weierstrass elliptic function . 21 3.6 The constants e1, e2 and e3 ..................... -
An Eloquent Formula for the Perimeter of an Ellipse Semjon Adlaj
An Eloquent Formula for the Perimeter of an Ellipse Semjon Adlaj he values of complete elliptic integrals Define the arithmetic-geometric mean (which we of the first and the second kind are shall abbreviate as AGM) of two positive numbers expressible via power series represen- x and y as the (common) limit of the (descending) tations of the hypergeometric function sequence xn n∞ 1 and the (ascending) sequence { } = 1 (with corresponding arguments). The yn n∞ 1 with x0 x, y0 y. { } = = = T The convergence of the two indicated sequences complete elliptic integral of the first kind is also known to be eloquently expressible via an is said to be quadratic [7, p. 588]. Indeed, one might arithmetic-geometric mean, whereas (before now) readily infer that (and more) by putting the complete elliptic integral of the second kind xn yn rn : − , n N, has been deprived such an expression (of supreme = xn yn ∈ + power and simplicity). With this paper, the quest and observing that for a concise formula giving rise to an exact it- 2 2 √xn √yn 1 rn 1 rn erative swiftly convergent method permitting the rn 1 − + − − + = √xn √yn = 1 rn 1 rn calculation of the perimeter of an ellipse is over! + + + − 2 2 2 1 1 rn r Instead of an Introduction − − n , r 4 A recent survey [16] of formulae (approximate and = n ≈ exact) for calculating the perimeter of an ellipse where the sign for approximate equality might ≈ is erroneously resuméd: be interpreted here as an asymptotic (as rn tends There is no simple exact formula: to zero) equality. -
Elliptic Functions and Elliptic Curves: 1840-1870
Elliptic functions and elliptic curves: 1840-1870 2017 Structure 1. Ten minutes context of mathematics in the 19th century 2. Brief reminder of results of the last lecture 3. Weierstrass on elliptic functions and elliptic curves. 4. Riemann on elliptic functions Guide: Stillwell, Mathematics and its History, third ed, Ch. 15-16. Map of Prussia 1867: the center of the world of mathematics The reform of the universities in Prussia after 1815 Inspired by Wilhelm von Humboldt (1767-1835) Education based on neo-humanistic ideals: academic freedom, pure research, Bildung, etc. Anti-French. Systematic policy for appointing researchers as university professors. Research often shared in lectures to advanced students (\seminarium") Students who finished at universities could get jobs at Gymnasia and continue with scientific research This system made Germany the center of the mathematical world until 1933. Personal memory (1983-1984) Otto Neugebauer (1899-1990), manager of the G¨ottingen Mathematical Institute in 1933, when the Nazis took over. Structure of this series of lectures 2 p 2 ellipse: Apollonius of Perga (y = px − d x , something misses = Greek: elleipei) elliptic integrals, arc-length of an ellipse; also arc length of lemniscate elliptic functions: inverses of such integrals elliptic curves: curves of genus 1 (what this means will become clear) Results from the previous lecture by Steven Wepster: Elliptic functions we start with lemniscate Arc length is elliptic integral Z x dt u(x) = p 4 0 1 − t Elliptic function x(u) = sl(u) periodic with period 2! length of lemniscate. (x2 + y 2)2 = x2 − y 2 \sin lemn" polar coordinates r 2 = cos2θ x Some more results from u(x) = R p dt , x(u) = sl(u) 0 1−t4 sl(u(x)) = x so sl0(u(x)) · u0(x) = 1 so p 0 1 4 p 4 sl (u) = u0(x) = 1 − x = 1 − sl(u) In modern terms, this provides a parametrisation 0 x = sl(u); y = sl (pu) for the curve y = 1 − x4, y 2 = (1 − x4). -
Modular Dedekind Symbols Associated to Fuchsian Groups and Higher-Order Eisenstein Series
Modular Dedekind symbols associated to Fuchsian groups and higher-order Eisenstein series Jay Jorgenson,∗ Cormac O’Sullivan†and Lejla Smajlovi´c May 20, 2018 Abstract Let E(z,s) be the non-holomorphic Eisenstein series for the modular group SL(2, Z). The classical Kro- necker limit formula shows that the second term in the Laurent expansion at s = 1 of E(z,s) is essentially the logarithm of the Dedekind eta function. This eta function is a weight 1/2 modular form and Dedekind expressedits multiplier system in terms of Dedekind sums. Building on work of Goldstein, we extend these results from the modular group to more general Fuchsian groups Γ. The analogue of the eta function has a multiplier system that may be expressed in terms of a map S : Γ → R which we call a modular Dedekind symbol. We obtain detailed properties of these symbols by means of the limit formula. Twisting the usual Eisenstein series with powers of additive homomorphisms from Γ to C produces higher-order Eisenstein series. These series share many of the properties of E(z,s) though they have a more complicated automorphy condition. They satisfy a Kronecker limit formula and produce higher- order Dedekind symbols S∗ :Γ → R. As an application of our general results, we prove that higher-order Dedekind symbols associated to genus one congruence groups Γ0(N) are rational. 1 Introduction 1.1 Kronecker limit functions and Dedekind sums Write elements of the upper half plane H as z = x + iy with y > 0. The non-holomorphic Eisenstein series E (s,z), associated to the full modular group SL(2, Z), may be given as ∞ 1 ys E (z,s) := . -
Torus N-Point Functions for $\Mathbb {R} $-Graded Vertex Operator
Torus n-Point Functions for R-graded Vertex Operator Superalgebras and Continuous Fermion Orbifolds Geoffrey Mason∗ Department of Mathematics, University of California Santa Cruz, CA 95064, U.S.A. Michael P. Tuite, Alexander Zuevsky† Department of Mathematical Physics, National University of Ireland, Galway, Ireland. October 23, 2018 Abstract We consider genus one n-point functions for a vertex operator su- peralgebra with a real grading. We compute all n-point functions for rank one and rank two fermion vertex operator superalgebras. In the arXiv:0708.0640v1 [math.QA] 4 Aug 2007 rank two fermion case, we obtain all orbifold n-point functions for a twisted module associated with a continuous automorphism generated by a Heisenberg bosonic state. The modular properties of these orb- ifold n-point functions are given and we describe a generalization of Fay’s trisecant identity for elliptic functions. ∗Partial support provided by NSF, NSA and the Committee on Research, University of California, Santa Cruz †Supported by a Science Foundation Ireland Frontiers of Research Grant, and by Max- Planck Institut f¨ur Mathematik, Bonn 1 1 Introduction This paper is one of a series devoted to the study of n-point functions for vertex operator algebras on Riemann surfaces of genus one, two and higher [T], [MT1], [MT2], [MT3]. One may define n-point functions at genus one following Zhu [Z], and use these functions together with various sewing pro- cedures to define n-point functions at successively higher genera [T], [MT2], [MT3]. In this paper we consider the genus one n-point functions for a Vertex Operator Superalgebra (VOSA) V with a real grading (i.e. -
Leon M. Hall Professor of Mathematics University of Missouri-Rolla
Special Functions Leon M. Hall Professor of Mathematics University of Missouri-Rolla Copyright c 1995 by Leon M. Hall. All rights reserved. Chapter 3. Elliptic Integrals and Elliptic Functions 3.1. Motivational Examples Example 3.1.1 (The Pendulum). A simple, undamped pendulum of length L has motion governed by the differential equation ′′ g u + sin u =0, (3.1.1) L where u is the angle between the pendulum and a vertical line, g is the gravitational constant, and ′ is differentiation with respect to time. Consider the “energy” function (some of you may recognize this as a Lyapunov function): ′ 2 u ′ 2 ′ (u ) g (u ) g E(u,u )= + sin z dz = + (1 cos u) . 2 L 2 L − Z0 For u(0) and u′(0) sufficiently small (3.1.1) has a periodic solution. Suppose u(0) = A and u′(0) = 0. At this point the energy is g (1 cos A), and by conservation of energy, we have L − (u′)2 g g + (1 cos u)= (1 cos A) . 2 L − L − Simplifying, and noting that at first u is decreasing, we get du 2g = √cos u cos A. dt − r L − This DE is separable, and integrating from u =0 to u = A will give one-fourth of the period. Denoting the period by T , and realizing that the period depends on A, we get 2L A du T (A)=2 . (3.1.2) s g 0 √cos u cos A Z − If A = 0 or A = π there is no motion (do you see why this is so physically?), so assume 0 <A<π.