An Introduction to Supersingular Elliptic Curves and Supersingular Primes

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Supersingular Elliptic Curves and Supersingular Primes An Introduction to Supersingular Elliptic Curves and Supersingular Primes Anh Huynh Abstract In this article, we introduce supersingular elliptic curves over a finite field and relevant concepts, such as formal group of an elliptic curve, Frobenius maps, etc. The definition of a supersin- gular curve is given as any one of the five equivalences by Deuring. The exposition follows Silverman’s “Arithmetic of Elliptic Curves.” Then we define supersingular primes of an elliptic curve and explain Elkies’s result that there are infinitely many supersingular primes for every elliptic curve over Q. We further define supersingular primes as by Ogg and discuss the Mon- strous Moonshine conjecture. 1 Supersingular Curves. 1.1 Endomorphism ring of an elliptic curve. We have often seen elliptic curves over C, where it has many connections with modular forms and modular curves. It is also possible and useful to consider the elliptic curves over other fields, for instance, finite fields. One of the difference we find, then, is that the number of symmetries of the curves are drastically improved. To make that precise, let us first consider the following natural relation between elliptic curves. Definition 1. Let E1 , E2 be elliptic curves. An isogeny from E1 to E2 is a morphism φ: E E 1 → 2 such that φ( O) = O. Then we can look at the set of isogenies from an elliptic curve to itself, and this is what is meant by the symmetries of the curves. Definition 2. Let E be an elliptic curve. Let End( E) = Hom( E, E) be the ring of isogenies with pointwise addition ( φ + ψ)( P) = φ( P) + ψ( P) and multiplication given by composition 1 ( φψ)( P) = φ( ψ( P)) . Then End( E) is called the endomorphism ring of E. 1.2 Classification of the endomorphism rings. The first question we can ask is what kind of ring can this endomorphism ring be. The following objects are needed in the formulation of the answer. Definition 3. (Order of an algebra) Let be an algebra finitely generated over Q. An K order of is a subring of which is finitely generated as Z-module and which satisfies R K K Q = . R ⊗ K Example 4. Let be the quadratic imaginary field Q √ D for some positive D, its K − O ring of integers. Then for each integer f > 0, the ring Z + f is an order of . O K Definition 5. A (definite) quaternion algebra over Q is an algebra of the form = Q + Qα + Q β + Qαβ K with the multiplication rules α2 ,β2 Q, α2 < 0,β2 < 0, βα = αβ. ∈ − Then we have the following theorem. Theorem 6. (Classification of endomorphism ring) The endomorphism ring of an elliptic curve is either Z (rank 1), an order in a quadratic imaginary field Q √ D (rank 2), or an order in a quaternion algebra (rank 4). − (See Silvermans’s “Arithmetic of the Elliptic Curves” , Chapter III, Section 9 for a proof.) If char( K) = 0, then End( E) Q cannot be a quaternion algebra (see remark to Theorem 12). For example, in class all⊗ we have seen so far are elliptic curves over C, so they only have endomorphism ring as Z or an order in a quadratic imaginary field. Example 7. The curve C/Z[ i] has endomorphism ring Z[ i] . The curve C/Z[ √ 2 ] has − endomorphism ring Z. If K is a finite field, however, then End( E) is always larger than Z. In fact, the particular class of elliptic curves that have endomorphism ring as an order in a quarternion algebra (the maximum possible) are called supersingular elliptic curves, the main object of this exposition. 2 1.3 Definition of a supersingular curve. As alluded to before, a supersingular elliptic curve is one that has the maximum number of symmetries: End( E) is an order in the quaternion algebra. In his 1941 paper, Deuring proved the equivalence of this and four other conditions, therefore each of which can then be considered as a definition for a supersingular curve. The main goal of this section is to state the theorem. We will need the following objects. Definition 8. Let R be a ring. A (one-parameter commutative) formal group defined over R is a power series F( X,Y) R[[ X,Y]] satisfying: F ∈ a ) F( X,Y) = X + Y + (terms of degree 2 ). b ) F( X,F( Y,Z)) = F( F( X,Y) ,Z) . ≥ c ) F( X,Y) = F( Y,X) d ) There is a unique power series i( T) R[[ T]] such that F( T , i( T)) = 0. e ) F( X , 0) = X,F(0,Y) = Y. ∈ In particular, for an elliptic curve E given by a Weierstrass equation with coefficients in R, 2 3 2 E: y + a1 xy + a3 y = x + a2 x + a4x + a6, the formal group associated to E, denoted by Eˆ , is given by the power series 2 2 3 2 2 3 F( z , z ) = z + z a z z a ( z z + z z ) (2a z z ( a a 3a ) z z + 2a z z ) + 1 2 1 2 − 1 1 2 − 2 1 2 1 2 − 3 1 2 − 1 2 − 3 1 2 3 1 2 ∈ Z[ a1 , , a6 ][[ z1 , z2 ]] . Definition 9. Let R be a ring of characteristic p > 0. Let , /R be formal groups and f: F G a homomorphism defined over R. The height of f, denoted by ht( f) , is the largest F → G h integer h such that f( T) = g Tp for some power series g( T) R[[ T]] . If f = 0 then ∈ ht( f) = . The height of , denoted ht( ) , is the height of the multiplication map [ p]: . ∞ F F F→F Example 10. If m 1 is prime to p, then ht([ m]) = 0, because [ m] T = mT + . ≥ Definition 11. (Frobenius map) Let K be a field of positive charateristic p, and let q = pr. Let f ( q) be the polynomial obtained from f by raising each coefficient of f to the q-th power. Then for each curve C/K we can define a new curve C( q) /K by describing its homogeneous ideal as I C( q) = ideal generated by f ( q) : f I( C) . ∈ The q-th power Frobenius morphism is the natural map from C to C( q) given by φ: C C( q) → q q φ([ x0, , xn]) = [ x0 , , xn] . 3 Definition 12. Let φ: C1 C2 be a map of curves defined over K. If φ is constant, we define the degree of φ to be →0; otherwise we say that φ is finite and define its degree by deg φ = [ K( C1 ): φ∗ K( C2 )] . We say that φ is separable, inseparable, purely inseparable if the extension K( C1 )/ φ∗ K( C2 ) has the corresponding property. In particular, the Frobenius map is inseparable. Now we can state Deuring’s theorem. Theorem 13. (Deuring) Let K be a perfect field of characteristic p and E/K an elliptic curve. For each integer r 1 , let ≥ ( pr ) ( pr ) φr: E E and φˆr : E E → → be the pr-th power Frobenius map and its dual. a ) The following are equivalent. i. E[ pr] = 0 for one (all) r 1 . ≥ ii. φˆr is (purely) inseparable for one (all) r 1 . ≥ iii. The map [ p]: E E is purely inseparable and j( E) F p2 . iv. End( E) is an order→ in a quaternion algebra. ∈ v. The formal group Eˆ /K associated to E has height 2. b ) If the equivalent conditions in (a) do not hold, then E[ pr] = Z/ prZ for all r 1 , ≥ and the formal group Eˆ /K has height 1 . Further, if j( E) F¯ p, then End( E) is an order in a quadratic imaginary field. ∈ (See Silverman’s “Arithmetic of Elliptic Curves” Chapter V, Section 3 for a proof.) Remark 14. 1. There are further definitions, for instance in terms of sheaf cohomology and residues of differentials. 2. Note that a supersingular curve is not singular. By definition it is an elliptic curve, hence smooth. 3. Item ( ii) explains what we claimed above that End( E) cannot be an order in a quaternion algebra if the curve over a C: for a field to possess a non-trivial purely inseparable extension, it cannot be perfect. An example of a supersingular elliptic curve is the curve X1 ( 11 ) , reduced modulo the prime 19. (See Section 2.1). 2 Supersingular Primes. Closely related to the concept of a supersingular elliptic curve is that of a supersingular prime. There are two different definitions, each refer to a different thing. 4 2.1 Supersingular Primes for an elliptic curve over Q. Definition 15. (Supersingular primes for an elliptic curve) If E is an elliptic curve defined over the rational numbers, then a prime p is supersingular for E if the reduction of E modulo p is a supersingular elliptic curve over the residue field F p. In his 1987 paper, Elkies shows that there are infinitely many such primes for each elliptic curve over Q. The idea is as follow. The reduction Ep of an elliptic curve E at a good prime p is supersingular if and only if it has complex multiplication by some order OD = Z 1 D + √ D ( D 0 or 3 mod 4) , such that p is ramified or inert in Q √ D . 2 − ≡ − Note that for each D, however, there are only finitely many isomorphism classes of elliptic curves over Q¯ with complex multiplication by OD . Furthermore, the j-invariants of these curves are conjugate algebraic integers.
Recommended publications
  • The Class Number One Problem for Imaginary Quadratic Fields
    MODULAR CURVES AND THE CLASS NUMBER ONE PROBLEM JEREMY BOOHER Gauss found 9 imaginary quadratic fields with class number one, and in the early 19th century conjectured he had found all of them. It turns out he was correct, but it took until the mid 20th century to prove this. Theorem 1. Let K be an imaginary quadratic field whose ring of integers has class number one. Then K is one of p p p p p p p p Q(i); Q( −2); Q( −3); Q( −7); Q( −11); Q( −19); Q( −43); Q( −67); Q( −163): There are several approaches. Heegner [9] gave a proof in 1952 using the theory of modular functions and complex multiplication. It was dismissed since there were gaps in Heegner's paper and the work of Weber [18] on which it was based. In 1967 Stark gave a correct proof [16], and then noticed that Heegner's proof was essentially correct and in fact equiv- alent to his own. Also in 1967, Baker gave a proof using lower bounds for linear forms in logarithms [1]. Later, Serre [14] gave a new approach based on modular curve, reducing the class number + one problem to finding special points on the modular curve Xns(n). For certain values of n, it is feasible to find all of these points. He remarks that when \N = 24 An elliptic curve is obtained. This is the level considered in effect by Heegner." Serre says nothing more, and later writers only repeat this comment. This essay will present Heegner's argument, as modernized in Cox [7], then explain Serre's strategy.
    [Show full text]
  • Dessins D'enfants in N = 2 Generalised Quiver Theories Arxiv
    Dessins d'Enfants in N = 2 Generalised Quiver Theories Yang-Hui He1 and James Read2 1Department of Mathematics, City University, London, Northampton Square, London EC1V 0HB, UK; School of Physics, NanKai University, Tianjin, 300071, P.R. China; Merton College, University of Oxford, OX1 4JD, UK [email protected] 2Merton College, University of Oxford, OX1 4JD, UK [email protected] Abstract We study Grothendieck's dessins d'enfants in the context of the N = 2 super- symmetric gauge theories in (3 + 1) dimensions with product SU (2) gauge groups arXiv:1503.06418v2 [hep-th] 15 Sep 2015 which have recently been considered by Gaiotto et al. We identify the precise con- text in which dessins arise in these theories: they are the so-called ribbon graphs of such theories at certain isolated points in the moduli space. With this point in mind, we highlight connections to other work on trivalent dessins, gauge theories, and the modular group. 1 Contents 1 Introduction3 2 Dramatis Personæ6 2.1 Skeleton Diagrams . .6 2.2 Moduli Spaces . .8 2.3 BPS Quivers . .9 2.4 Quadratic Differentials and Graphs on Gaiotto Curves . 11 2.5 Dessins d'Enfants and Belyi Maps . 12 2.6 The Modular Group and Congruence Subgroups . 14 3 A Web of Correspondences 15 3.1 Quadratic Differentials and Seiberg-Witten Curves . 16 3.2 Trajectories on Riemann Surfaces and Ideal Triangulations . 16 3.3 Constructing BPS Quivers . 20 3.4 Skeleton Diagrams and BPS Quivers . 21 3.5 Strebel Differentials and Ribbon Graphs . 23 3.5.1 Ribbon Graphs from Strebel Differentials .
    [Show full text]
  • 13 Elliptic Function
    13 Elliptic Function Recall that a function g : C → Cˆ is an elliptic function if it is meromorphic and there exists a lattice L = {mω1 + nω2 | m, n ∈ Z} such that g(z + ω)= g(z) for all z ∈ C and all ω ∈ L where ω1,ω2 are complex numbers that are R-linearly independent. We have shown that an elliptic function cannot be holomorphic, the number of its poles are finite and the sum of their residues is zero. Lemma 13.1 A non-constant elliptic function f always has the same number of zeros mod- ulo its associated lattice L as it does poles, counting multiplicites of zeros and orders of poles. Proof: Consider the function f ′/f, which is also an elliptic function with associated lattice L. We will evaluate the sum of the residues of this function in two different ways as above. Then this sum is zero, and by the argument principle from complex analysis 31, it is precisely the number of zeros of f counting multiplicities minus the number of poles of f counting orders. Corollary 13.2 A non-constant elliptic function f always takes on every value in Cˆ the same number of times modulo L, counting multiplicities. Proof: Given a complex value b, consider the function f −b. This function is also an elliptic function, and one with the same poles as f. By Theorem above, it therefore has the same number of zeros as f. Thus, f must take on the value b as many times as it does 0.
    [Show full text]
  • Examples from Complex Geometry
    Examples from Complex Geometry Sam Auyeung November 22, 2019 1 Complex Analysis Example 1.1. Two Heuristic \Proofs" of the Fundamental Theorem of Algebra: Let p(z) be a polynomial of degree n > 0; we can even assume it is a monomial. We also know that the number of zeros is at most n. We show that there are exactly n. 1. Proof 1: Recall that polynomials are entire functions and that Liouville's Theorem says that a bounded entire function is in fact constant. Suppose that p has no roots. Then 1=p is an entire function and it is bounded. Thus, it is constant which means p is a constant polynomial and has degree 0. This contradicts the fact that p has positive degree. Thus, p must have a root α1. We can then factor out (z − α1) from p(z) = (z − α1)q(z) where q(z) is an (n − 1)-degree polynomial. We may repeat the above process until we have a full factorization of p. 2. Proof 2: On the real line, an algorithm for finding a root of a continuous function is to look for when the function changes signs. How do we generalize this to C? Instead of having two directions, we have a whole S1 worth of directions. If we use colors to depict direction and brightness to depict magnitude, we can plot a graph of a continuous function f : C ! C. Near a zero, we'll see all colors represented. If we travel in a loop around any point, we can keep track of whether it passes through all the colors; around a zero, we'll pass through all the colors, possibly many times.
    [Show full text]
  • A Review on Elliptic Curve Cryptography for Embedded Systems
    International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 3, June 2011 A REVIEW ON ELLIPTIC CURVE CRYPTOGRAPHY FOR EMBEDDED SYSTEMS Rahat Afreen 1 and S.C. Mehrotra 2 1Tom Patrick Institute of Computer & I.T, Dr. Rafiq Zakaria Campus, Rauza Bagh, Aurangabad. (Maharashtra) INDIA [email protected] 2Department of C.S. & I.T., Dr. B.A.M. University, Aurangabad. (Maharashtra) INDIA [email protected] ABSTRACT Importance of Elliptic Curves in Cryptography was independently proposed by Neal Koblitz and Victor Miller in 1985.Since then, Elliptic curve cryptography or ECC has evolved as a vast field for public key cryptography (PKC) systems. In PKC system, we use separate keys to encode and decode the data. Since one of the keys is distributed publicly in PKC systems, the strength of security depends on large key size. The mathematical problems of prime factorization and discrete logarithm are previously used in PKC systems. ECC has proved to provide same level of security with relatively small key sizes. The research in the field of ECC is mostly focused on its implementation on application specific systems. Such systems have restricted resources like storage, processing speed and domain specific CPU architecture. KEYWORDS Elliptic curve cryptography Public Key Cryptography, embedded systems, Elliptic Curve Digital Signature Algorithm ( ECDSA), Elliptic Curve Diffie Hellman Key Exchange (ECDH) 1. INTRODUCTION The changing global scenario shows an elegant merging of computing and communication in such a way that computers with wired communication are being rapidly replaced to smaller handheld embedded computers using wireless communication in almost every field. This has increased data privacy and security requirements.
    [Show full text]
  • Contents 5 Elliptic Curves in Cryptography
    Cryptography (part 5): Elliptic Curves in Cryptography (by Evan Dummit, 2016, v. 1.00) Contents 5 Elliptic Curves in Cryptography 1 5.1 Elliptic Curves and the Addition Law . 1 5.1.1 Cubic Curves, Weierstrass Form, Singular and Nonsingular Curves . 1 5.1.2 The Addition Law . 3 5.1.3 Elliptic Curves Modulo p, Orders of Points . 7 5.2 Factorization with Elliptic Curves . 10 5.3 Elliptic Curve Cryptography . 14 5.3.1 Encoding Plaintexts on Elliptic Curves, Quadratic Residues . 14 5.3.2 Public-Key Encryption with Elliptic Curves . 17 5.3.3 Key Exchange and Digital Signatures with Elliptic Curves . 20 5 Elliptic Curves in Cryptography In this chapter, we will introduce elliptic curves and describe how they are used in cryptography. Elliptic curves have a long and interesting history and arise in a wide range of contexts in mathematics. The study of elliptic curves involves elements from most of the major disciplines of mathematics: algebra, geometry, analysis, number theory, topology, and even logic. Elliptic curves appear in the proofs of many deep results in mathematics: for example, they are a central ingredient in the proof of Fermat's Last Theorem, which states that there are no positive integer solutions to the equation xn + yn = zn for any integer n ≥ 3. Our goals are fairly modest in comparison, so we will begin by outlining the basic algebraic and geometric properties of elliptic curves and motivate the addition law. We will then study the behavior of elliptic curves modulo p: ultimately, there is a fairly strong analogy between the structure of the points on an elliptic curve modulo p and the integers modulo n.
    [Show full text]
  • An Efficient Approach to Point-Counting on Elliptic Curves
    mathematics Article An Efficient Approach to Point-Counting on Elliptic Curves from a Prominent Family over the Prime Field Fp Yuri Borissov * and Miroslav Markov Department of Mathematical Foundations of Informatics, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; [email protected] * Correspondence: [email protected] Abstract: Here, we elaborate an approach for determining the number of points on elliptic curves 2 3 from the family Ep = fEa : y = x + a (mod p), a 6= 0g, where p is a prime number >3. The essence of this approach consists in combining the well-known Hasse bound with an explicit formula for the quantities of interest-reduced modulo p. It allows to advance an efficient technique to compute the 2 six cardinalities associated with the family Ep, for p ≡ 1 (mod 3), whose complexity is O˜ (log p), thus improving the best-known algorithmic solution with almost an order of magnitude. Keywords: elliptic curve over Fp; Hasse bound; high-order residue modulo prime 1. Introduction The elliptic curves over finite fields play an important role in modern cryptography. We refer to [1] for an introduction concerning their cryptographic significance (see, as well, Citation: Borissov, Y.; Markov, M. An the pioneering works of V. Miller and N. Koblitz from 1980’s [2,3]). Briefly speaking, the Efficient Approach to Point-Counting advantage of the so-called elliptic curve cryptography (ECC) over the non-ECC is that it on Elliptic Curves from a Prominent requires smaller keys to provide the same level of security. Family over the Prime Field Fp.
    [Show full text]
  • Arxiv:2009.05223V1 [Math.NT] 11 Sep 2020 Fdegree of Eaeitrse Nfidn Function a finding in Interested Are We Hoe 1.1
    COUNTING ELLIPTIC CURVES WITH A RATIONAL N-ISOGENY FOR SMALL N BRANDON BOGGESS AND SOUMYA SANKAR Abstract. We count the number of rational elliptic curves of bounded naive height that have a rational N-isogeny, for N ∈ {2, 3, 4, 5, 6, 8, 9, 12, 16, 18}. For some N, this is done by generalizing a method of Harron and Snowden. For the remaining cases, we use the framework of Ellenberg, Satriano and Zureick-Brown, in which the naive height of an elliptic curve is the height of the corresponding point on a moduli stack. 1. Introduction ′ Let E be an elliptic curve over Q. An isogeny φ : E E between two elliptic curves is said to be cyclic ¯ → of degree N if Ker(φ)(Q) ∼= Z/NZ. Further, it is said to be rational if Ker(φ) is stable under the action of the absolute Galois group, GQ. A natural question one can ask is, how many elliptic curves over Q have a rational cyclic N-isogeny? Henceforth, we will omit the adjective ‘cyclic’, since these are the only types of isogenies we will consider. It is classically known that for N 10 and N = 12, 13, 16, 18, 25, there are infinitely many such elliptic curves. Thus we order them by naive≤ height. An elliptic curve E over Q has a unique minimal Weierstrass equation y2 = x3 + Ax + B where A, B Z and gcd(A3,B2) is not divisible by any 12th power. Define the naive height of E to be ht(E) = max A∈3, B 2 .
    [Show full text]
  • ELLIPTIC FUNCTIONS (Approach of Abel and Jacobi)
    Math 213a (Fall 2021) Yum-Tong Siu 1 ELLIPTIC FUNCTIONS (Approach of Abel and Jacobi) Significance of Elliptic Functions. Elliptic functions and their associated theta functions are a new class of special functions which play an impor- tant role in explicit solutions of real world problems. Elliptic functions as meromorphic functions on compact Riemann surfaces of genus 1 and their associated theta functions as holomorphic sections of holomorphic line bun- dles on compact Riemann surfaces pave the way for the development of the theory of Riemann surfaces and higher-dimensional abelian varieties. Two Approaches to Elliptic Function Theory. One approach (which we call the approach of Abel and Jacobi) follows the historic development with motivation from real-world problems and techniques developed for solving the difficulties encountered. One starts with the inverse of an elliptic func- tion defined by an indefinite integral whose integrand is the reciprocal of the square root of a quartic polynomial. An obstacle is to show that the inverse function of the indefinite integral is a global meromorphic function on C with two R-linearly independent primitive periods. The resulting dou- bly periodic meromorphic functions are known as Jacobian elliptic functions, though Abel was actually the first mathematician who succeeded in inverting such an indefinite integral. Nowadays, with the use of the notion of a Rie- mann surface, the inversion can be handled by using the fundamental group of the Riemann surface constructed to make the square root of the quartic polynomial single-valued. The great advantage of this approach is that there is vast literature for the properties of the Jacobain elliptic functions and of their associated Jacobian theta functions.
    [Show full text]
  • Remarks on Codes from Modular Curves: MAGMA Applications
    Remarks on codes from modular curves: MAGMA applications∗ David Joyner and Salahoddin Shokranian 3-30-2004 Contents 1 Introduction 2 2 Shimura curves 3 2.1 Arithmeticsubgroups....................... 3 2.2 Riemannsurfacesasalgebraiccurves . 4 2.3 An adelic view of arithmetic quotients . 5 2.4 Hecke operators and arithmetic on X0(N) ........... 8 2.5 Eichler-Selbergtraceformula. 10 2.6 The curves X0(N)ofgenus1 .................. 12 3 Codes 14 3.1 Basicsonlinearcodes....................... 14 3.2 SomebasicsonAGcodes. 16 arXiv:math/0403548v1 [math.NT] 31 Mar 2004 3.3 SomeestimatesonAGcodes. 17 4 Examples 19 4.1 Weight enumerators of some elliptic codes . 20 4.2 Thegeneratormatrix(apr´esdesGoppa) . 22 5 Concluding comments 24 ∗This paper is a modification of the paper [JS]. Here we use [MAGMA], version 2.10, instead of MAPLE. Some examples have been changed and minor corrections made. MSC 2000: 14H37, 94B27,20C20,11T71,14G50,05E20,14Q05 1 1 INTRODUCTION 2 1 Introduction Suppose that V is a smooth projective variety over a finite field k. An important problem in arithmetical algebraic geometry is the calculation of the number of k-rational points of V , V (k) . The work of Goppa [G] and others have shown its importance in geometric| | coding theory as well. We refer to this problem as the counting problem. In most cases it is very hard to find an explicit formula for the number of points of a variety over a finite field. When the variety is a “Shimura variety” defined by certain group theoret- ical conditions (see 2 below), methods from non-abelian harmonic analysis on groups can be used§ to find an explicit solution for the counting problem.
    [Show full text]
  • Lecture 9 Riemann Surfaces, Elliptic Functions Laplace Equation
    Lecture 9 Riemann surfaces, elliptic functions Laplace equation Consider a Riemannian metric gµν in two dimensions. In two dimensions it is always possible to choose coordinates (x,y) to diagonalize it as ds2 = Ω(x,y)(dx2 + dy2). We can then combine them into a complex combination z = x+iy to write this as ds2 =Ωdzdz¯. It is actually a K¨ahler metric since the condition ∂[i,gj]k¯ = 0 is trivial if i, j = 1. Thus, an orientable Riemannian manifold in two dimensions is always K¨ahler. In the diagonalized form of the metric, the Laplace operator is of the form, −1 ∆=4Ω ∂z∂¯z¯. Thus, any solution to the Laplace equation ∆φ = 0 can be expressed as a sum of a holomorphic and an anti-holomorphid function. ∆φ = 0 φ = f(z)+ f¯(¯z). → In the following, we assume Ω = 1 so that the metric is ds2 = dzdz¯. It is not difficult to generalize our results for non-constant Ω. Now, we would like to prove the following formula, 1 ∂¯ = πδ(z), z − where δ(z) = δ(x)δ(y). Since 1/z is holomorphic except at z = 0, the left-hand side should vanish except at z = 0. On the other hand, by the Stokes theorem, the integral of the left-hand side on a disk of radius r gives, 1 i dz dxdy ∂¯ = = π. Zx2+y2≤r2 z 2 I|z|=r z − This proves the formula. Thus, the Green function G(z, w) obeying ∆zG(z, w) = 4πδ(z w), − should behave as G(z, w)= log z w 2 = log(z w) log(¯z w¯), − | − | − − − − near z = w.
    [Show full text]
  • Congruences Between Modular Forms
    CONGRUENCES BETWEEN MODULAR FORMS FRANK CALEGARI Contents 1. Basics 1 1.1. Introduction 1 1.2. What is a modular form? 4 1.3. The q-expansion priniciple 14 1.4. Hecke operators 14 1.5. The Frobenius morphism 18 1.6. The Hasse invariant 18 1.7. The Cartier operator on curves 19 1.8. Lifting the Hasse invariant 20 2. p-adic modular forms 20 2.1. p-adic modular forms: The Serre approach 20 2.2. The ordinary projection 24 2.3. Why p-adic modular forms are not good enough 25 3. The canonical subgroup 26 3.1. Canonical subgroups for general p 28 3.2. The curves Xrig[r] 29 3.3. The reason everything works 31 3.4. Overconvergent p-adic modular forms 33 3.5. Compact operators and spectral expansions 33 3.6. Classical Forms 35 3.7. The characteristic power series 36 3.8. The Spectral conjecture 36 3.9. The invariant pairing 38 3.10. A special case of the spectral conjecture 39 3.11. Some heuristics 40 4. Examples 41 4.1. An example: N = 1 and p = 2; the Watson approach 41 4.2. An example: N = 1 and p = 2; the Coleman approach 42 4.3. An example: the coefficients of c(n) modulo powers of p 43 4.4. An example: convergence slower than O(pn) 44 4.5. Forms of half integral weight 45 4.6. An example: congruences for p(n) modulo powers of p 45 4.7. An example: congruences for the partition function modulo powers of 5 47 4.8.
    [Show full text]