<<

Cambridge University Press 978-0-521-85003-2 - Volcanism on : A Comparison with Ashley Gerard Davies Index More information

Index

Note: Page numbers in italic refer to figures and tables. Italic page numbers followed by p refer to color plates.

26Al, 59, see also CAIs; SLRIs appearance (Io) 36Ca, 59 color, 12, 155, 157, 160, 161, 1p 41Ca, 59 , 155, 157, 1p, 4p, 5p 182Hf, 59, see also Hafnium-Tungsten radionuclide long-term stability, 33, 156, 160–4, 177 chain Pioneer,8 40K, 59 surface changes, 156, 157, 157, 158, 158, 159, 26Mg, 59, see also 26Al 160–4, 287, 6p 232Th, 59, see also LLRIs Voyager, 12, 156, 157, 2p, 4p, 5p 235U, 59 see also sulphur; surface units (Io) 238U, 59, see also LLRIs Aqua spacecraft, 93, 94, see also MODIS 182W, 5 9 Arinna Fluctus (Io) 2-μm/5-μm ratio (thermal emission), 271–2, temperature, 167 272 ASE (Autonomous Sciencecraft Experiment), 94, 3p advanced autonomy, 297, 301 a’a, 74, 102 Hyperion data processing, 95, 3p Ababinili Patera (Io), 209, 243 retargetting EO-1,94 Acala Fluctus (Io), 266 see also Io Volcano Observer mission concept; adaptive optics (AO), 31, 32, 176, 182, 200–1, 234, spacecraft autonomy 302, 303 ASTER (Advanced Spaceborne Thermal Emission advection, 282, 292 and Reflection Radiometer), 93, 94, 3p Agni Patera (Io), 245 Aten Patera (Io) ALI (Advanced Land Imager), 93, 94 eruption, 15 Altjirra (Io) hot spot, 16 detection, 270 plume deposit, 15, 257 NIMS spectrum, 44 shield volcano, 245 temperature, 167 atmosphere Amaterasu Patera (Io), 16, 11p Earth (Io) correcting infrared data, 94 appearance, 12p effect on volcanism, see plumes, Earth; explosive coverage rate, 215 volcanism discharge rate, 274, 277 Io eruption style, 208, 215, 270 patchy, 38, 86, 177, see also sulphur dioxide flow thickness, 215 Autonomous Sciencecraft Experiment, see ASE hot spot, 16 autonomy, see ASE; spacecraft autonomy; Io Volcano lava flows, 159, 169, 215 Observer mission concept NIMS spectrum, 44 plume, 13, 13, 216, 264 Babbar Patera (Io), 16 temperatures, silicate, 167, 168 Balder Patera (Io) thermal characteristics, 273 SO2 volcanism, 234, 12p thermal emission, 215, 270 basalt volatiles, 216 description, 73 Apis Tholus (Io), 247, 248 generation of, 73, 74, 75

341

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

342 Index

basalt (cont.) flow length, 204 on Earth, 66, 74, 132, 213 fissure length, 204 on Io, 73, 74, 132, 134, 213 Roza flows, 204 on , 73, 77 summary of activity, 206 olivine nephelinite, 76 volume erupted, 204 physical properties, 77, 79, 101, 111, 112, 114, 117, see also continental flood basalts 119 continental flood basalts solidification time, 124 description, 70–1, 202, 203–4 tholeiitic, 189, 202, 203 similarities to Pillan (Io), 204 see also a’a; lava channel; lava flow; lava lake; lava see also Columbia River Flood Basalts; Siberian fountain; pahoehoe; rheology; silicate flood basalts volcanism core Bingham rheology, see modeling: lava flow Earth, 63, 65 emplacement separation of, 57, 59 blackbody thermal emission Io, 26, 58, 67, 67, 68, 68, 69, 177 Boltzmann’s constant, 97 see also Earth; Io brightness temperature, 98 CRBs, see Columbia River Flood Basalts color temperature, 98 Creidne Patera (Io), 16,20 derivation of eruption parameters, 96 CRISM (MRO Compact Reconnaissance Imaging emission, f(T, λ), 97 Spectrometers for ), 298 Planck constant, 97 crust, see lithosphere: Earth; lithosphere: Io Planck function, 96, 97 cryovolcanism single-temperature model, 97–8, 167 , 2, 53, see also Cassini spacecraft Stefan-Boltzmann Constant, 111 , 1, see also Cassini spacecraft Stefan-Boltzmann equation, 111 Triton, 1, see also Voyager spacecraft theory, 97, 97, 98, 100 Culann Patera (Io) three-temperature model, 99, 100 emplacement style, 230 two-temperature model, 99, 105, 105 description, 230, 234, 12p Wien’s displacement law, 97 discharge rate, 230 see also modeling: thermal emission eruption characteristics, 274 Bo¨osaule Montes (Io), 20 plume, 162, 266 shield volcano, 245 CAIs (calcium-aluminum-rich inclusions), 59 temperatures, silicate, 167, 168, 230 calcium plagioclase feldspar, 74 temporal variability, 230, 13p caldera ash-flow, 241, 242 dacite, 73, 77 on Earth and Mars, 28, 240 Daedalus Patera (Io), 16, 245 formation, 241, 242 Danube Planum (Io), 189 resurgent, 217 Dazhbog (Io), 175, 14p on , 239 spacecraft, 297 see also patera Deep Space Network (NASA), 297 , 7, 11,60 density, see physical properties of basalt; sulphur; Cassini spacecraft sulphur dioxide; ultramafic lava at Io, 176, 9p differentiation ISS (Imaging Sub-System), 49, 174, 176, 182, 200, planetary, 58 9p chemical, 71, 288 at Saturn, 1, 53, 301 see also Earth: heating; Io: heating; see also cryovolcanism; Enceladus; Titan discharge rate of eruption, see effusion rate; eruption catena, see patera rate Cattermole, Peter, 2 distribution of hot spots, see hot spots Chaac-Camaxtli region (Io), 12p domes, see lava domes Chaac Patera (Io), 241, 12p Donar Fluctus (Io), 305 Chandrayaan spacecraft, 298 “dual-band” method, see modeling thermal emission channeled lava flow, see lava channel China National Space Administration, 298 Earth chondrites (L and LL), 60, 68, 74, 171 accretion, 55–7 Colchis Regio (Io), 33 aesthenosphere, 64 color (Io), see appearance (Io) age of surface, 70 Columbia River Flood Basalts (CRBs) core, 63, 65 age, 71 separation of, 57, 59 description, 204 D layer, 63 emplacement mechanism, 204 environment constants, 111, 112

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

Index 343

formation, 55 observations, 104, 189, 3p heating, 57, 58, 59, 60, 61, see also heat flow, Earth; Strombolian activity, 189 heat transport; LLRIs, SLRIs, tidal heating thermal characteristics, 273, 274 interior structure, 63, 64, 65 error function and complimentary error function, 116, comparison with Io, 54, see also core; 116 lithosphere; Erta’Ale (Ethiopia, Earth) lithosphere, 57, 65,66 lava lake, 129, 184, 187 magma ocean, 57 discharge (effusion) rate, 186 magnetic field, 63 eruption history, 187–8 mantle, 63, 65, 66, 70, 74 eruption style, 188 plume, 70, 204 tectonics, 188 source of basalt, 66 eruption style, see individual volcanoes, a’a, effusive separation from core, 57, 59 volcanism; explosive volcanism; inflating , 55, 63, 66, 70, 71, 278, sheet flow; lava channel; lava dome; lava flow; 282 lava fountain; lava lake; outbursts; pahoehoe; physical characteristics, 54 thermal signature relief, 54 eruption rate (QE) volcanism, 53 modeling, 113, 128, 131 see also hot spots: Earth see also individual volcanoes Earth Observing 1 spacecraft, see EO-1 ESO (European Southern Observatory), Earth Observing System (EOS), 93 302 volcano observations, 93 Etna (Italy, Earth), 273 see also Aqua; EO-1; Terra , 7, 11, 294 Ebeko (Kurile Islands, Earth), 85 , 60 eclogite, 66 Europa mission (concept), 295–6 effusion rate (QF) and Io, 296 derivation from NIMS data, 129 mean anomaly, 296 and eruption style, 128, 277 European Space Agency (ESA), 297 lava flow, 128–9 missions, 297 lava lake, 129 explosive volcanism modeling, 128–9 causes, 192, 253, 254, 255–6 and thermal emission, 128, 148 on Earth, 242, 254 variability, 128, 130, 131, 199 on Io, 24, 192, 242, 253, 254 Wadge effusion model, 130, 132 see also plumes, Earth; plumes, Io; modeling, waning flow, 130 ascent of magma; volatiles waxing flow, 130 extrusive volcanism see also individual volcanoes Earth, 282–3 effusive volcanism verses intrusive, 283–4 magma fluidity, 208 yearly heat transport, 283 volatile content, 78, 208 Io, 280–2 see also individual volcanoes, eruption style; lava verses intrusive, 284 dome; lava flow; lava lake; lava pond, silicate yearly heat transport, 281 volcanism; sulphur volcanism see also individual volcanoes; heat transport; hot Einstein-Roscoe equation, 76, see also viscosity spots; lava flows, lava lakes etc. ELT (Extremely Large Telescope), 303 Emakong Patera (Io) feldspar, 73, 74 description, 232, 233, 233 Fink, Urey, 34 Galileo observations, 232–3 fire fountain, see lava fountain lava channel, 233, 250 fissure eruption, 134, 193–4, 204, see also Laki; lava lava flows, 233, 233 fountain; Pillan; Tvashtar Paterae lava lake, 184, 233 flow regime (laminar verses turbulent), 134 silicate volcanism, 234 fluctus (pl. fluct¯us), 159, 167, 175, 206, 234, 243, 266, sulphur volcanism, 232 271, 276, 278, 282, see also individual fluct¯us temperatures, 233, 234 flux density emissivity, 98 and eruption style, 150, 151, 152, 274, see also Enceladus, 2, 60, 294 thermal modeling enstatite, 68 flux tube (Io), 8 EO-1 (Earth Observing 1 spacecraft), 93, 301, see also FLIR (Forward Looking Infrared camera), 102, 103, ALI; ASE; Hyperion; spacecraft autonomy 104 Erebus (Antarctica, Earth) formation, see Earth: formation; Io: formation lava lake, 129, 184, 187 Francis, Peter, 1 magma, 189 Fujiyama (Japan, Earth), 247

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

344 Index

future observations of Io garnet, 64 spacecraft GEM (Galileo Europa Mission) Europa mission, 295–6 Io observations, 47, 48, 6p, 7p, 8p, 9p, 12p Io-dedicated mission, 296–7, 300–2 resolutions obtained, 47, 48,49 , 295 Gemini North and South (telescopes), 302 , 294 geyser, 253 telescopes, 302–3 Gish Bar Patera (Io) large-aperture, 302, 303 coverage rate, 232 resolution, 302, 303 description, 232, 232, 242, 271 space-based, 303 eruption rate, 232 spectroscopy of Io, 8, 302 flow thickness, 232 technological advances, 302 Galileo observations, 232, 270 see also ASE; Europa mission; Io Volcano outburst, 232 Observer mission concept; Juno; New temperature, 167 Horizons; spacecraft autonomy; telescopes GMM (Galileo Millennium Mission) Cassini observations, 49, 9p Galilean satellites demise of Galileo,50 discovery and naming, 7 Io observations, 48, 49, 156, 6p, 12p formation, 57, 58 lost observations, 50 Galileo encounters, 48 resolutions obtained, 48,49 orbital resonance, 7, 60–1 GOES (Geostationary Operational Environmental satellite masses, 7 Satellite), 94, see also GOESvolc spectroscopy, 8–9, 19, 42, 86, 159, 302 GOESvolc, 94 surface composition, see basalt; sulphur; sulphur Grannos Patera (Io), 243 12p dioxide; ultramafic lava; water ice Grimsv¨otn (Iceland, Earth), 205, 206 Voyager encounters, 11 see also Callisto, Europa, , Io Haemus Montes (Io), 20, 21 Galilei, Galileo, 7 Hafnium-Tungsten radionuclide chain, 59 Galileo mission, see also Galileo spacecraft Earth core formation, 59 Galileo Europa Mission, see GEM formation of Moon, 59 Galileo Millennium Mission, see GMM see also 182Hf; 182W objectives, 39, 47 Halema’uma’u (Kilauea caldera), 187, see also Prime Mission calderas Io encounters, 47, 48 Hawai’i (USA, Earth), 70, 247, see also hot spots; observations, 155, 6p, 7p, 9p Kilauea; Mauna Kea; Mauna Loa; Pu’u ‘O’o and radiation, 47, 49 Hayabusa spacecraft, 297, see also Itokawa resolutions obtained, 47, 48 heat capacity (sensible and latent), 79, see also basalt; Galileo Europa Mission, see GEM sulphur; sulphur dioxide; ultramafic lava Galileo Prime Mission physical properties Io encounters, 47, 48 heating of Earth and Io, see Earth: heating; Io: objectives, 39, 47 heating; LLRIs; SLRIs; tidal heating observations, 155, 1p, 6p, 7p, 9p, 10p heat flow resolutions obtained, 47, 48 Earth Galileo Millennium Mission, see GMM conductive, 32, 54, 60, 282 Galileo Plasma Subsystem, 259 continental, 54 Galileo spacecraft and extrusive volcanism, 283 demise of, 50 global, 54 description, 39, 40 and intrusive volcanism, 283 High Gain Antenna (HGA), 39, 40 ocean floors and margins, 54 instruments, 40, see also NIMS, Galileo Plasma radionuclides, 60 Subsystem, PPR, SSI, UVS-EUVS see also LLRIs; SLRIs at Io, see GEM; GMM; Galileo Prime Mission Io at , 2, 38, 300 average, 32, 55 Low Gain Antenna (LGA), 41–3, 45 compared to Earth, 55 orbit identifier, 46, 48 lithospheric conduction, 282 observations of Io, 48, 155, see also GEM; and , 280, 281 GMM; Galileo Prime Mission, NIMS, PPR, and mid-size hot spots, 281, 281, 282 SSI observed and modelled, 56,62 technical difficulties, 39, 40, 41, 46, 49, 50, 300 and outbursts, 280, 281 Ganymede, 7, 9, 11 and , 280, 281 orbital resonance, 60 and small hot spots, 281, 281

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

Index 345

volcanic contribution, 280–2 Hubble Space Telescope (HST), 33, 34, 177, 303 see also tidal heating; LLRIs; SLRIs absorption features, 33 heat transport Colchis Regio, 33 advection, 282, 292 Ra Patera, 33, 156 atmospheric controls on, 113–14, 117, 119 Pele plume and deposits, 33, 177, 9p heat loss mechanisms, 109–14, 110, 115 plume, 177 radiation, 110, 111 SO2 atmosphere, 177 convection, 110, 113 Huygens (Titan lander), 297 forced, 110, 113 hydrogen sulphide, 160, 164 natural, 110, 113 and viscosity of sulphur, 82, 82 conduction, 110, 111 Hyperion (hyperspectral imager), 93, 94, 102, 146, thermal emission and effusion rate, 128 298, 3p total heat loss, 110 data analysis, 102–6 yearly (volcanic) Earth, 283 imagers Io, 281 handheld, see FLIR see also heat flow; modeling: lava cooling and hyperspectral, see Hyperion, NIMS solidification multi-spectral, see ALI; ASTER; CRISM; HiRise; High Gain Antenna (Galileo HGA), 39, 40 IRIS; ISS; MODIS; SSI high-temperature volcanism see also telescopes Earth, 53, 96 Inachus Tholus (Io), 247, 248 Io, 53, 74, 165, 167 Indian Space Research Organisation, 298 seen by NIMS, 155 inflating sheet flow seen by SSI, 155 emplacement regime, 290 ultramafic, 167, 169 Laki flows, 198, 200 see also silicate volcanism; ultramafic lava Pillan flows, 200 Hi’iaka (Io) Roza flows, 204 NIMS spectrum, 44 thermal characteristics, 273 temperature, 167 thermal signature, 144, 147 HiRise (MRO imager), 295, 298 infrared, see blackbody thermal emission; hot spots instruments; modeling: thermal emission Earth instruments, remote sensing, see ALI; ASTER; distribution, 278 CRISM; FLIR; Hyperion; HiRise; HRIR; effusion rates, 274 IRIS; ISS (Cassini); ISS (Voyager); MODIS; intra-plate, 63, 70, 204, 278 NIMS; PPR, PPS; SSI; telescopes mass and flux densities, 274 interior models mid-ocean ridges, 66, 70, 278 Earth, see core: Earth; Earth: interior structure; plate margins, 70, 278 lithosphere: Earth; mantle: Earth thermal emission, 274 Io, see core: Io; Io: interior structure; lithosphere: Io Io; mantle: Io classification, 269–70, 271, 281 intrusive volcanism comparison, Earth, 272, 278, 292 Earth, 283 distribution, 1, 279, 287, 13p, 16p versus extrusive, 283–4 effusion rate comparisons, 274, 277 yearly heat transport, 283 flux and mass densities, 151, 271–2, 273, 274 Io, 140, 141 intensity ratios, 271–2, 272 versus extrusive, 284 number, 269, 305, 7p Io persistent, 270, 277, 279 active volcanism, discovery, 1, 10, 12, see also small, 269, 277, 7p Voyager at Io spectral signature, 142, 143, 144, 146, 147, 149, aesthenosphere, 24, 26, 72, 177, 228, 279, 287 151, 270–2 after Galileo mission, see Io after Galileo sporadic, 270, 279 after Voyager mission, see Io after Voyager table, 305 albedo, 8 temperatures, 269 as early Earth, 169, 192, 290 thermal emission, 271, 274, 276, 277 brightness variations, see appearance (Io) volcanic heat transport, 280, 281, 282 bulk composition, 8, 60, 68, 171 see also individual volcanoes; AO; heat flow: Earth; bulk density, 8 heat flow: Io; heat transport; IRIS; NIMS; comparison to Earth, 54, 58, 112 PPR; SSI; Voyager at Io comparison to the Moon, 8, 59 HRIR (Nimbus 1 High-Resolution Infrared convection, 279 Radiometer), 93 crust, see Io: lithosphere

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

346 Index

Io (cont.) radius measurements, 8 core, 26, 58, 67, 67, 68, 68, 69, 177 recycling of Io, 24, 71, 288 density, 58, 66, see also Io: core; Io: lithosphere; Io: relief, 54, see also mountains; patera mantle resurfacing rate, 22, 282 discovery, 7 and silicate volcanism, 8, 27, see individual dominant magma, 22, 27, 164–5, see also silicate volcanoes; silicate volcanism volcanism: dominance on Io; volcanism; mafic spectroscopy, 8–9, 19, 33, 159, 302 volcanism: verses ultramafic volcanism SO2, see sulphur dioxide environment constants, 112 sulphur, 8, 78, see also sulphur; sulphur volcanism and Europa, 60, see also tidal heating surface composition, 8 formation, 57 tholus (pl. tholi), 28, 246, 247 uncertainties, 57, 58, 60 surface temperature, 84, see also PPR fluctus (pl. fluct¯us), 159, 167, 175, 206, 234, 243, thermal gradient, 87, 242, 282 266, 271, 276, 278, 282, see also individual thermal history, 71 fluct¯us tidal dissipation, see tidal heating: Io geomorphology, 4, 20, 10p, 12p see also lava flows; tidal heating, see tidal heating: Io lithosphere: Io; mountains; patera volcanic features, 12 heating, 60–1, see also LLRIs; SLRIs; tidal catalogue, 279 heating distribution, 279, 13p heat flow, see heat flow: Io hot spot list, 305 high-temperature volcanism, 53, 74, 164–5, see volcanoes, see individual volcanoes; hot spots: Io; silicate volcanism patera; shield volcanoes hot spots, see hot spots: Io Io after Galileo impact craters, 12 hot spots interior structure, 24, 25, 26, 66–8, 67, 68, 69, see classification, 290–1 also core: Io; lithosphere: Io; mantle: Io; lava flows, 290 moment of inertia: Io lava lakes, 291 interferometry, speckle, 31 outbursts, 290 Laplace resonance, see Laplace: orbital resonance paterae, 244, 290, 291 lava flows, see lava flows: Io variability, 290, 13p lithosphere, 26, 69, 177, 289 magma composition, 287, 288 density structure, 141, 287 plumes, 291–2 thermal gradient, 141, 242, 243, 282, 287 questions volatile content, 141 composition, 292 magma evolution, 288 local, 293 magnetic field, lack of, 68, 177 global, 292 mantle regional, 293 composition, 68, 71, 171, 177, 288 structure convection, 279, 288 lithosphere (crust), 287–8, 289 differentiation, 288 mantle, 287, 288 structure, post-Galileo, 67, 68 see also hot spots: Io properties, 69, 171, 287 Io after Voyager Voyager epoch, 26 composition, 25, 27 maps and global images, 157, 305, 310–16, heat flow, unknown, 25, see also heat flow: Io 1p, 2p, 4p, 5p internal structure, 24, 25, 26,27 moment of inertia, see moment of inertia: Io questions raised, 25 mountains (mons, montes), 12, 19–20, 21 temporal variability, 25 neutral clouds, 8, 27 volatiles, 25 on eve of Galileo arrival, 38 Io Volcano Observer mission concept orbital evolution, see tidal heating data return, 297 origin and evolution, 57, 60, 61–3 instruments, 298 orbital resonance, 60–1 timing of observations, 299 patera (pl. paterae), see named paterae; patera mission strategy, 300–2 physical characteristics, 54, 112 autonomy, 301, 302, see also ASE; spacecraft plains, see plains (Io) autonomy plasma torus, see torus fault detection and mitigation, 301 plate tectonics, 278, 279, 288, 292 maximising science return, 300, 302 plumes (volcanic), see individual volcanoes; operations, 301 plumes, Io observations polarimetry, 31 context, 298 polar temperatures, 175, 280 eruption evolution, 299 poles, appearance, 20, 2p, 5p lava temperature, 299, 300

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

Index 347

mapping, 298, 299, 300, 301 Laki (Skaft´ar Fires, 1783–1784) (Iceland, Earth) priority targets, 298 eruption description, 202–3 spectral, 299 discharge rate, 135, 203, 277 stereo, 298 lava flows, 198 visible-wavelength, 298, 299 lava fountains, 203 orbit, 297 similarity to Pillan, 205 radiation hardening, 296, 297 volume erupted, 202 seismic station, 297 volatiles released, 203 technological hurdles, 296 Landsat spacecraft, 96, 101, 272, 6p IRIS (Voyager Infrared Radiometer Interferometer Laplace Spectrometer) orbital resonance, 7, 60–1 data modeling, 18, 27–9 satellite masses, 7 hot spot detections, 16, 18, 19, 179, 217 Lastarria (Chile, Earth), 85 instrument, 10, 18 latent heat, 79, see also modeling: lava cooling and limitations, 29 solidification sulphur dioxide detection, 18, 265 lava channel, 15p IRTF (Infrared Telescope Facility), 30, 36, 37, Io, 250 217 thermal signature, 144, 147 ISS (Cassini Imaging Sub-System), see Cassini lava dome, 150, 217 spacecraft thermal characteristics, 273 ISS (Voyager Imaging Sub-System), see Voyager thermal signature, 144 spacecraft lava flow, 22, 15p Itokawa (asteroid), 297 aspect ratio, 74 color modification, 164, see also lava flow: surface James Webb Space Telescope, 303 alteration Janus Patera (Io) cooling, see modeling: lava cooling and lava lake, 184–5, 291 solidification Japanese Aerospace Exploration Agency, 297 emplacement, see modeling: lava flow Jefferies equation, 77 emplacement j¨okulhlaup, 243 insulated flow, see a’a; pahoehoe; inflated sheet JPL (NASA Jet Propulsion Laboratory), 9, 11 flow Juno spacecraft, 295 morphology (Io), 249–50 pit crater flows (Io), 22 Kaminari (Io), 260 sheet flow, see inflated sheet flow Kanehekili (Io), 30 shield crater flows (Io), 22 Karei (Io), 260 sulphur (Io), 23, see also Emakong Patera; Ra Katmai (Alaska, USA, Earth), 241 Patera; Sobo Fluctus Keck I and II (telescopes), 32, 302 surface alteration, 164–5 Kilauea (Hawai’i, USA, Earth), 22, 103, 109, 206, 3p, thermal characteristics, 96, 102, 151, 6p, 15p 273 caldera, 22, 241, 242 thermal signature, 143, 144, 146 discharge (effusion) rate, 277 thickness, 133, 196, 197, 209–10, 215, 232, 249 episodicity, 211 see also individual volcanoes; a’a; basalt; dacite, magma chambers, 214 inflated sheet flow; komatiite; pahoehoe; slope, 214, 247 remote sensing; rheology; rhyolite; sulphur see also Pu’u ‘O’o; Kilauea Iki; Kupaianaha volcanism; ultramafic lava Kilauea Iki (Kilauea, Hawai’i) lava fountain, 15p discharge (effusion) rate, 135, 277 characteristics, temporal, 150, 151 lava fountain, 150 characteristics, thermal, 125, 127, 144, 150, 151, lava pond, 111, 150, 184, 189 273 komatiites 70, 169 description, 150 Commondale, 75, 117 dikes and fissures, 134, 193–4 emplacement mode, 75–6 Earth, 150, 193 eruption temperature, 75, 169 at eruption onset, 74 generation of, 75 heat transport, 201, 202 see also ultramafic lava Io, 3, 32, 49, 150, 193, 194, 200, 201, 207 Krafla (Iceland, Earth), 273, 15p models, 201 Kupaianaha (Kilauea, Hawai’i) Moon, 193 lava lake, 147, 186, 187, 189, 15p outburst explanation, 201, 235 comparison with Pele (Io), 186–7, 188, 277 Pillan (Io), 3, 205, 207 overturning, 189, 291 thermal signature, 144, 151 thermal characteristics, 273, 274 Tvashtar Paterae (Io), 3, 49

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

348 Index

lava fountain (cont.) resurfacing mechanism, 3, 218–19, 221, 222–4, see also outburst; Gish Bar Patera; Loki Patera; 271, 291, 11p modeling: thermal emission; Pillan; ; resurfacing models ; Tvashtar Paterae lava flow, 222–3 lava lake, 15p silicate lava lake model, 3, 148, 160, 176, 184, active, 147, 184 221, 223–4, 225, 241 inactive, 184 silicate ‘magma sea’ model, 3, 228, 270, 11p definition, 147, 184 silicate volcanism at, 218, 227 effusion rate, 129, 186, 187 sulphur lake model, 28–9, 227 flux and mass densities, 151, 186–7, 271–2 temperature distribution, 218, 224, 225, 8p, 11p silicate, 3, 129, 147, 160, 182–3, 184–5, 186, 187, temporal behavior, 32, 220, 221, 222, 224, 270 187, 189, 190 thermal emission, 217, 219, 219, 221, 228, 273, sulphur, 85, 98 274, 276 stages of surface activity, 148, 223 thermal emission model, 149, 221, 225, 226, 227 thermal characteristics, 273 volatiles, 220, 223, 226, 265 thermal signature, 144, 148, 149, 270–1 volume erupted, 222, 227 see individual volcanoes; modeling: thermal see also Loki emission; silicate volcanism; sulphur long-lived radioisotopes, see LLRIs volcanism Long Valley Caldera (California, USA, Earth), 217 lava pond Lonquimay (Chile, Earth), 273 ‘Alae (Kilauea, Hawai’i), 111, 184 ‘Alo’i (Kilauea, Hawai’i), 111, 196, 16p Maasaw Patera (Io), 20, 21, 22, 242, 245 Kilauea Iki (Kilauea, Hawai’i), 111, 184 mafic verses ultramafic volcanism Makaopuhi (Kilauea, Hawai’i), 111, 184, 223 implications, 171, 174–5 see also lava lake Pele, 169, 171, 174 Lei-Kung Fluctus (Io), 159, 175, 278, 282 Pillan, 169, 173 LGA (Galileo Low Gain Antenna), 41–3, 45, see also recycling of Io, 288 Galileo spacecraft re-evaluation of analyses, 172–3, 174, 288 light curve, Io, 30 superheating, 77, 130, 173–5 lithosphere Tvashtar Paterae, 169, 171, 173 Earth, 57, 65,66 ultramafic volcanism, evidence for, 167, 169 Io, 26, 69, 177, 289 see also basalt; ultramafic lava density structure, 141, 287 magma, see basalt; silicate volcanism; mafic versus thermal gradient, 141, 242, 243, 282, 287 ultramafic volcanism; ultramafic lava volatile content, 141 magma chamber, 140 LLRIs (long-lived radioisotopes), 59 magma ocean current heat production (Earth), 60 Earth, 57 current heat production (Io), 60 Io, 71, 174, 288 total heat production (Earth), 60 Malik (Io) see also 40K, 235U, 238U, 232Th temperature, 167 Loki (Io) mantle plumes, 12, 13, 13, 14, 18, 218, 264–5, 265 Earth, 63, 64, 65, 66, 70, 74 telescope observations, 30, 31, 32 plume, 70, 204 Voyager hotspot, 16 source of basalt, 66 see also Loki Patera; IRIS separation from core, 57, 59 Loki Patera (Io), 3 Io, appearance, 14, 98, 156, 159, 217, 11p composition, 68, 71, 171, 177, 288 brightenings, 220 convection, 279, 288 crust age and thickness, 224, 225 differentiation, 288 discharge (effusion) rate, 135 properties, 69, 171, 287 eruption style, 219, 220, 270 structure, post-Galileo, 67, 68 flux and mass density, 151, 274 Voyager epoch, 26 island, 217, 220 partial melting, 53, 71, 72, 73, 171, 288 location, 217 see also Earth: interior; Io: interior major hot spot, 16, 31, 32, 156, 217, 241, 270, 277 maps (Io), 305, 310–16 observations Marduk (Io), 13, 13, 266 Cassini, 176 Mariner spacecraft, 9, 300 Galileo, 98, 176, 217, 218, 219, 220, 224, 8p, 11p Marius, Simon, 7 ground-based, 31, 32, 36, 220, 221 Mars, 3, 28, 53, 58, 240, 245, 247, 300, see also Voyager, 218, see also IRIS individual volcanoes outburst (Loki region), 35, 36, 276, 278 Mars Exploration Rovers, 301

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

Index 349

Mars Express spacecraft, 301 average velocity, 133 Mars Global Surveyor spacecraft, 301 channel width, 133, 136 Mars Odyssey spacecraft, 301 differences (Io/Earth), 134 Mars Reconnaissance Orbiter (MRO) spacecraft, 295, flow regime, 134 297, 301 flow thickness, 133 Masubi (Io), 13, 13 Gratz number (Gz), 133 Maui (Io), 13 Hulme model, 133–4 eruption characteristics, 274 levee width, 133 plume, 13 maximum length, 134 temperatures, 13, 167 model input values, 112 Mauna Kea (Hawai’i, USA, Earth), 247, 247, 302 “properties” models, 132 Mauna Loa (Hawai’i, USA, Earth) Reynolds Number (Re), 134 1984 eruption, 206, 277, 15p rheological models, 76–7, 132, 250 caldera (Mokauaweoweo), 22, 239, 240, 241, 242 yield strength, 77, 79, 250 discharge (eruption) rate, 277, 290 see also lava flow slope, 214, 245, 247 thermal and orbital evolution, 61–2, 63, 71, see also sulphur flow (1950), 85, 86, 164, 234 tidal heating topographic profile, 247 thermal emission, 3, 27, 28 Mazda Paterae (was Mazda Catena), 16, 192 composition constraint, 101 Mbali Patera (Io), 16, 245 dual-band technique, 96, 101 McEwen, Alfred, 23 hyperspectral data, 102–6 mean anomaly (n), 62 model inflating flow spectra, 148 acceleration of (n˙), 62 model input values, 112 attempts to quantify, 63 model lava fountain, 126, 127, 151, 173 effect on tidal heating, 62 model lava lake spectra, 149 future measurements, 296 model pahoehoe spectra, 146 Mihr/Gibil/Kibero Paterae hot spot (Io), 16 multiple-temperature models, 123–7, 173, modeling 199 areal coverage rate, 36, 127, 131, 131, 135 spectral signature, see thermal signature ascent of magma three-temperature models, 99 buoyancy, 134, 135 two-temperature models, 99, 166, 167, 168 in circular conduit, 136 see also blackbody thermal emission; modeling: conduit geometry, 134–7 lava cooling and solidification differences (Earth/Io), 137 MODIS (Moderate-Resolution Imaging in dike, 134 Spectroradiometer), 93, 94 on Earth and Io, 137, 255 MODTRAN, 94 effusion rate, 137, 138 Mokuaweoweo (Mauna Loa caldera), see Mauna Loa exsolution of volatiles, 255–6, 256 moment of inertia from source region, 137–40, 255 Earth, 63 magma reservoirs, 140 Io, 66, 177 model input values, 112 Monan Patera (Io) neutral buoyancy, 140 eruption characteristics, 274 volcanic plume models, 267–8 sporadic activity, 270 see also plumes: Earth; plumes: Io temperature, 167 lava cooling and solidification Moon age and temperature, 123 formation event, 57, 59 color and temperature, 109 heat loss, 58 comparison, Earth and Io, 118, 123 volcanism on, 53, 135 cooling after solidification, 119–22, 123 mountains (mons, montes) cooling before solidification, 114–17, 123 distribution, 280 crust formation, 111, 114–17, 118 formation mechanisms, 251–2, 267, 289 environment effects, 117, 119, 123 Io, 12, 19–20, 20, 21, 251 heat loss, see heat transport lithosphere and, 27, 251, 280, 287, 288 latent heat, 114 morphology, 251 model input values, 112 paterae and, 280 rate of cooling, 109, 117, 123 seepages, 267 Schmidt graphical method, 119–22 volcanic centers and, 280 solidification time, 124 see also individual features see also modeling: thermal emission MRO, see Mars Reconnaissance Orbiter spacecraft lava flow emplacement multi-wavelength observations (Io), 31, see also areal coverage rate, 132, 134, 135 telescopes

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

350 Index

NASA (National Aeronautics and Space pahoehoe, 74, 101, 102, 213, 290, 15p Administration), 1, 9, 33, 36, 294, 295, 296, flow regime, 290 297 flux and mass densities, 151, 272 Near-Infrared Mapping Spectrometer (Galileo), see model spectra, 146 NIMS thermal signature, 143, 144, 146 (NASA), 294, 295 see also lava flow New Horizons spacecraft patera (pl. paterae), 22 Io, 294 appearance, 20, 21, 22, 155, 160, 239, 12p observations, 294 catena, now paterae, 192 support observations, 295 dimensions, 19 Pluto, 294 distribution, 19, 239, 240, 279 New Millennium Program (NASA), 301 formation mechanisms, 242, 243, 244, 289, 290, Newtonian rheology, 76–7, see also rheology 291 NGAO (Next Generation Adaptive Optics), 302 life cycle, 243–5 Nimbus 1 spacecraft, 93 relationship to mountains, 239 NIMS (Galileo-Near Infrared Mapping volcanism in, 160, 240, 241, 290 Spectrometer), see also named paterae; 305, 310–16 data reduction, 42–5 Pele (Io) deriving temperatures, 42–5, 102–6 absence of flows, 190 description, 42, 102, 129 adaptive optics observations, 182 hot spots comparison with terrestrial lakes, 186–7, 188, detection, 42–5, 164–5, 217, 230, 269, 7p, see 190 also individual volcanoes discharge (effusion) rate, 186, 187, 274, 277 model fits, 181, 195, 219 eruption style, 179, 270, 271 spectra, 44, 105, 166, 180 flux and mass densities, 151, 186–7, 188 hyperspectral imaging, 42, 102 lava lake, 3, 160, 175, 182–3, 184, 190, 241, instrument operation, 42–5 291 “jitter,” 43, 44 observations objectives, 40,42 Cassini, 174, 176, 182, 9p observations, 42, 45, 48, 155, 7p, 10p, 11p, 12p, see Galileo, 179, 180, 181, 181, 182, 187, 190, 191, also individual features 9p silicate liquidus temperatures, 166–8 ground-based, 32 spatial resolution, 45, 48,49 HST, 33, 259, 9p spectral resolution, 40, 42, 45 Voyager, 13, 15, 179, 187, 190, 259 spectroscopy, 159 persistence of activity, 3, 15, 32, 178, 179, 182, 185, and SSI data, 166–8 190, 270, 277 sunlight removal, 41–3, 45, 180 plume, 12, 13, 13, 14, 15, 24, 160, 178, 185, 254, technical difficulties, 49, 299 259, 260, 9p volcanic effusion rate, 129 plume deposits, 14, 15, 34, 156, 162, 178, 185, 260, wavelength range, 40,42 9p, 14p Novarupta (Alaska, USA, Earth), 241 silicate volcanism, 18, 9p Nusku Patera (Io), 16 stealth plume, 178, 185 Nyiragongo (DR Congo, Earth), 274 tectonic setting, 178–9, 189, 9p temperature, 18, 169, 170, 174, 179, 181, 187 observational techniques, see adaptive optics; thermal emission, 19, 27, 175, 179, 187, 191, 273, polarimetry; photometry; interferometry; 276, see also IRIS multi-wavelength observations; hyperspectral volatiles, role of, 185, 186, 291 imagers see also lava lake; mafic versus ultramafic olivine, 64, 73, 74, 75, 163 volcanism; plumes: Io Olympus Mons (Mars), 22, 239, 240, 242, 247 peridotite, 68,74 orbital resonance, 60–1, see also tidal heating melting of, 75 orthopyroxene, 162 see also mantle: Earth; mantle: Io outbursts (Io) photometry, 7–8, 29–31 definition, 34, 206 Photo-Polarimeter Radiometer, see PPR discharge (effusion) rate, 36, 135, 255, 277, Pillan (Io) 278 1997 eruption, 157, 193–4, 240, 290, 10p frequency, 32, 276, 281 appearance, 196, 198, 10p, 16p lava fountains, 36, 151, 173, 201, 290 cooling of flows, 196 observations, 34, 35, 36, 194, 200, 235 coverage rate, 196, 198 temperature, 36, 37, 127 discharge rates, 3, 197, 197, 274, 277, see also see also lava fountain; silicate volcanism effusion rate; eruption rate OWL (OverWhelmingly Large telescope), 303 eruption description, 194–200, 205

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

Index 351

eruption style, 3, 160, 192, 194, 198, 199, 200, 201, eruption velocity, 258 270 locations, 259, 260 flow thickness, 196, 197 models, 267–8, 14p Galileo observations, 182, 194, 196, 10p size, 13, 260 lava fountain, 3, 205, 206 stealth phase, 185 magma supply, 206 see also Pele magma temperature, 169, 170, 173, 194 Pillan plume mantle plume, 204 appearance, 264, 266, 9p, 10p patera, 194, 241 deposits, 264, 266, 9p plume and deposits, 157, 178, 194, 196, 197, 254, generation mechanism, 266 260, 266, 9p, 10p see also Pillan rheology, 250 Prometheus-type summary of activity, 206 appearance, 14, 24, 208–9, 257, 261, 262, temporal evolution, 192, 196, 199 264, 6p, 10p thermal emission, 148, 182, 195, 199, 199, 209, comparison with Pele-type, 257, 258, 260, 262 273, 274, 276, 277 composition, 262 volatiles, 203 eruption velocity, 262 volume erupted, 197, 202, 290 generation, 86, 209, 211, 212, 212, 213, 262 see also mafic versus ultramafic volcanism locations, 261, 264 Pillan Patera (Io), see Pillan model, 262, 263, 268, 14p Pinatubo (Philippines, Earth), 254, 255 persistence, 262 and 11 missions, 8, 300 size, 13, 258, 260–2 plains (Io), 20 see also Prometheus eroded, layered, 20, 21, 21,22 resurfacing of Io, 268, 282 erosion by SO2, 21, 22, 267 search for plumes, 15–18, 95 inter-vent, 20, 20 stealth-type Planck’s law of blackbody radiation, see blackbody characteristics, 178, 266 thermal emission generation mechanism, 37, 258, 266 plate tectonics, see Earth; hot spots Voyager observations, 13,24 plume deposits, see individual locations; plumes, see also individual volcanoes and spacecraft; Earth; plumes, Io explosive volcanism; sulphur dioxide: plumes, Earth seepages dimensions, 254, 255 Pluto, 294 discharge (effusion) rate, 254, 255 Poas (Costa Rica, Earth), 85 explosive activity, 253, 254 polarimetry, 7–8, 31 geyser, 253 PPR (Galileo Photo-Polarimeter Radiometer) see also individual volcanoes; explosive volcanism; heat flow measurement, Io, 55, 56 modeling: ascent of magma description, 45 plumes, Io hot spot detections, 45, 175, 217, 269, 305, 8p Cassini observations, 9p, 14p, see also Cassini objectives, 40 spacecraft observations, 46, 175–6, 8p, see also individual changes, 160–4, 268 features deposits, 14, 155, 253, 256, 257, 6p radiometry, Io, 46 discovery, 12, 12, 253, 256–7 resolution, spatial, 40, 45, 48, 175 dimensions, 13, 253 technical difficulties, 45 comparison of main types, 258, 260, 262 thermal emission, 45, 175–6 composition, 256–7 thermal maps, 45, 175, 8p Galileo observations, 9p, 10p, 14p, see also Galileo wavelength range, 45 spacecraft PPS (Voyager Photo-Polarimeter), 10 generation mechanisms, 24, 86, 258 Prime Mission, see Galileo Prime Mission HST observations, 9p Prometheus (Io) locations, 259, 260, 261, 264, 267, 13p, 16p basalt, 213 Loki-type (Voyager epoch), 13, 14, 24, 258, 265 coverage rate, 209 as hybrid, 258, 265 discharge rate, 3, 211, 215, 274, 277 as Prometheus-type, 264, 265 episodicity, 211, 214 variability, 265 eruption characteristics, 273, 274 see also Loki; Loki Patera eruption style, 160, 169, 208, 209, 210–11, 270 Pele-type flow ages, 209, 210, 6p appearance, 14, 15, 24, 258, 258, 259, 260, 9p flow thickness, 209–10 comparison with Prometheus-type, 257, 258, 260 lava flows, 3, 159, 208, 241, 6p, 7p composition, 260 lava tubes, 210 detections, 259, 9p location, 208

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

352 Index

Prometheus (Io) (cont.) see also individual instruments and spacecraft; magma chamber, 211, 212, 214 blackbody thermal emission; modeling: magma supply, 211, 212 thermal emission observations, 28, 210, 269, 303 Reynolds Number (Re), 134 persistence of activity, 208, 209, 270 rheology, see basalt; sulphur; ultramafic lava; plume and deposits, 13, 13, 14, 24, 156, 208–9, viscosity; volatiles; yield strength 213, 263, 264, 6p, 7p; see also plumes: Io rhyolite, 73, 77 similarity to Kilauea (Earth), 211, 213–15, 216 “Ring of Fire” (Earth), 278 temperatures, 105, 105, 167, 168, 209, 210 Roemer’s method, 7 thermal emission, 211, 270, 276, 7p, 13p Ruaumoko Patera (Io), 243 volatiles, 209, 210 Russian Federal Space Agency, 297 Prometheus Mensa (Io), 6p Ruwa Patera (Io), 245 Prometheus Patera (Io), 6p Pu’u ‘O’o-Kupaianaha (Kilauea, Hawai’i) Saint Helens (Washington, USA, Earth), 197, 247, coverage rate, 215 254, 255, 283 degassing, 214 Saturn, 1, 9–10, see also Cassini spacecraft; Voyager discharge rate, 215, 274 spacecraft episodicity, 214 serpentinization, 57 flow emplacement, 143, 208, 6p Shamash Patera (Io), 163, 270 flux and mass densities, 274 shield volcanoes lava composition, 76, 189 Earth, 28, 245, 247, 247 lava lake, 129 Io magma supply, 189, 214 evolution, 249 plumes, 213 geomorphology, 245, 248 thermal emission, 274 lava flows from, 245 see also Kilauea; Kupaianaha low shields, 245 pyroxene, 64, 73, 74, 163 steep-sided shields, 230, 231, 246, 246 tholi, 28, 246, 248 Q (quality factor) topographic profiles, 247 definition, 62 Mars, 245, 247 Io, 63 see also individual features; caldera; patera; Jupiter, 63, 295 tholus short-lived radioisotopes, see SLRIs RAD750 flight processor, 297 Siberian flood basalts, 71, see also continental flood radioisotopes basalts heating of Io, 60 Sigurd (Io) see also CAIs; LLRIs; SLRIs NIMS spectrum, 44 Ra Patera (Io) temperature, 167 lava flows, 22, 23, 26, 83, 156, 245 silicate magma plume and deposits, 33, 34, 158 production from mantle, 53 shield volcano, 245 see also basalt; dacite; komatiite; rhyolite; see also sulphur volcanism ultramafic lava resurfacing of Io silicate volcanism by flows, 158, 159 dominance on Io, 22, 27, 177 by plumes, 141, 158, 189 Earth, 53 rate, 22, 36 evidence for (Io), 22, 36, 37, 37, 74, 165, 166–8, remote sensing see also Io: geomorphology; lava flows; atmospheric correction, 94 lithosphere; mountains; patera in daylight, 41–3, 45, 99, 100 interaction with sulphur, 24, 27, 85, 229, 230, 234, handheld imagers, see FLIR 251, 253, 266 infrared data interaction with SO2, 73, 86, 209, 243, 253, 262, estimation of eruption parameters, 96 264, 266 lava surface temperature, 96 magma temperature, 27, 96 temperature distribution, 96 low-viscosity magmas (Io), 192, 198, 241, 245, temporal coverage, importance of, 183 248, 252, 255 spectral coverage, importance of, 183 see also extrusive volcanism; hot spots; intrusive visible wavelengths volcanism; lava channel; lava flow; lava context imagery, 95 fountain; lava lake; lava pond plume detection, 95 Siretoko-Iosan (Japan, Earth), 85, 234 temperature sensitivity, 95 Skaft´ar Fires (Iceland, Earth), see Laki volcanic activity, 95 SLRIs (short-lived radioisotopes), 57, 59

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

Index 353

origin, 59 Steropes Patera (Io), 243, 12p as Solar System chronometer, 59 Subaru (telescope), 302 see also individual isotopes sulphur (S) SO2, see sulphur dioxide allotropes Sobo Fluctus, 234, 243, 271, 276, 12p common, 78–81, 84 sodium chloride (NaCl), 163 short-chain, 33, 34, 162, 264 Solid State Imaging experiment (Galileo), see SSI color and composition, 159–60, 163 South Polar Ring (Io), 264 color and temperature, 82, 84, see also South Volund (Io), see Zamama Ra Patera spacecraft, see Aqua; Cassini; Chandrayaan; Deep phase diagram, 84 Impact; EO-1; Europa mission; Galileo; photo-dissociation, 162 GOES; Hayabusa; Io Volcano Observer physical properties, 79, 82, 83, 85–6 mission concept; Juno; Landsat; Mariner; industrial flows, 85 , Mars Global Surveyor; Mars interaction with silicates, 27, 229, 230, 234, 251, Odyssey; Mars Reconnaissance Orbiter; New 289 Horizons; Nimbus 1; Pioneer; Terra; Viking; Io lithosphere, in, 87, 289 Voyager plumes, 160, 162, 163, 260, 264 spacecraft autonomy quenching to preserve color, 23, 84, 234 artificial intelligence (AI), 302 spectroscopy, 8, 33, 159, 160 data processing, 94 viscosity, 81, 82 ASE, 301 see also sulphur volcanism; rheology; surface units benefits, 301, 302 (Io) direct broadcast of data, 94 sulphur dichloride (Cl2S), 163 GOESvolc, 94 sulphur dioxide (SO2) MODVOLC, 94 atmosphere, 38, 86, 177 on future missions, 300–1, 302 detected on Io, 8–9, 18, 19, 73, 86, 155, 159, 234, see also ASE; Io Volcano Observer mission 235 concept dissociation, thermal, 33 speckle interferometry, 31 distribution (Io), 86, 177, 234 Spencer, John, 294 erosion of plains, 21, 22, 267 spectra fluid on Io surface, 234, 289 NIMS data, 44, 105, 166, 180 frost on Io surface, 86, 177, 235 Io reflectance, 162, 302 interaction with silicates, 73, 86, 209, 243, 262, IRIS, 19 264 sulphur, 163 Io lithosphere, in, 87, 289 sulphur dioxide, 162 seepages, 267, 267 thermal emission, 44, 97, 100, 105, 146, 148, 149, solidification time, 124 151, 166, 180, 181, 195, 199, 219, 226, see solubility in silicates, 87, 87, 88,89 also individual volcanoes solubility in sulphur, 88,89 see also individual materials; modeling: thermal phase diagram, 84 emission; spectroscopy physical properties, 79, 85–6 spectroscopy role in explosive volcanism, 73, 86, 177, 256, 259 Galilean satellites, 8–9, 19, 42, 86, 159, 302 see also plumes, Io Io, 8–9, 19, 33, 159, 302 sulphur trioxide (SO3), 164 spinel, 64 sulphur volcanism Spitzer Space Telescope, 303 Earth, SSI (Galileo Solid State Imaging experiment) Ebeko, 85 description, 40,41 industrial flows, 85 filters, 41 Lastarria, 85 hot spot detection, 165, 6p Poas, 85 objectives, 40,41 Mauna Loa, 85, 86, 164, 234 observations, 41, 155, 156, 230, 1p, 6p, 9p, 10p, Siretoko-Iosan, 85, 234 12p, see also individual features Volcan Azufre, 85 resolution, 48, 6p Io, 23, 289 technical difficulties, 49 Emakong Patera, 232, 233, 233 temperature detection limit, 107 Pele plume, 34, 160, 162 temperature derivation, 106, 107, 107 Ra Patera, 22, 23, 26, 83, 156, 245 see also mafic verses ultramafic volcanism Sobo Fluctus, 234 stealth plumes, see plumes, Io interaction with SO2,24 Stefan-Boltzmann constant, 111 lava flow, 85, 289 Stefan-Boltzmann equation, 111 lava lake, 85, 98

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

354 Index

sulphur volcanism (cont.) tidal heating as secondary process, 85, 164, 177, 234, Earth, 61 289 Io, 60–1 verses silicate volcanism (Io), see silicate coupled dissipation and orbital evolution, 61–3 volcanism: dominance on Io dissipation and models, 24, 61, 228, 279–80, see also individual volcanoes 287, 16p sulphurous acid (H2SO3), 164, 165 orbital evolution, 62, 288 sulphuryl chloride (Cl2SO3), 163 orbital resonance, 60–1; and onset of volcanism, superheating of magma, 72, 77, 130, 173–5 71 surface temperature (Io), 84, see also PPR steady-state, 62 surface units (Io), 161, 1p upper limit, 62 dark, 160 and volcano distribution, 279, 16p green, 163 timescale red, 162 volcanic processes, 142, 143 red and orange, 162 TMT (Thirty-Meter Telescope), 303 yellow, 162 Tohil Mons (Io), 230 white and gray, 163, 233 Tsui Goab Tholus (Io), 246 see also individual location descriptions; Tupan Patera (Io) appearance (Io); basalt; spectra; sulphur; description, 229, 12p sulphur dioxide; ultramafic lava discharge rate, 230, 274 Surt (Io) eruption characteristics, 274 eruptions, 15, 177, 201–2, 234 eruption style, 184, 229, 271 outburst, 34, 235, 276 NIMS spectrum, 44 plume deposit, 15, 156, 235, 254, 257, 14p temperatures, 167, 229 temperature and area, 127, 235 temporal behavior, 230, 13p thermal emission, 234, 235, 271, 276, 276, Tvashtar Paterae (was Tvashtar Catena) (Io) 277 appearance, 200, 242, 14p Svarog Patera (Io), 16 discharge rate, 201 episodic activity, 206 Tambora (Indonesia, Earth), 202 eruption style, 192, 201, 271 Tawhaki Patera (Io), 250 lava fountain, 3, 200 Tawhaki Vallis (Io), 250 magma supply, 206 telescopes magma temperature, 169, 170, 173 discovery of Io, 7 observations ground-based, 7, 30, 36, 217, 302–3 Cassini spacecraft, 200, 9p large-aperture, 302, 303 Galileo spacecraft, 200 observation techniques, 29–31 ground-based, 200–1 resolution, 29, 33, 302, 303, 303 plume and deposits, 176, 200, 254, 264, 14p space-based, 33, 34, 177, 303, see also HST renaming, 192 recent technological advances, 302 summary of activity, 206 see also individual telescopes; AO; NGAO temperatures, 169, 170, 171, 201 Terra spacecraft, 93, see also ASTER; MODIS temporal behavior, 192, 206 thermal conductivity, 78, 79, 112, 117, 118, see also see also lava fountains basalt; sulphur; sulphur dioxide; ultramafic lava: physical properties Ulgen Patera (Io), 16 thermal emission, see blackbody thermal emission; ultramafic lava modeling: thermal emission description, 74 thermal signature on Earth, 70 and eruption style, 142, 144, 270–1 generation of, 74, 75 see also inflated sheet flow; lava flow; lava fountain; on Io, 71, 73, 167, 169, 192 lava lake; lava pond; modeling, thermal physical properties, 75, 79, 111, 112 emission; pahoehoe solidification time, 124 tholus (pl. tholi), 28, 246, 248 see also komatiite; mafic versus ultramafic see also individual features; shield volcanoes volcanism Thor (Io) Ultraviolet/Extreme Ultraviolet Spectrometer lava flows, 235, 264 (Galileo), see UVS/EUVS location, 235 UVS (Voyager Ultraviolet Spectrometer), 10 plume and deposits, 235, 264, 14p UVS-EUVS (Galileo Ultra-Violet/Extreme torus (Io) Ultra-Violet Spectrometer) chlorine in, 163 objectives, 40 plasma, 27 description, 46 sulphur, 159 wavelength range, 40

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-85003-2 - Volcanism on Io: A Comparison with Earth Ashley Gerard Davies Index More information

Index 355

Venus, 53, 59 Galilean satellite encounters, 11 Viking spacecraft, 300 global mosaic, Io, 157, 2p, 4p, 5p Viracocha Patera (Io), 16 “Grand Tour” of Solar System, 1, 10, 11, 300 viscosity, 76 Neptune, 1 Einstein-Roscoe equation, 76 Saturn, 1 silicates, 76–7, 77, 79 Triton, 1 sulphur, 79, 82, 85–6 Uranus, 1 sulphur dioxide, 79,87 hot spot detection, 16, 18, 19, see also IRIS VLT (Very Large Telescope array), 302 images obtained, 12, 2p, 11p, see also individual volatiles features effusive volcanism, role, 78 instruments, 10, 23, see also IRIS, UVS explosive volcanism, role, 78, 253, 254, 255–6, at Io, 1, 11, 11, 12, 12, 15–18, 155 256, 257 at Jupiter, 1, 11, 300 in magma, 78, 255–6 plume observations, 13, 14, 24, see also plumes, Io volcanism on Earth, 78 see also Io after Voyager volcanism on Io, 78, 86, 141 see also explosive volcanism; sulphur dioxide; Wadge model, see effusion rate water; plumes, Earth; plumes, Io water Volcan Azufre (Galapagos Islands, Earth), icy Galilean satellites, 8, 9 85 Io, 9, 86, 164 volcanic features (Io), 12 role in volcanism, 86 catalogue, 279 WFPC2 (HST Wide Field Planetary Camera 2), 33 distribution, 278–80, 13p, 16p hot spot list, 305 Yellowstone (Wyoming, USA, Earth) see also hot spots; lava channel; lava flow; lava caldera, 241 fountain; lava lake; patera; plumes hot spot, 70, 204 volcanic plumes, see plumes, Earth; plumes, Io Old Faithful (geyser), 253 volcanic thermal emission, see blackbody thermal yield strength, 79, 250, see physical properties of emission; modeling: thermal emission basalt; sulphur; sulphur dioxide; ultramafic volcanism lava definition, 1 planetary Zal (Io) Earth, 3, 282–3 temperature, 167 Enceladus, 2 Zamama (Io) Io, 1, 9, 12, 277, 280–2, 292 description, 230–1 Mars, 3, 53 discharge rate, 231 Moon, 53, 135 eruption characteristics, 274 Titan, 1 eruption style, 169, 231, 270 Triton, 1 Galileo data, 166, 168, 168, 230 Venus, 19, 53 lava flows, 230, 231, 231 see also individual volcanoes; Earth; heat flow; hot NIMS spectrum, 44 spots; Io plume, 231, 264 Volund (Io), 13, 13 shield volcanoes, 230, 231, 231, 246, 247 Voyager spacecraft silicate volcanism at, 166, 166, 167, 230 description, 2, 9–10, 10 surface deposits, 230, 231 discovery of active volcanism, 1, 12, 12 temporal behavior, 231, 270, 13p

© in this web service Cambridge University Press www.cambridge.org