On String Integrability

Total Page:16

File Type:pdf, Size:1020Kb

On String Integrability !"# $%&'!%! #!& & !' ( )) )(()* + !&," u qrt rrs9p sQuvyu ISBN 789778 : ; < 9 = <<> < ? @ = @ ? ? :A;C @A ? D C = 9E E << 9 @ = E > ?= < ? ! "# "$ #Uur rvphy "#% &'()# Vvr v T@&$ ' Vhyh Trqr F <A9 <>A789778 7E: C G H 7E; To Dagmar List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I V. Giangreco Marotta Puletti, “Operator product expansion for 5 pure spinor superstring on AdS5 × S ”, Journal of High Energy Physics, 0610:057, 2006 [arXiv:hep-th/0607076]. II V. Giangreco Marotta Puletti, T. Klose and O. Ohlsson Sax, “Fac- 5 torized world-sheet scattering in near-flat AdS5 × S ”, Nuclear Physics B792:228-256, 2008 [arXiv:0707.2082 [hep-th]]. III D. Astolfi, V. Giangreco Marotta Puletti, G. Grignani, T. Harmark and M. Orselli, “Finite-size corrections in the SU(2)×SU(2) sec- 3 tor of type IIA string theory on AdS4 × CP ”, Nuclear Physics B810:150-173, 2009 [arXiv:0807.1527 [hep-th]]. IV V. Giangreco Marotta Puletti, “Aspects of quantum integrability 5 for pure spinor superstring in AdS5 ×S ”, Journal of High Energy Physics, 0809:070, 2008 [arXiv:0808.0282 [hep-th]]. Reprints were made with permission from the publishers. To them, I said, the Truth would be literally nothing but the shadow of the images Plato, The Republic If you look only in one direction your neck will become stiff Chinua Achebe, A man of the people Contents 1 Introduction: Motivations, Overview and Outline . 1 2 The AdS5/CFT4 duality . 7 2.1 Introduction . 7 2.2 N = 4 super Yang-Mills theory in 4d . 9 2.3 The algebra . 11 2.4 Anomalous dimension and spin chains . 14 2.4.1 The Coordinate Bethe Ansatz for the su(2) sector . 15 3 Classical vs. Quantum Integrability . 25 3.1 Principal Chiral Model . 25 3.2 Coset model . 30 3.3 The magic of (1+1)-dimensional theories . 33 3.4 Quantum Integrability . 40 4 Green-Schwarz-Metsaev-Tseytlin superstring . 43 4.1 Green-Schwarz action in flat space . 43 5 4.2 Type IIB superstring on AdS5 × S : GSMT action . 45 4.3 Classical integrability for the GSMT superstring action . 49 5 5 The Pure Spinor AdS5 × S superstring . 51 5.1 Motivations . 51 5.2 The Berkovits formalism: basic review . 53 5 5.3 Type IIB superstring on AdS5 × S : PS action . 58 5 5.4 Classical integrability of the AdS5 × S PS superstring action . 66 5 5.5 Quantum integrability of the AdS5 × S PS superstring action . 69 5.6 Quantum Integrability: Papers I and IV . 70 5.6.1 Absence of anomaly: Paper IV . 70 5.6.2 The operator algebra: Papers I and IV . 72 5.6.3 The field strength: Paper IV . 75 6 AdS/CFT as a 2d particle model and the near-flat-space limit . 77 6.1 Introduction . 77 6.2 Light-cone gauge, BMN limit and decompactification limit . 79 6.2.1 Light-cone gauge . 79 6.2.2 Decompactification limit . 83 6.2.3 The fields . 84 6.2.4 BMN limit . 85 6.3 Near flat space limit . 89 6.4 The world-sheet S-matrix in the NFS limit . 92 6.4.1 The dressing phase . 98 6.5 Paper II . 100 7 The AdS4/CFT3 duality . 105 7.1 Introduction . 105 7.2 The field theory . 107 7.3 The algebra . 108 7.4 Spin chains and anomalous dimension . 110 7.4.1 The SU(2) × SU(2) spin chain . 111 7.5 Integrability on the string theory side . 113 7.5.1 The BMN limit . 114 7.6 Paper III . 118 8 Epilogue . 123 9 Summary in Swedish Aspekter på integrabilitet av strängteori . 127 10 Appendix . 131 10.1 Notation . 131 10.2 PS formalism: BRST invariant charges . 131 10.3 The AdS4/CFT3 duality: Preliminaries . 133 Bibliography . 137 1 Introduction: Motivations, Overview and Outline The main purpose of this thesis is to explain the results which are contained in the papers I, II, III and IV. Also I would like to illustrate which are the main motivations which pushed my research in such directions, the context and to give at least the flavor of the incredible “hidden” beauty which is in the gauge/string dualities. In order to understand the results and the techniques used in the works, I will need to introduce certain topics and formalisms as well as some back- ground material. As this is the typical readership, I have chosen the level of the presentation such as to address a Ph.D. student who works on String The- ory, but not necessarily on the AdS/CFT correspondence or on integrability. My task is to give the reader the possibility to be able to autonomously under- stand and go through the papers at the end of this thesis. Nevertheless, I will assume that the reader is familiar with supersymmetric strings, in particular with type IIB/A superstrings. The order used to illustrate the various subjects does not strictly reflect how they have been historically developed, but rather the necessity to follow the contents of the papers closely. As opening the Russian Matryoshka dolls, I will start from the biggest doll (the String Theory) to the smallest one (the integrability in AdS/CFT) to illus- trate, in this introduction, the contents which the thesis is focused on. With the exception of gravity all the other three fundamental forces which are present in Nature (electromagnetic, weak and strong nuclear interactions) are unified in the Standard Model. They are derived from the same first prin- ciple, which is a (local) symmetry principle: the gauge symmetry. For this reason, these theories are defined as gauge theories. The Standard Model is based on the fundamental concept of point-like particles and the interactions are described in terms of mediators (photons, W ± and Z0 bosons and gluons respectively). I will think of such a model as describing particle physics, as something distinguished by gravity in the traditional approach. A revolution- ary point of view is adopted in String Theory. String Theory provides us with an elegant framework, where all the four interactions are joined together. The string is a one-dimensional object and its spectrum, namely the collection of frequencies and masses that the string produces by vibrating, naturally con- tains the mediator for the gravitational force, the graviton, treating gravity on 1 equal footing with the other fundamental interactions. The concept of replac- ing the point-particles with an extended fundamental object (the string) can be generalized: one can construct surfaces of higher dimensions (the branes) which replace the strings. These also are important building-blocks of String Theory. The word “framework” used to define String Theory might seem reductive, but it is the correct one: String Theory is not a complete and fully understood theory, but it is more a “structure”, an incredible rich one, where different types of string theories live1. They are related by dualities, a very special kind of symmetry which relates two apparently different physical systems. I will come back on the topic of dualities below. However, all these pluralities of string theories should be a special limit, or at least they should be contained, in a more general and yet quite mysterious (including its name!) theory, the M-theory. A part from the hope to see the Standard Model emerge from String Theory one day, there is another way in which the fate of the string is tied to parti- cle field theories. In 1997, Maldacena conjectured that certain closed super- strings in a ten-dimensional curved background describe the same physics of the gauge theory of point-particles in four-dimensions (AdS5/CFT4) (another smaller Russian shell). In particular, on one side we have the type IIB super- 5 string on AdS5 ×S , and on the other side the supersymmetric N = 4SU(N) Yang-Mills theory in four dimensions. The backgrounds where the string lives 5 (AdS5 × S ) is built of a five-dimensional anti-De Sitter space (AdS), a space with constant negative curvature, times a five-dimensional sphere (S), cf. fig- ure 1.1. In 2008 Aharony, Bergman, Jafferis and Maldacena proposed the existence of a further gauge/gravity duality between a theory of M2-branes (three-dimensional membranes) in eleven dimensions and a certain gauge the- ory in three dimensions (AdS4/CFT3). The eleven-dimensional M2-theory can be effectively described by type IIA superstrings when the string cou- pling constant is very small. For a reason that will be clear later, I will con- sider only the type IIA as the gravitational dual in the AdS4/CFT3 correspon- dence, but the reader should keep in mind that this is just a particular regime of the full correspondence. The background where the type IIA strings live is a four-dimensional anti-De Sitter space times a six-dimensional projective space (CP3). Hence, we have seen that the gravity side in the dualities is associated with the word “AdS”. What is CFT? They are the initials of Conformal Field Theory. The dual 1The different string theories I am referring here in the Introduction are the type IIA superstring, the type IIB superstring, the type I superstring, the Heterotic SO(32) string, the Heterotic E8 × E8 string, and finally I should also include the eleven-dimensional supergravity theory. In the rest of the thesis we will consider only the type IIB superstring, cf. 2 – 6, and the type IIA superstring in chapter 7. 2 5 Figure 1.1: AdS5 × S . The five-dimensional anti-De Sitter space is represented as a hyperboloid on the right hand side, while the five-dimensional sphere is drawn on the left hand side.
Recommended publications
  • Amplitudes, Form Factors and the Dilatation Operator in $\Mathcal {N
    HU-MATH-2014-26 HU-EP-14/38 Amplitudes, Form Factors and the Dilatation Operator in N = 4 SYM Theory Matthias Wilhelm Institut f¨ur Mathematik und Institut f¨ur Physik Humboldt-Universit¨at zu Berlin IRIS Geb¨aude Zum Großen Windkanal 6 12489 Berlin [email protected] Abstract We study the form factor of a generic gauge-invariant local composite operator in = 4 SYM theory. At tree level and for a minimal number of external on-shell N super fields, we find that the form factor precisely yields the spin-chain picture of integrability in the language of scattering amplitudes. Moreover, we compute the cut- constructible part of the one-loop correction to this minimal form factor via generalised unitarity. From its UV divergence, we obtain the complete one-loop dilatation operator of = 4 SYM theory. Thus, we provide a field-theoretic derivation of a relation N between the one-loop dilatation operator and the four-point tree-level amplitude which was observed earlier. We also comment on the implications of our findings in the context of integrability. Keywords. PACS: 11.15.-q; 11.30.Pb; 11.25.Tq; 11.55.-m arXiv:1410.6309v3 [hep-th] 24 Mar 2015 Keywords: Super-Yang-Mills; Form factors; On-shell methods; Anomalous dimensions; Integrability Contents 1 Introduction 2 2 Form factors and spin chains 4 2.1 Composite operators and spin chains 5 2.2 Form factors in the free theory 9 3 One-loop form factors 14 3.1 The triangle coefficient from the triple cut 17 3.2 The bubble coefficient from the double cut 20 3.3 Summary of the result 23 4 Divergences, renormalisation and the dilatation operator 24 5 Conclusion and outlook 27 A Some facts about amplitudes 30 B Example calculations 31 B.1 su(2) subsector 31 B.2 sl(2) subsector 33 C Basis integrals 35 1 Introduction The maximally supersymmetric Yang-Mills theory ( = 4 SYM theory) in 3+1 dimensions N is frequently called the hydrogen atom of the 21st century, and it might be the first non- trivial quantum field theory that can be solved exactly.
    [Show full text]
  • UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality Permalink https://escholarship.org/uc/item/8qh706tk Author Dzienkowski, Eric Michael Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Santa Barbara Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Eric Michael Dzienkowski Committee in charge: Professor David Berenstein, Chair Professor Joe Polchinski Professor David Stuart September 2015 The Dissertation of Eric Michael Dzienkowski is approved. Professor Joe Polchinski Professor David Stuart Professor David Berenstein, Committee Chair July 2015 Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality Copyright c 2015 by Eric Michael Dzienkowski iii To my family, who endured my absense for the better part of nine long years while I attempted to understand the universe. iv Acknowledgements There are many people and entities deserving thanks for helping me complete my dissertation. To my advisor, David Berenstein, for the guidance, advice, and support over the years. With any luck, I have absorbed some of your unique insight and intuition to solving problems, some which I hope to apply to my future as a physicist or otherwise. A special thanks to my collaborators Curtis Asplund and Robin Lashof-Regas. Curtis, it has been and will continue to be a pleasure working with you. Ad- ditional thanks for various comments and discussions along the way to Yuhma Asano, Thomas Banks, Frederik Denef, Jim Hartle, Sean Hartnoll, Matthew Hastings, Gary Horowitz, Christian Maes, Juan Maldacena, John Mangual, Don Marolf, Greg Moore, Niels Obers, Joe Polchisnki, Jorge Santos, Edward Shuryak, Christoph Sieg, Eva Silverstein, Mark Srednicki, and Matthias Staudacher.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Raman Sundrum July 26, 2019 CONTACT INFORMATION Physical Sciences Complex, University of Maryland, College Park, MD 20742 Office - (301) 405-6012 Email: [email protected] CAREER John S. Toll Chair, Director of the Maryland Center for Fundamental Physics, 2012 - present. Distinguished University Professor, University of Maryland, 2011-present. Elkins Chair, Professor of Physics, University of Maryland, 2010-2012. Alumni Centennial Chair, Johns Hopkins University, 2006- 2010. Full Professor at the Department of Physics and Astronomy, The Johns Hopkins University, 2001- 2010. Associate Professor at the Department of Physics and Astronomy, The Johns Hop- kins University, 2000- 2001. Research Associate at the Department of Physics, Stanford University, 1999- 2000. Advisor { Prof. Savas Dimopoulos. 1 Postdoctoral Fellow at the Department of Physics, Boston University. 1996- 1999. Postdoc advisor { Prof. Sekhar Chivukula. Postdoctoral Fellow in Theoretical Physics at Harvard University, 1993-1996. Post- doc advisor { Prof. Howard Georgi. Postdoctoral Fellow in Theoretical Physics at the University of California at Berke- ley, 1990-1993. Postdoc advisor { Prof. Stanley Mandelstam. EDUCATION Yale University, New-Haven, Connecticut Ph.D. in Elementary Particle Theory, May 1990 Thesis Title: `Theoretical and Phenomenological Aspects of Effective Gauge Theo- ries' Thesis advisor: Prof. Lawrence Krauss Brown University, Providence, Rhode Island Participant in the 1988 Theoretical Advanced Summer Institute University of Sydney, Australia B.Sc with First Class Honours in Mathematics and Physics, Dec. 1984 AWARDS, DISTINCTIONS J. J. Sakurai Prize in Theoretical Particle Physics, American Physical Society, 2019. Distinguished Visiting Research Chair, Perimeter Institute, 2012 - present. 2 Moore Fellow, Cal Tech, 2015. American Association for the Advancement of Science, Fellow, 2011.
    [Show full text]
  • Abdus Salam United Nations Educational, Scientific and Cultural XA9952968 Organization International Centre
    the IC/99/74 abdus salam united nations educational, scientific and cultural XA9952968 organization international centre international atomic energy agency for theoretical physics D = 4 YANG-MILLS CORRELATORS 5 FROM NSR STRINGS ON AdS5 x S Dimitri Polyakov 30-47 Available at: http://www.ictp.trieste.it/~pub-off IC/99/74 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS D = 4 YANG-MILLS CORRELATORS 5 FROM NSR STRINGS ON AdS5 x S Dimitri Polyakov^ The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. Abstract In our previous work (hep-th/9812044) we have proposed the sigma-model action, conjectured to be the NSR analogue of superstring theory on AdS$ x S5. This sigma- model is the NSR superstring action with potential term corresponding to the exotic 5- form vertex operator (branelike state). This 5-form potential plays the role of cosmological term, effectively curving the flat space-time geometry to that of AdS$ x S5. In this paper we study this ansatz in more detail and provide the derivation of the correlators of the four- dimensional super Yang-Mills theory from the above mentioned sigma-model. In particular, we show that the correlation function of two dilaton vertex operators in such a model reproduces the well-known result for the two-point function in N = 4 four-dimensional 2 2 super Yang-Mills theory: < F (x)F (y) >~ \JLy\» • MIRAMARE - TRIESTE July 1999 E-mail: [email protected] Introduction One of the most profound questions with regard to critical superstring theory in ten dimensions is its relation to our four-dimensional world.
    [Show full text]
  • Brane Effective Actions, Kappa-Symmetry and Applications
    Living Rev. Relativity, 15, (2012), 3 LIVINGREVIEWS http://www.livingreviews.org/lrr-2012-3 in relativity Brane Effective Actions, Kappa-Symmetry and Applications Joan Sim´on School of Mathematics, The University of Edinburgh, and Maxwell Institute for Mathematical Sciences Edinburgh EH9 3JZ, U.K. email: [email protected] Accepted on 9 January 2012 Published on 27 February 2012 Abstract This is a review on brane effective actions, their symmetries and some of their applications. Its first part covers the Green{Schwarz formulation of single M- and D-brane effective actions focusing on kinematical aspects: the identification of their degrees of freedom, the importance of world volume diffeomorphisms and kappa symmetry to achieve manifest spacetime covari- ance and supersymmetry, and the explicit construction of such actions in arbitrary on-shell supergravity backgrounds. Its second part deals with applications. First, the use of kappa symmetry to determine supersymmetric world volume solitons. This includes their explicit construction in flat and curved backgrounds, their interpretation as Bogomol'nyi{Prasad–Sommerfield (BPS) states carrying (topological) charges in the supersymmetry algebra and the connection between su- persymmetry and Hamiltonian BPS bounds. When available, I emphasise the use of these solitons as constituents in microscopic models of black holes. Second, the use of probe approx- imations to infer about the non-trivial dynamics of strongly-coupled gauge theories using the anti de Sitter/conformal field theory (AdS/CFT) correspondence. This includes expectation values of Wilson loop operators, spectrum information and the general use of D-brane probes to approximate the dynamics of systems with small number of degrees of freedom interacting with larger systems allowing a dual gravitational description.
    [Show full text]
  • Stanley Mandelstam
    I knew very early of Stanley Mandelstam I started physics as a t Prisoner of the s u Mandelstam Triangle I escaped from the Mandelstam Triangle only to be ensnared in Light-Cone Superspace A Note of Personal Gratitude 1971 NAL Visit SuperConformal Theories P. Ramond (with S. Ananth, D. Belyaev, L. Brink and S.-S. Kim) Light-Cone Superspaces N=4 Super Yang-Mills N=8 SuperConformal N=8 SuperGravity and E7(7) N=16 SuperGravity and E8(8) N=8 Light-Cone Superspace houses D=11: N=1 SuperGravity SO(9); F4/SO(9) D=4: N=8 SuperGravity SO(2)x E7(7) D=3: N=16 SuperGravity E8(8) D=2: N=16 Theory E9(9) N=4 Light-Cone Superspace habitat for D=10: N=1 Super Yang-Mills SO(8) D=4: N=4 Super Yang-Mills PSU(2,2|4) D=3: N=8 Super Conformal OSp(2,2|8) 1 i 1 ϕ (y) = 1 A (y) + i θm θn C (y) + 1θm θn θp θq $ ∂+ A¯ (y) + m n mn m n p mnpqq + ¯ ϕ (y) = +∂A (y) + √2θ θ Cmn (y) +12 θ θ θ θ $mnpq ∂ A (y) ∂ √2 √ 12 1 i 1 i m 2 m n p q m n m n p q + i+ +¯ θ χ¯m(y) + √2θ θ θ $mnpq χ (y) ϕ (y) = + A (y) + θ θ Cmn (y) + θ θ θ θ $mnpq ∂ ∂Am(y) 6 m n p q ∂ √2 12 + θ χ¯m(y) + θ θ θ $mnpq χ (y) 1 i m n 1 m n p ∂q+ + ¯ 6 ϕ (y) = A (y) + √θ θ C L(C2y) + Fθorθ maθ θ $lmnpqism∂ A (y) ∂+i m √ 2 m nmnp q12 + θ χ¯m(y) +2 θ θ θ $mnpq χ (y) 1 0 3 ∂+ 6 x± = (x x ) i √2 √ m m n p q 12 0± 3 + + θ χ¯m(y) + θ θ θ $mnpq χ (y) x± = (x x ) ∂ 6 √2 ± Light-Cone Co1ordina0 3tes: 1 0 3 x± = (x x ) ∂± = ( ∂ ∂ ) √2 ± √2 − ± 1 0 3 1 0 3 x± = (x x ) ∂± = ( ∂ ∂ ) 1 0√ 3 ± 1 1 2√2 − ±1 1 2 ∂± = ( ∂ 2∂ ) x = (x + ix ) x = (x ix ) √2 − ± √2 √2 − m m + 1 1 2 1 1 2 1 q+ , q¯+ n =1 i√2δ n ∂ x = 1(x + ix
    [Show full text]
  • Black Hole Singularities in the Framework of Gauge/String Duality By
    Black Hole Singularities in the Framework of Gauge/String Duality by Guido Nicola Innocenzo Festuccia Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2007 @ Guido Nicola Innocenzo Festuccia, MMVII. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Author ... Department of Physics 1May 18, 2007 Certified by. Hong Liu C Assistant Professor Thesis Supervisor Accepted by.............. ..............A p .m .. 2homas eytak Professor and Associate Department Head for Education ARCHIVES LIBRARIES Black Hole Singularities in the Framework of Gauge/String Duality by Guido Nicola Innocenzo Festuccia Submitted to the Department of Physics on May 18, 2007, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this dissertation black hole singularities are studied using the AdS/CFT correspon- dence. These singularities show up in the CFT in the behavior of finite-temperature correlation functions. A direct relation is established between space-like geodesics in the bulk and momentum space Wightman functions of CFT operators of large dimen- sions. This allows to probe the regions inside the horizon and near the singularity using the CFT. Information about the black hole singularity is encoded in the expo- nential falloff of finite-temperature correlators at large imaginary frequency. We also find a UV/UV connection that governs physics inside the horizon. For the case the bulk theory lives in 5 dimensions the dual theory is an SU(N) Yang-Mills theory on a sphere, a bounded many-body system.
    [Show full text]
  • Statistical Physics Approach to M-Theory Integrals∗
    Nonperturbative Quantum Effects 2000 PROCEEDINGS Statistical Physics Approach to M-theory Integrals∗ Werner Krauth and Matthias Staudacher CNRS-Laboratoire de Physique Statistique, Ecole Normale Sup´erieure 24, rue Lhomond F-75231 Paris Cedex 05 E-mail: [email protected] Albert-Einstein-Institut, Max-Planck-Institut f¨ur Gravitationsphysik Am M¨uhlenberg 1 D-14476 Golm E-mail: [email protected] Abstract: We explain the concepts of computational statistical physics which have proven very help- ful in the study of Yang-Mills integrals, an ubiquitous new class of matrix models. Issues treated are: Absolute convergence versus Monte Carlo computability of near-singular integrals, singularity detec- tion by Markov-chain methods, applications to asymptotic eigenvalue distributions and to numerical evaluations of multiple bosonic and supersymmetric integrals. In many cases already, it has been possible to resolve controversies between conflicting analytical results using the methods presented here. Keywords: Monte Carlo Methods, M-theory, Matrix Models, Yang-Mills Theory. 1. Introduction theories. Furthermore, they appear in proposed formulations of string theory (the IKKT model) Recent work in field theory has revealed the exis- and M-theory. It remains to be elucidated whether tence of an important new class of gauge-invariant they contain further non-perturbative informa- matrix models. At the difference of the clas- tion on gauge theories via the Eguchi-Kawai mech- sic Wigner-type models, interest now focusses anism. on integrals of D non-linearly coupled matrices For the sake of brevity (cf. [1] for complete Xµ,µ =1;:::D.TheXµare constructed from definitions), we write down (even for supersym- A the generators T of the fundamental representa- metric Yang-Mills theories) only the effective bo- G X XAT tion of a given Lie algebra Lie( ): µ = µ A, sonic integral, which is obtained after integrat- with A =1;:::;dim(G).
    [Show full text]
  • Introduction to Path Integral Methods in String Theory
    Introduction to path integral methods in string theory Sergio Ernesto Aguilar Guti´errez1 1Instituto de F´ısica Te´orica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, 01140-070 S~aoPaulo, SP, Brazil∗ (Dated: November 30, 2018) Contents I. Introduction 1 II. Functional methods in bosonic string theory 2 A. Polyakov action 2 B. Symmetries 3 C. Equations of motion and boundary conditions 4 D. Polyakov path integral 6 E. BRST quantization 10 F. Representation theory 11 III. Functional methods in the RNS formalism 12 A. Superstring theory in the RNS formalism 12 B. R and NS sectors 14 C. Local symmetries of the action 16 D. Path integrals in RNS 17 References 19 I. INTRODUCTION The fundamentals of path integral methods in string theory are reviewed with emphasis in the development of the Faddeev Popov ghost that emerge from overcounting of configurations and the conditions that the string theory requires for maintaining Weyl invariance. Since the lecture is presented for a course that does not assume previous knowledge in string theory, I include an introduction to both bosonic and superstring theory (in the RNS formalism). This text begins with an introduction to bosonic string theory, we study the symmetries of the Polyakov action, we work out the canonical quantization of the theory to calculate its central charge. Later the path integral formulation is introduced with the appearance of Faddeev-Popov ghosts, we consider their canonical quantization for computing the central charge. The total central charge generates an anomaly in the Weyl invariance of the theory. The vanishing of such term has powerful implications that yield conditions related with the possible physical states and the dimensions of the theory.
    [Show full text]
  • Julian Schwinger: Nuclear Physics, the Radiation Laboratory, Renormalized QED, Source Theory, and Beyond
    Julian Schwinger: Nuclear Physics, the Radiation Laboratory, Renormalized QED, Source Theory, and Beyond Kimball A. Milton∗ Homer L. Dodge Department of Physics and Astronomy University of Oklahoma, Norman, OK 73019 USA October 9, 2006 Abstract Julian Schwinger’s influence on twentieth century science is pro- found and pervasive. Of course, he is most famous for his renormal- ization theory of quantum electrodynamics, for which he shared the Nobel Prize with Richard Feynman and Sin-itiro Tomonaga. But al- though this triumph was undoubtedly his most heroic work, his legacy lives on chiefly through subtle and elegant work in classical electrody- namics, quantum variational principles, proper-time methods, quan- tum anomalies, dynamical mass generation, partial symmetry, and more. Starting as just a boy, he rapidly became the pre-eminent nu- clear physicist in the late 1930s, led the theoretical development of radar technology at MIT during World War II, and then, soon after the war, conquered quantum electrodynamics, and became the leading quantum field theorist for two decades, before taking a more icono- clastic route during his last quarter century. Keywords: Julian Schwinger, nuclear physics, waveguides, quan- tum electrodynamics, renormalization, quantum action principle, source theory, axial-vector anomaly ∗K.A. Milton is Professor of Physics at the University of Oklahoma. He was a Ph.D. stu- dent of Julian Schwinger from 1968–71, and his postdoc at UCLA for the rest of the 1970s. He has written a scientific biography of Schwinger, edited two volumes of Schwinger’s se- lected works, and co-authored two textbooks based on Schwinger’s lectures.
    [Show full text]
  • STRING THEORY in the TWENTIETH CENTURY John H
    STRING THEORY IN THE TWENTIETH CENTURY John H. Schwarz Strings 2016 { August 1, 2016 ABSTRACT String theory has been described as 21st century sci- ence, which was discovered in the 20th century. Most of you are too young to have experienced what happened. Therefore, I think it makes sense to summarize some of the highlights in this opening lecture. Since I only have 25 minutes, this cannot be a com- prehensive history. Important omitted topics include 2d CFT, string field theory, topological string theory, string phenomenology, and contributions to pure mathematics. Even so, I probably have too many slides. 1 1960 { 68: The analytic S matrix The goal was to construct the S matrix that describes hadronic scattering amplitudes by assuming • Unitarity and analyticity of the S matrix • Analyticity in angular momentum and Regge Pole The- ory • The bootstrap conjecture, which developed into Dual- ity (e.g., between s-channel and t-channel resonances) 2 The dual resonance model In 1968 Veneziano found an explicit realization of duality and Regge behavior in the narrow resonance approxima- tion: Γ(−α(s))Γ(−α(t)) A(s; t) = g2 ; Γ(−α(s) − α(t)) 0 α(s) = α(0) + α s: The motivation was phenomenological. Incredibly, this turned out to be a tree amplitude in a string theory! 3 Soon thereafter Virasoro proposed, as an alternative, g2 Γ(−α(s))Γ(−α(t))Γ(−α(u)) T = 2 2 2 ; −α(t)+α(u) −α(s)+α(u) −α(s)+α(t) Γ( 2 )Γ( 2 )Γ( 2 ) which has similar virtues.
    [Show full text]
  • The Influence of Stanley Mandelstam
    The Influence of Stanley Mandelstam Michael B. Green Department of Applied Mathematics and Theoretical Physics Wilberforce Road, Cambridge CB3 0WA, UK School of Physics and Astronomy Queen Mary University of London, Mile End road, London E1 4NS, UK I hardly knew Stanley Mandelstam - our paths rarely crossed, and when they did our discussions were restricted to technical, rather than personal, issues. It is, however, an honour to be asked to write this short memoir since his work was hugely innovative and he was one of the pioneers who laid the foundations for much of the subject of my research. My interests as a PhD student in Cambridge in the late 1960's were strongly influenced by the ideas of S-matrix theory that had emerged from Berkeley, largely following the work of Chew, and Mandelstam. Stanley made use of his exceptional understanding of the analytic properties of perturbative quantum field theory to motivate a more rigorous approach to S- matrix theory. This led him to the covariant formulation of scattering amplitudes in terms of \Mandelstam variables" and to the \Mandelstam representation", which provided an elegant framework for discussing dispersion relations. He was one of the early contributors to Regge pole theory and its relation to sums of Feynman diagrams. These were the basic ingredients for much of the S-matrix programme that attempted to explain the strong interactions in the absence of a quantum field theory description. Stanley was prominent in the series of developments relating to the strong interactions that grew out of the S-matrix programme and were taking place during my period as a graduate student.
    [Show full text]