Emissions from Residential Solid Fuel Combustion and Implications for Air Quality and Climate Change

Total Page:16

File Type:pdf, Size:1020Kb

Emissions from Residential Solid Fuel Combustion and Implications for Air Quality and Climate Change Emissions from Residential Solid Fuel Combustion and Implications for Air Quality and Climate Change Edward John Sproston Mitchell Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Doctoral Training Centre in Low Carbon Technologies School of Chemical and Process Engineering May 2017 Declaration The candidate confirms that the work submitted is his own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated in section 1.3. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Edward J. S. Mitchell to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. © 2017 The University of Leeds and Edward J. S. Mitchell i Acknowledgements First and foremost I would like to thank my supervisors Professor Jenny Jones, Professor Alan Williams, Dr Amanda Lea-Langton and Professor Piers Forster for their support throughout my studies. Huge thanks to all of my co-authors and everyone in our research group, most notably Farooq Atiku, Dougie Philips, Ben Dooley, Patrick Mason, Yee-Sing Chin and Paula McNamee. Special thanks also go to Dr Rob Johnson and Arigna Fuels who kick-started the project and kept me on my toes in the first few months. Many thanks also to Dr Bijal Gudka and Dr Leilani Darvell for guidance and advice. I am very grateful to University of Leeds technical and laboratory staff too for their support and patience. They are Ed Woodhouse, Dr Simon Lloyd, Dr Adrian Cunliffe, Sara Dona, Karine Alves Thorne, Dave Instrell, Bob Harris and Sam Burdon. Not to forget LEMAS who were very helpful and supportive with my electron microscopy escapades. Many thanks also to the EPSRC Doctoral Training Centre in Low Carbon Technologies (EP/G036608), as well as the DTC centre managers, James McKay, Emily Bryan-Kinns, Rachel Brown and David Haynes for everything they’ve done for me over the past four years. Many thanks also go to colleagues in other departments, most notably Professor Dominic Spracklen and Mr Edward Butt in Earth & Environment. Thanks also to Jes Sig Andersen and Dr Guy Coulson for hosting me in Denmark and New Zealand where I learned an enormous amount about the topic. The Supergen Bioenergy Hub and SHARE network deserves a special mention due to their kind support, guidance and financial contributions (EP/J017302). Finally I would like to thank my family and friends, who have supported me every step of the way throughout my combined nine years at University, and who can finally stop asking ‘haven’t you finished yet?’ ii Abstract Small scale biomass burning stoves and boilers are growing in popularity in the UK and abroad, owing in part to renewable heat incentives and policies. However, combustion in domestic scale appliances is often inefficient and uncontrolled in comparison to larger systems, leading to high emissions factors of gaseous pollutants such as CO, NOx and PAH, as well as fine particulate matter (PM). Evidence is presented from 105 source apportionment studies from 31 developed countries showing that the impact of residential solid fuel (RSF) combustion on air quality is more wide spread that previously thought. Wood burning contributes to up to 95% of wintertime ambient PM in some rural communities in New Zealand, which is used as a case study throughout this work. Modelling work has shown that emissions from heating stoves may be underestimated in global climate models (GCMs) and UK residential wood consumption is forecast to increase by a factor of 14 between 1990 and 2030. By 2030, annual emissions of black carbon (BC) from UK wood stoves and fireplaces are predicted to exceed 3000 tonnes which is higher than the traffic sector. BC is the most important component of RSF radiative forcing, accounting for over 77% total warming effect. Model inventory and literature emission factors (EFs) for over 150 pollutants have been compared and contrasted, and compiled into a new RSF emissions inventory. Results are presented from experimental work on the emissions testing of a 6 kWth multi-fuel stove and three high quality cook stoves, burning a range of over 25 conventional and novel fuels including wood, coal, agricultural residues and torrefied wood briquettes. Despite a large resource of agricultural residues being available with lower EFs than open burning, their suitability as a residential solid fuel is uncertain. For example, straw briquettes had a measured density less than half that of wood logs and reed briquettes showed evidence of ash melting in the stove bed due to a high sodium, silica and chlorine content. It was found that PM and CO emissions were correlated to the content and composition of volatile matter within the fuel and NOx is linearly dependent on fuel nitrogen content. Mean whole cycle PM EFs ranged from 2.1 g kg-1 for wood logs to 4.2 g kg-1 for coal and 0.5 g k-1 for smokeless fuel. Torrefaction of wood has the potential to significantly reduce emissions, with PM EFs 49% lower than wood logs. However, emissions from all fuels were highly dependent on the duration of the flaming phase of combustion, during which EFs may be a factor of 5-9 higher than the smouldering phase. Heat treatment such as torrefaction removes 10-15% of volatiles, shortening the flaming phase and removing key species involved in the chemical soot formation pathways, which are discussed in detail. iii The physical and optical properties of collected particulate samples collected were also examined using electron microscopy and spectroscopy, which are useful for GCMs. Flaming phase particles had a high average EC/TC ratio (>0.9), a high carbon:oxygen ratio (93:5.4) and an Ångström Absorption Exponent (AAE) near 1 (0.9-1.2). After emission, it was found that particles undergo a significant increase in branching and oxygenation (C:O 88:10). The morphology of particles was also found to change following the injection of plasma into the flue, which is evaluated as a promising retrofit abatement technology. Graphical abstract Cross section of a wood log before being split and bagged. ‘To poke a wood fire is more solid enjoyment than almost anything else in the world’ Charles Dudley Warner iv Contents 1 Declaration .................................................................................................................................. i Acknowledgements .................................................................................................................... ii Abstract ..................................................................................................................................... iii Contents ..................................................................................................................................... v List of Figures ......................................................................................................................... viii List of Tables ............................................................................................................................ xi List of Abbreviations .............................................................................................................. xiii 1 Motivation and Background............................................................................................. 15 1.1 Context ..................................................................................................................... 16 1.2 Aims and Objectives ................................................................................................ 18 1.3 Thesis structure ........................................................................................................ 19 1.4 List of Publications .................................................................................................. 21 1.5 References ................................................................................................................ 22 2 Critical Literature Review ................................................................................................ 23 2.1 RSF Combustion: History, Policy and Practice ....................................................... 24 2.2 Pollutant Emissions and Formation ......................................................................... 27 2.2.1 Particulate matter ............................................................................................. 27 2.2.2 CO, NOx and SOx ............................................................................................. 35 2.2.3 Organic gaseous emissions .............................................................................. 36 2.2.4 Chlorinated emissions ...................................................................................... 39 2.3 Variation in Emission factors ................................................................................... 40 2.3.1 Impact of fuel properties on emissions ............................................................ 40 2.3.2 Impact of combustion conditions on emissions ............................................... 46 2.3.3 Emissions inventories .....................................................................................
Recommended publications
  • Unit 3 Types of Fuels and Their Characteristics
    Types of Fuels and UNIT 3 TYPES OF FUELS AND THEIR their Characteristics CHARACTERISTICS Structure 3.1 Introduction Objectives 3.2 Principles of Classification of Fuels 3.3 Solid Fuels and their Characteristics 3.3.1 Woods and their Characteristics 3.3.2 Coals and their Characteristics 3.3.3 Manufactured Solid Fuels and their Characteristics 3.4 Liquid Fuels and their Characteristics 3.4.1 Petroleum and its Characteristics 3.4.2 Manufactured Liquid Fuels and their Characteristics 3.5 Gaseous Fuels and their Characteristics 3.5.1 Natural Gas and its Characteristics 3.5.2 Manufactured Gases and their Characteristics 3.6 Summary 3.7 Key Words 3.8 Answers to SAQs 3.1 INTRODUCTION Fuel is a substance which, when burnt, i.e. on coming in contact and reacting with oxygen or air, produces heat. Thus, the substances classified as fuel must necessarily contain one or several of the combustible elements : carbon, hydrogen, sulphur, etc. In the process of combustion, the chemical energy of fuel is converted into heat energy. To utilize the energy of fuel in most usable form, it is required to transform the fuel from its one state to another, i.e. from solid to liquid or gaseous state, liquid to gaseous state, or from its chemical energy to some other form of energy via single or many stages. In this way, the energy of fuels can be utilized more effectively and efficiently for various purposes. Objectives After studying this unit, you should be able to • describe the classification of fuels, • explain the various types of fuels and their characteristics, and • know their applications in various fields.
    [Show full text]
  • Aircraft Design for Reduced Climate Impact A
    AIRCRAFT DESIGN FOR REDUCED CLIMATE IMPACT A DISSERTATION SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Emily Schwartz Dallara February 2011 © 2011 by Emily Dallara. All Rights Reserved. Re-distributed by Stanford University under license with the author. This dissertation is online at: http://purl.stanford.edu/yf499mg3300 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Ilan Kroo, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Juan Alonso I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Mark Jacobson Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Commercial aviation has grown rapidly over the past several decades. Aviation emis- sions have also grown, despite improvements in fuel efficiency. These emissions affect the radiative balance of the Earth system by changing concentrations of greenhouse gases and their precursors and by altering cloud properties.
    [Show full text]
  • Metrics for Comparison of Climate Impacts from Well Mixed
    1 ACCRI Theme 7 2 3 Metrics for comparison of climate impacts from well mixed greenhouse gases and 4 inhomogeneous forcing such as those from UT/LS ozone, contrails and contrail- 5 cirrus 6 7 Piers Forster & Helen Rogers 8 9 Acknowledgement: The numbers in Table 5 and a many of the ideas are derived from a 10 unpublished manuscript led by Keith Shine that Piers Forster and Helen Rogers were co- 11 author of. 12 13 Executive Summary.......................................................................................................... 2 14 1. Introduction and Background ................................................................................. 5 15 2. Review ........................................................................................................................ 8 16 2.1. Current state of science....................................................................................... 8 17 2.1.1. Air travel – its emissions and its trends ...................................................... 8 18 2.1.2. Aviation’s climate impact......................................................................... 10 19 2.1.3. Review of the RF characteristics and uncertainties of mechanisms ......... 12 20 2.1.3.1. Chemistry of importance to aviation..................................................... 12 21 2.1.3.2. Modelling the impact of aviation.......................................................... 14 22 2.1.4. Regional and timescale issues................................................................... 16 23 2.2. Critical
    [Show full text]
  • Solid Fuels and Firelighting Products
    Nordic Ecolabelling of Solid fuels and firelighting products Version 3.2 • 06 March 2017 - 31 March 2024 Nordic Ecolabelling Content What is a Nordic Swan Ecolabelled solid fuel or firelighting product? 4 Why choose The Nordic Swan Ecolabel? 4 What can carry The Nordic Swan Ecolabel? 4 How to apply 5 1 Production and product description 6 2 Resources 6 2.1 Wood 8 2.2 Solid and liquid renewable raw materials other than wood in barbecue charcoal/briquettes and firelighting products and the tree species (salix/poplar/hybrid asp) grown as energy forest on arable land 10 2.3 Requirements for working conditions in the production of barbeque charcoal/briquettes 11 2.4 Chemicals 12 3 Energy consumption 14 4 Use and quality requirements 16 5 Quality and official requirements 20 Regulations for the Nordic Ecolabelling of products 22 Follow-up inspections 22 History of the criteria 22 New criteria 22 Terms and definitions 23 Appendix 1 Description of the solid fuel, material composition and production Appendix 2 Definition, class and type of raw materials Appendix 3 Declaration of tree species not permitted to be used in Nordic Ecolabelled products Appendix 4 Traceability and verification of renewable raw materials in barbecue charcoal/-briquettes and firelighting products and the tree species (salix/poplar/hybrid asp) grown as energy forest on arable land Appendix 5 Declaration for chemical products used in the manufacture of solid fuels or firelighting products Appendix 6 Declaration for constituent substances in chemical products Appendix 7 Reference values for the energy content of fuels Appendix 8 Analysis and test laboratories Appendix 9 Declaration of compliance with quality specifications for firewood O87 Solid fuels and firelighting products, version 3.2, 26 January 2021 This document is a translation of an original in Danish.
    [Show full text]
  • Outline of Solid Fuel Manufacturing
    Technical Information Sheet 1. Name of technology Biomass Waste Fuel (BWF) Manufacturing Technology Complete recycling of waste oil (waste ink, waste paint, etc.) which has been considered difficult for recycling and simply incinerated. 2. Type of technology A patented original treatment system (Patent No. 5078628) to manufacture BWF as an alternative fuel to coal 3. Description of technology [Objective and application of technology] Our original treatment method and facilities enable waste oil, for which incineration has been the only treatment method, to be recycled to BWF with higher combustion efficiency than coal and thereby contributing to the reduction in environmental impact by accelerating the recycling of various kinds of waste. In particular, BWF for cement factories enables combustion residue from incineration plants and oil mud from oil-water separation plants to be fully recycled, provided that BWF is used in appropriate plants with facilities for burning general coal. In our BWF manufacturing process, we receive materials after carrying out preliminarily sample inspections for thoroughly confirming material composition (to eliminate substances with hazardous properties such as heavy metal contamination). Also, we treat the materials using a reliable safety management system including special fire prevention equipment such as a nitrogen generating devices and sprinklers with twice the capacity generally required. Outline of solid fuel manufacturing Animal and plant Combustion Waste oil Waste plastic Slag Smoke dust Tonner
    [Show full text]
  • Form SFCT1 SOLID FUEL CARBON TAX (SFCT) RETURN & DECLARATION Supplier’S Name Tax Reference No
    This form should only be used for accounting periods from 1 May 2021 to 30 April 2022 Form SFCT1 SOLID FUEL CARBON TAX (SFCT) RETURN & DECLARATION Supplier’s Name Tax Reference No. Address (include Eircode) Accounting Period From DDMMYYYY To DDMMYYYY (see Note 1) Part A Declaration of tax-free and fully relieved supplies of solid fuel (One tonne equals 1,000 kilograms) Coal Peat briquettes Milled peat Other peat Purpose of supply Tonnes (one Tonnes (one Tonnes (one Tonnes (one decimal place) decimal place) decimal place) decimal place Electricity generation (excluding CHP cogeneration) (see Notes 2 & 3) Use by a Greenhouse Gas Not (GHG) emissions permit Applicable holder (see Note 4) Use as a raw material (see Note 5) First supply outside the State Part B Summary of taxable supplies (including self-supplies) of solid fuel and tax payable (see Note 6) (One tonne equals 1,000 kilograms) Tonnes Rate Description of solid fuel Tax Payable (one decimal place) € / tonne Coal for use by a GHG emissions 4.18 € permit holder (see Note 4) 0 to <30% Biomass 88.23 € Coal (see Note 7) 30% to <50% Biomass 61.76 € Biomass 50% or over 44.12 € 0 to <30% Biomass 61.42 € Peat briquettes 30% to <50% Biomass 42.99 € (see Note 7) Biomass 50% or over 30.71 € Milled peat 30.44 € Other peat (see Note 8) 45.65 € Total Tax Payable € 1 RPC014952_EN_WB_L_1 This form should only be used for accounting periods from 1 May 2021 to 30 April 2022 Part C DECLARATION I declare, in accordance with the law* governing SFCT, that: • the details on page 1 of this form represent
    [Show full text]
  • Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries
    1791 Tullie Circle, NE. Atlanta, Georgia 30329-2305, USA www.ashrae.org ASHRAE Position Document on COMBUSTION OF SOLID FUELS AND INDOOR AIR QUALITY IN PRIMARILY DEVELOPING COUNTRIES Approved by ASHRAE Board of Directors October 3, 2016 Reaffirmed by ASHRAE Technology Council June 26, 2019 Expires June 26, 2022 ASHRAE S H A P I N G T O M O R R O W ’ S B U I L T E N V I R O N M E N T T O D A Y COMMITTEE ROSTER The ASHRAE Position Document on “Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries” was developed by the Society’s Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries Position Document Committee formed on September 16, 2013 with Paul Francisco as its chair. Paul W. Francisco, Chair Kirk R. Smith University of Illinois University of California Champaign, IL, USA Berkeley, CA, USA Jill Baumgartner Dean Still McGill University Aprovecho Research Center Montreal, QC, Canada Cottage Grove, OR, USA Chandra Sekhar National University of Singapore Singapore, Singapore Cognizant Committees The chairperson of Environmental Health Committee also served as ex-officio members. Zuraimi Sultan, Ex-Officio Cognizant Committee Chair Environmental Health Committee National Research Council Canada Ottawa, ON, Canada ii HISTORY of REVISION / REAFFIRMATION / WITHDRAWAL DATES The following summarizes the revision, reaffirmation or withdrawal dates 10/03/2016 —BOD approves Position Document titled Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries 6/26/2019—Technology Council approves reaffirmation of Position Document titled Combustion of Solid Fuels and Indoor Air Quality in Primarily Developing Countries Note: Technology Council and the cognizant committee recommend revision, reaffirmation or withdrawal every 30 months.
    [Show full text]
  • The Big Smoke: Fifty Years After the 1952 London Smog
    The Big Smoke: Fifty years after the 1952 London Smog edited by: Virginia Berridge and Suzanne Taylor Centre for History in Public Health London School of Hygiene & Tropical Medicine The Big Smoke: Fifty years after the 1952 London Smog Centre for History in Public Health London School of Hygiene & Tropical Medicine Published in association with the CCBH Witness Seminar Programme © Centre for History in Public Health, London School of Hygiene & Tropical Medicine, 2005. All rights reserved. This material is made available for use for personal research and study. We give permission for the entire files to be downloaded to your computer for such personal use only. For reproduction or further distribution of all or part of the file (except as constitutes fair dealing), per- mission must be sought from the copyright holder. Published by Centre for History in Public Health London School of Hygiene & Tropical Medicine Centre for Contemporary British History Institute of Historical Research School of Advanced Study University of London ISBN: 1 905165 02 1 The Big Smoke: Fifty Years after the 1952 London Smog Held 10 December 2002 at the Brunei Gallery, SOAS, London Seminar chaired by Professor Peter Brimblecombe Edited by Virginia Berridge and Suzanne Taylor Centre for History in Public Health London School of Hygiene & Tropical Medicine Contents Contributors 9 Citation Guidance 11 Further Reading 13 The Big Smoke: Fifty years after the 1952 London Smog 15 edited by Virginia Berridge and Suzanne Taylor Contributors Editors: PROFESSOR VIRGINIA Centre for History in Public Health, London School of Hygiene BERRIDGE & Tropical Medicine. SUZANNE TAYLOR Centre for History in Public Health, London School of Hygiene & Tropical Medicine.
    [Show full text]
  • Health Problems and Burning Indoor Fuels
    American Thoracic Society PUBLIC HEALTH | INFORMATION SERIES Health Problems and Burning Indoor Fuels Household air pollution means that the quality of the air inside your home is not healthy. There are a number of things that can pollute the air indoors. A common source of indoor air pollution worldwide is the fuel used for cooking and heating. When these fuels are burned, the process can cause pollution inside the home, particularly if there is not good outdoor air exchange (ventilation). This fact sheet focuses on air pollution caused by burning fuels in the home. How does burning fuel cause pollution in the home? What lung problems can indoor pollution from Burning of fuels inside homes generates a complex mixture burning fuels cause? of indoor air pollutants. The key air pollutants include soot Household air pollution is harmful to people of all ages, and and other small particles (called particulate matter) that can may start having a harmful impact on lung function soon be breathed in and damage the lungs. Liquefied petroleum after birth or even before a baby is born. The most common gas, natural gas, ethanol, and electricity are considered clean lung problem from household air pollution in adults is chronic fuels, but not all clean fuels are equal. Some studies find that bronchitis, a type of chronic obstructive pulmonary disease cooking with gas stoves, particularly if they are unvented, (COPD). Regular exposure to indoor air pollution can increase may increase indoor levels of nitrogen dioxide, causing air the risk for asthma, tuberculosis, interstitial lung diseases, pollution. heart disease, and lung cancer.
    [Show full text]
  • THE GUIDE to SOLID FUELS This Leaflet Will Tell You All You Need To
    THE GUIDE TO SOLID FUELS This leaflet will tell you all you need to know about: • The different solid fuels available and their suitability for the various types of appliances • Smoke control legislation • Buying solid fuel • Hints on getting the best from your fuel and appliance Choice of Fuel There are a great many different solid fuels for sale. Your choice will be based on a number of criteria, the most important of which will be the type of appliance you will be burning the fuel on and whether or not you live in a smoke control area (see page 4). Fuels for open fires Housecoal The most traditional fuel for open fires is housecoal. It is available in various sizes e.g. Large Cobbles, Cobbles, Trebles and Doubles. The larger sizes are usually a little more expensive than Doubles size. Housecoal comes from mines in Britain and other parts of the world, most notably Columbia and Indonesia. The coal may be sold by the name of the colliery it comes from e.g. Daw Mill, the port of entry e.g. Merseyport or a merchant’s own brand name, e.g. Stirling. Coal merchants also frequently sell the coal by grade – 1, 2 and 3 or A, B and C; 1 and A being the best quality. Wood Wood and logs can be burnt on open fires. They should be well-seasoned and preferably have a low resin content. You should not use any wood that has any kind of coating on the surface e.g. varnish or paint, as harmful gases may be emitted on burning.
    [Show full text]
  • Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development
    Mitigation Pathways Compatible with 1.5°C in the Context 2 of Sustainable Development Coordinating Lead Authors: Joeri Rogelj (Austria/Belgium), Drew Shindell (USA), Kejun Jiang (China) Lead Authors: Solomone Fifita (Fiji), Piers Forster (UK), Veronika Ginzburg (Russia), Collins Handa (Kenya), Haroon Kheshgi (USA), Shigeki Kobayashi (Japan), Elmar Kriegler (Germany), Luis Mundaca (Sweden/Chile), Roland Séférian (France), Maria Virginia Vilariño (Argentina) Contributing Authors: Katherine Calvin (USA), Joana Correia de Oliveira de Portugal Pereira (UK/Portugal), Oreane Edelenbosch (Netherlands/Italy), Johannes Emmerling (Italy/Germany), Sabine Fuss (Germany), Thomas Gasser (Austria/France), Nathan Gillett (Canada), Chenmin He (China), Edgar Hertwich (USA/Austria), Lena Höglund-Isaksson (Austria/Sweden), Daniel Huppmann (Austria), Gunnar Luderer (Germany), Anil Markandya (Spain/UK), David L. McCollum (USA/Austria), Malte Meinshausen (Australia/Germany), Richard Millar (UK), Alexander Popp (Germany), Pallav Purohit (Austria/India), Keywan Riahi (Austria), Aurélien Ribes (France), Harry Saunders (Canada/USA), Christina Schädel (USA/Switzerland), Chris Smith (UK), Pete Smith (UK), Evelina Trutnevyte (Switzerland/Lithuania), Yang Xiu (China), Wenji Zhou (Austria/China), Kirsten Zickfeld (Canada/Germany) Chapter Scientists: Daniel Huppmann (Austria), Chris Smith (UK) Review Editors: Greg Flato (Canada), Jan Fuglestvedt (Norway), Rachid Mrabet (Morocco), Roberto Schaeffer (Brazil) This chapter should be cited as: Rogelj, J., D. Shindell, K. Jiang,
    [Show full text]
  • Wayne County Air Pollution Control Ordinance Page 1 of 20 (11/18/1985) TABLE of CONTENTS
    Note: The portions of Chapter 5, section 501, which incorporate by reference the following parts of the State rules are not federally approved or incorporated into the State Implementation Plan: 1. The quench tower limit in Rule 336.1331, Table 31, Section C.8; 2. The deletion of the limit in Rule 336.1331 for coke oven coal preheater equipment; and 3. Rule336.1355 WAYNE COUNTY AIR POLLUTION CONTROL ORDINANCE AN ORDINANCE to abate air pollution in the County of Wayne and to provide for its administration and enforcement; to prescribe the powers and duties of the Wayne County Depart­ ment of Health-Air Pollution Control Division and its Director; and to provide for penalties and remedies. IT IS HEREBY ORDAINED BY THE PEOPLE OF THE CHARTER COUNTY OF WAYNE 2016 MI SIP compilation update Wayne County Air Pollution Control Ordinance Page 1 of 20 (11/18/1985) TABLE OF CONTENTS PAGE Chapter I DEFINITIONS Chapter 2 GENERAL PROVISIONS 4 Chapter 3 ENFORCEMENT .... 8 Chapter 5 EMISSION LIMITATIONS AND PROHIBITIONS PARTICULATE MATTER ........... ............... 16 Chapter 8 EMISSION LIMITATIONS AND PROHIBITIONS -- MISCELLANEOUS ........ 21 Chapter 9 SEALlNG OF EMISSION SOURCES ....... 24 Chapter 11 TESTING AND SAMPLING 26 Chapter 12 CONTINUOUS EMISSION MONITORING AND RECORDING 27 Chapter 13 AIR POLLUTION EPISODES . 28 APPENDICES A. DIVISION REQUIREMENTS FOR EMISSION SOURCE TESTING D. DIVISION REQUIREMENTS FOR CONTINUOUS EMISSION MONITORING AND RECORDING 2016 MI SIP compilation update Wayne County Air Pollution Control Ordinance Page 2 of 20 (11/18/1985)
    [Show full text]