A Review on Transposons and Its Utilization As Genetic Tool

Total Page:16

File Type:pdf, Size:1020Kb

A Review on Transposons and Its Utilization As Genetic Tool Int.J.Curr.Microbiol.App.Sci (2020) 9(2): 1874-1884 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 2 (2020) Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2020.902.214 A Review on Transposons and its Utilization as Genetic Tool Sadia Perween, Deepak Kumar* and Anand Kumar Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour (Bhagalpur), India *Corresponding author ABSTRACT Transposable elements, found in almost all organisms, are short sequences of DNA that have the ability to move from one location to the other locations in the genome. Transposons make up 10% of eukaryotic genomes. They provide a means for genomic change and variation, particularly in response to stress (McClintock’s stress hypothesis).There is no known example of transposon playing a normal role in K e yw or ds development. They are called as selfish DNA and can be used as genetic markers, as mutagens for transposon tagging and isolation of gene, as transformation vectors and as transposons, cloning vehicle. Transposons are potent forces of genetic change and have a significant insertational aspect in the evolution of many genomes. DNA transposons can be used as genetic tools to mutagenesis, introduce a piece of foreign DNA into any genome. They have been utilized for transposon tagging transgenesis and insertional mutagenesis in diverse organisms, as these elements are not Article Info generally dependent on host factors to facilitate their mobility. Thus, DNA transposons are powerful tools to analyze the regulatory genome, study the development of embryo, Accepted: identify genes and pathways involved in disease or pathogenesis of pathogens, and helps in 15 January 2020 gene therapy. Transposons are used for gene cloning since insertion of a transposon into a Available Online: gene upsets its function which develops a visible mutant phenotype. When the DNA 10 February 2020 sequence of the transposon is known, it is possible to clone the disrupted gene by employing the transposable element as a tag to locate the segment of DNA possessing the element. Transposon tagging involves initiating transposition, screening for mutations caused by transposon insertion, discovering the element responsible for the developed mutation, and cloning the tagged gene. Introduction typically in large numbers viz., they make up approximately 50% of the human genome and Transposable elements (jumping genes, up to 90% of the maize genome (SanMiguel, insertion sequences or mobile DNA elements) 1996). are short sequences of DNA that can move from one location to the other in the genome, Types of transposons often making duplicate copies of them in the process. They are found in almost all There are the transposable elements that need organisms (both prokaryotes and eukaryotes), reverse transcription (i.e., the transcription of 1874 Int.J.Curr.Microbiol.App.Sci (2020) 9(2): 1874-1884 RNA into DNA) to transpose, called Conservative and replicative transposition retrotransposons or class 1 TEs, whereas, some elements do not have such requirement In conservative transposition, the sequence is for transposition and are known as DNA excised from its original position and transposons or class 2 TEs. reinserted elsewhere without increasing its copy number, whereas, in replicative DNA transposons transposition transposons creates a copy of itself and the copy is inserted at a new The complete or "autonomous" class 2 TEs position. encodes the protein transposase, required for insertion and excision. A few of these TEs Bacterial transposons also encode other proteins. Its mobility is always on its own (insertion or excision), Most transposons in bacteria transpose as from the genome by means of "cut and paste" DNA. On the other hand, in eukaryotes they mechanism. are mostly retrotransposons. Short direct repeats are created at the site of insertion Retro transposons flanking the mobile element. Class 2 elements, known as retrotransposons, 1. IS Element: it constitutes inverted move by the action of RNA intermediaries. repeat at each end of insertion i.e. they do not encode transposase; rather, sequence and between the inverted they produce RNA transcript followed by repeats is a protein coding region action of reverse transcriptase enzymes to encoding enzymes required for reverse transcribe the RNA sequences back transposition. Short direct repeats are into DNA, which is to be inserted into the adjacent to both ends of the inserted target site. element. 2. Composite transposons: they are Autonomous and nonautonomous larger than IS elements containing transposons protein coding region along with those required for transposition and usually The class 1 and class 2 TEs can be either carry genes for antibiotic resistance. autonomous or non autonomous. Autonomous 3. Non composite transposons: they TEs have their own mobility, while non terminate with IS element but contain autonomous elements require the presence of terminal inverted repeats. other TEs to move from one place to another in genome. The reason behind it is that non Transposable elements in eukaryotes autonomous elements lack the gene for the transposase or reverse transcriptase that is Transposons constitute 10% of eukaryotic required for their transposition, so they need genomes being similar in structure to bacterial these proteins from another element in order IS elements with retroransposons being much to move along the genome. more profuse. For example Ac elements are autonomous and Element 1 - Yeast ty elements: can move on their own, whereas, Ds elements are non autonomous and require the presence The yeast has approximately 35 copies of a of Ac in order to transpose. transposable element called as Ty in its haploid genome. 1875 Int.J.Curr.Microbiol.App.Sci (2020) 9(2): 1874-1884 Element 2 - Drosophila transposons: mutations are stable only if Ds are present; whereas unstable in the presence of an Ac Drosophila transposons consists of retrovirus element. like elements i.e. retro transposons and are 5000 to 15,000 nucleotide pair long. Ds is immobile in the absence of Ac and remains as a stable insertion in the Element 3 - Controlling elements in maize: chromosome. In the presence of an Ac Mcclintock’s experiments: the ds element: element, it gets activated, causing it to transpose to a new site or to break the In the 1950s, Barbara McClintock studying chromosome in which it is located. corn kernels found that, rather than being purple or white; they had spots of purple Biological significance of transposons pigment on normally white kernels. The genetic and cytological studies concluded that Transposons are a means for genomic change the spotted phenotype was not the result of and variation, especially in response to stress any conventional kind of mutation but due to (McClintock’s stress hypothesis). There is no a controlling element, which is now known as known example of an element playing a a transposon. normal role in development, hence called as selfish DNA. The spotted kernelis the result of wild type C and c (colorless) gene. The presence of C Application of transposons gene makes the kernel purple, c (colorless) mutations block purple pigment production, Transposons as genetic markers (Izsvak and so the kernel is colorless. During kernel Ivics, 2004)- as it changes the pattern of development, mutation reverts, due to which restriction fragment analysis there is a spot of purple pigment. The genetic Transposons as mutagens and transposon nature of the reversion is approved by the fact tagging (Whitham et al., 1994 Dinesh et that descendants of the cell which had the al., 1995) for isolation of gene reversion also can give rise to pigmentation. Transposons as transformation vectors The sooner in development the reversion Transposons as cloning vehicle occurs, the larger is the purple spot. McClintock determined that the original c Transposons are powerful forces of genetic (colorless) mutation is the resultant of a change and have a significant role in the mobile controlling element, a genetic factor evolution of many genomes. As genetic tools, known as Ds (Dissociation), which gets DNA transposons can be utilized to insert a inserted into the C gene. The action of piece of foreign DNA into a genome. They Dsrelies on the presence of an unlinked gene, have been aided for transgenesis and Ac (Activator). insertional mutagenesis inorganisms, as these elements are not generally dependent on host Ac is needed for transposition of Ds into the factors for their mobility. Thus, DNA gene. It can also move the Ds out of the C transposons are useful devises for analyzing gene, giving rise to the wild type revertant, the regulatory genome, study embryonic i.e., a purple spot. Ac is the autonomous development, identifying genes and pathways element, and therefore, mutations caused by related to disease or pathogenesis of Ac are unstable. In contrast, Ds is the non- pathogens, and contributing to gene therapy. autonomous element of the family. The Ds 1876 Int.J.Curr.Microbiol.App.Sci (2020) 9(2): 1874-1884 Transposon tagging created by merging the two types of elements, the transposase source can be segregated. As Transposons are used for gene cloning as a result, the new insertions are stabilized and insertion of a transposon into a gene disarms thus any mutant phenotypes generated gets its function, producing an observable mutant stabilized. Transposase can be reintroduced phenotype. When the DNA sequence of the later for remobilizing the element to reverse transposon is known, it is likely to clone the the mutant phenotype or to produce new disrupted gene by using the transposable alleles of the tagged gene. element as a tag to identify the segment of DNA containing the element. Transposon Obtaining the Sequence of the transposon tagging includes inducing transposition, tag screening for mutations caused by insertion, recognizing the element responsible for Transposon as a molecular tag for gene mutation, and finally cloning the tagged gene.
Recommended publications
  • Cerevls Ae RNA14 Suggests That Melanogaster by Suppressor Of
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Homology with Saccharomyces cerevls ae RNA14 suggests that phenotypic suppression in Drosophila melanogaster by suppressor of f. o.rked occurs at the level of RNA stabd ty Andrew Mitchelson, Martine Simonelig, 1 Carol Williams, and Kevin O'Hare 2 Department of Biochemistry, Imperial College of Science Technology and Medicine, London SW7 2AZ, UK The suppressor of forked [su(f)] locus of Drosophila melanogaster encodes at least one cell-autonomous vital function. Mutations at su(f) can affect the expression of unlinked genes where retroviral-like transposable elements are inserted. Changes in phenotype are correlated with changes in mRNA profiles, indicating that su(f) affects the production and/or stability of mRNAs. We have cloned the su(f) gene by P-element transposon tagging. Alterations in the DNA map of eight lethal alleles were detected in a 4.3-kb region. P-element- mediated transformation using a fragment including this interval rescued all aspects of the su(f) mutant phenotype. The gene is transcribed to produce a major 2.6-kb RNA and minor RNAs of 1.3 and 2.9 kb, which are present throughout development, being most abundant in embryos, pupae, and adult females. The major predicted gene product is an 84- kD protein that is homologous to RNA14 of Saccharomyces cerevisiae, a vital gene where mutation affects mRNA stability. This suggests that phenotypic modification by su(f) occurs at the level of RNA stability. [Key Words: Drosophila; modifier gene; transposable element; suppression] Received October 12, 1992; accepted November 23, 1992.
    [Show full text]
  • Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities
    International Journal of Molecular Sciences Review Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities Pauline J. Beckmann 1 and David A. Largaespada 1,2,3,4,* 1 Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] 2 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA 3 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA 4 Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA * Correspondence: [email protected]; Tel.: +1-612-626-4979; Fax: +1-612-624-3869 Received: 3 January 2020; Accepted: 3 February 2020; Published: 10 February 2020 Abstract: Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity. Keywords: animal modeling; cancer; transposon screen 1. Transposon Basics Until the mid of 1900’s, DNA was widely considered to be a highly stable, orderly macromolecule neatly organized into chromosomes.
    [Show full text]
  • Ac/Ds-Transposon Activation Tagging in Poplar: a Powerful Tool for Gene Discovery Fladung and Polak
    Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery Fladung and Polak Fladung and Polak BMC Genomics 2012, 13:61 http://www.biomedcentral.com/1471-2164/13/61 (6 February 2012) Fladung and Polak BMC Genomics 2012, 13:61 http://www.biomedcentral.com/1471-2164/13/61 RESEARCHARTICLE Open Access Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery Matthias Fladung* and Olaf Polak Abstract Background: Rapid improvements in the development of new sequencing technologies have led to the availability of genome sequences of more than 300 organisms today. Thanks to bioinformatic analyses, prediction of gene models and protein-coding transcripts has become feasible. Various reverse and forward genetics strategies have been followed to determine the functions of these gene models and regulatory sequences. Using T-DNA or transposons as tags, significant progress has been made by using “Knock-in” approaches ("gain-of- function” or “activation tagging”) in different plant species but not in perennial plants species, e.g. long-lived trees. Here, large scale gene tagging resources are still lacking. Results: We describe the first application of an inducible transposon-based activation tagging system for a perennial plant species, as example a poplar hybrid (P. tremula L. × P. tremuloides Michx.). Four activation-tagged populations comprising a total of 12,083 individuals derived from 23 independent “Activation Tagging Ds” (ATDs) transgenic lines were produced and phenotyped. To date, 29 putative variants have been isolated and new ATDs genomic positions were successfully determined for 24 of those. Sequences obtained were blasted against the publicly available genome sequence of P.
    [Show full text]
  • The Endogenous Transposable Element Tgm9 Is Suitable for Generating Knockout Mutants for Functional Analyses of Soybean Genes and Genetic Improvement in Soybean
    RESEARCH ARTICLE The endogenous transposable element Tgm9 is suitable for generating knockout mutants for functional analyses of soybean genes and genetic improvement in soybean Devinder Sandhu1*, Jayadri Ghosh2, Callie Johnson3, Jordan Baumbach2, Eric Baumert3, Tyler Cina3, David Grant2,4, Reid G. Palmer2,4², Madan K. Bhattacharyya2* a1111111111 1 USDA-ARS, US Salinity Laboratory, Riverside, CA, United States of America, 2 Department of Agronomy, a1111111111 Iowa State University, Ames, IA, United States of America, 3 Department of Biology, University of Wisconsin- a1111111111 Stevens Point, Stevens Point, WI, United States of America, 4 USDA-ARS Corn Insects and Crop Genomics a1111111111 Research Unit, Ames, IA, United States of America a1111111111 ² Deceased. * [email protected] (DS); [email protected] (MKB) OPEN ACCESS Abstract Citation: Sandhu D, Ghosh J, Johnson C, In soybean, variegated flowers can be caused by somatic excision of the CACTA-type trans- Baumbach J, Baumert E, Cina T, et al. (2017) The posable element Tgm9 from Intron 2 of the DFR2 gene encoding dihydroflavonol-4-reduc- endogenous transposable element Tgm9 is suitable for generating knockout mutants for tase of the anthocyanin pigment biosynthetic pathway. DFR2 was mapped to the W4 locus, functional analyses of soybean genes and genetic where the allele containing Tgm9 was termed w4-m. In this study we have demonstrated improvement in soybean. PLoS ONE 12(8): that previously identified morphological mutants (three chlorophyll deficient mutants, one e0180732. https://doi.org/10.1371/journal. male sterile-female fertile mutant, and three partial female sterile mutants) were caused by pone.0180732 insertion of Tgm9 following its excision from DFR2.
    [Show full text]
  • An Everlasting Pioneer: the Story of Antirrhinum Research
    PERSPECTIVES 34. Lexer, C., Welch, M. E., Durphy, J. L. & Rieseberg, L. H. 62. Cooper, T. F., Rozen, D. E. & Lenski, R. E. Parallel und Forschung, the United States National Science Foundation Natural selection for salt tolerance quantitative trait loci changes in gene expression after 20,000 generations of and the Max-Planck Gesellschaft. M.E.F. was supported by (QTLs) in wild sunflower hybrids: implications for the origin evolution in Escherichia coli. Proc. Natl Acad. Sci. USA National Science Foundation grants, which also supported the of Helianthus paradoxus, a diploid hybrid species. Mol. 100, 1072–1077 (2003). establishment of the evolutionary and ecological functional Ecol. 12, 1225–1235 (2003). 63. Elena, S. F. & Lenski, R. E. Microbial genetics: evolution genomics (EEFG) community. In lieu of a trans-Atlantic coin flip, 35. Peichel, C. et al. The genetic architecture of divergence experiments with microorganisms: the dynamics and the order of authorship was determined by random fluctuation in between threespine stickleback species. Nature 414, genetic bases of adaptation. Nature Rev. Genet. 4, the Euro/Dollar exchange rate. 901–905 (2001). 457–469 (2003). 36. Aparicio, S. et al. Whole-genome shotgun assembly and 64. Ideker, T., Galitski, T. & Hood, L. A new approach to analysis of the genome of Fugu rubripes. Science 297, decoding life. Annu. Rev. Genom. Human. Genet. 2, Online Links 1301–1310 (2002). 343–372 (2001). 37. Beldade, P., Brakefield, P. M. & Long, A. D. Contribution of 65. Wittbrodt, J., Shima, A. & Schartl, M. Medaka — a model Distal-less to quantitative variation in butterfly eyespots. organism from the far East.
    [Show full text]
  • Throughout the Maize Genome for Use in Regional Mutagenesis Judith M. Kolkman* , Liza J. Conrad
    Genetics: Published Articles Ahead of Print, published on November 1, 2004 as 10.1534/genetics.104.033738 Distribution of Activator (Ac) Throughout the Maize Genome for Use in Regional Mutagenesis Judith M. Kolkman*1, Liza J. Conrad*†1, Phyllis R. Farmer*, Kristine Hardeman††, Kevin R. Ahern*, Paul E. Lewis*, Ruairidh J.H. Sawers*, Sara Lebejko††, Paul Chomet†† and Thomas P. Brutnell*2 *Boyce Thompson Institute, Cornell University, Ithaca, NY 14853; †Department of Plant Breeding, Cornell University, Ithaca, NY 14853; ††Monsanto/Mystic Research, Mystic, CT 06355 Sequence data from this article have been deposited with the EMBL/GenBank Libraries under accession nos. AY559172-AY559221, AY559223-AY559234, AY618471-AY618479 1 Running Head: Ac Insertion Sites in Maize Key words: transposition, transposon tagging, mutagenesis, Ac, maize 1 These authors contributed equally to this work. 2 Corresponding author: Thomas P. Brutnell Boyce Thompson Institute Cornell University 1 Tower Road Ithaca, NY 14853 Phone: 607-254-8656 Fax: 607-254-1242 email: [email protected] 2 ABSTRACT A collection of Activator (Ac) containing, near-isogenic W22 inbred lines has been generated for use in regional mutagenesis experiments. Each line is homozygous for a single, precisely positioned Ac element and the Ds reporter, r1-sc:m3. Through classical and molecular genetic techniques, 158 transposed Ac elements (tr-Acs) were distributed throughout the maize genome and 41 were precisely placed on the linkage map utilizing multiple recombinant inbred populations. Several PCR techniques were utilized to amplify DNA fragments flanking tr-Ac insertions up to 8 kb in length. Sequencing and database searches of flanking DNA revealed the majority of insertions are in hypomethylated, low or single copy sequences indicating an insertion site preference for genic sequences in the genome.
    [Show full text]
  • 483.Full.Pdf
    Copyright 8 1988 by the Genetics Society for America Molecular Analysis of the Neurogenic Locus mastermind of Drosophila melanogaster Barry Yedvobnick, David Smoller, Pamela Young and Diane Mills Department of Biology, Emoq University, Atlanta, Georgia 30322 Manuscript received August 25, 1987 Revised copy accepted November 21, 1987 ABSTRACT The neurogenic loci comprise a small group of genes which are required for proper division between the neural and epidermal pathways of differentiation within the neuroectoderm. Loss of neurogenic gene function results in the misrouting of prospective epidermal cells into neuroblasts. A molecular analysis of the neurogenic locus mastermind (mam)has been initiated through transposon tagging with P elements. Employing the Harwich strain as the source of P in a hybrid dysgenesis screen, 6000 chromosomes were tested for the production of lethal mam alleles and eight mutations were isolated. The mam region is the site of residence of a P element in Harwich which forms the focus of a chromosome breakage hotspot. Hybrid dysgenic induced mum alleles elicit cuticular and neural abnormalities typical of the neurogenic phenotype, and in five of the eight cases the mutants appear to retain a P element in the cytogenetic region (50CD) of mum. Utilizing P element sequence as probe, mam region genomic DNA was cloned and used to initiate a chromosome walk extending over 120 kb. The physical breakpoints associated with the hybrid dysgenic alleles fall within a 60- kb genomic segment, predicting this as the minimal size of the mam locus barring position effects. The locus contains a high density of repeated elements of two classes; Opa (CAX), and (dC-dA), * (dG-dT),.
    [Show full text]
  • Identification of the Maize Gravitropism Gene Lazy Plant1 by a Transposon-Tagging Genome Resequencing Strategy Thomas P
    University of Rhode Island DigitalCommons@URI Cell and Molecular Biology Faculty Publications Cell and Molecular Biology 2014 Identification of the Maize Gravitropism Gene lazy plant1 by a Transposon-Tagging Genome Resequencing Strategy Thomas P. Howard III Andrew P. Hayward See next page for additional authors Creative Commons License /"> This work is licensed under a Creative Commons Public Domain Dedication 1.0 License. Follow this and additional works at: https://digitalcommons.uri.edu/cmb_facpubs Citation/Publisher Attribution Howard TP, Hayward AP, Tordillos A, Fragoso C, Moreno MA, Tohme J, Kausch AP, Mottinger JP, Dellaporta SL. (2014). "Identification of the maize gravitropism gene lazy plant1 by a transposon-tagging genome resequencing strategy." PLoS One. 9(1): e87053. Available at: http://dx.doi.org/10.1371/journal.pone.0087053 This Article is brought to you for free and open access by the Cell and Molecular Biology at DigitalCommons@URI. It has been accepted for inclusion in Cell and Molecular Biology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Thomas P. Howard III, Andrew P. Hayward, Anthony Tordillos, Christopher Fragoso, Maria A. Moreno, Joe Tohme, Albert P. Kausch, John P. Mottinger, and Stephen L. Dellaporta This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/cmb_facpubs/12 Identification of the Maize Gravitropism Gene lazy plant1 by a Transposon-Tagging Genome Resequencing Strategy Thomas
    [Show full text]
  • 1471-2164-8-116.Pdf
    BMC Genomics BioMed Central Research article Open Access Sequence-indexed mutations in maize using the UniformMu transposon-tagging population A Mark Settles*1, David R Holding2, Bao Cai Tan1, Susan P Latshaw1, Juan Liu3, Masaharu Suzuki1, Li Li1, Brent A O'Brien1, Diego S Fajardo1, Ewa Wroclawska1, Chi-Wah Tseung1, Jinsheng Lai4, Charles T Hunter III1, Wayne T Avigne1, John Baier1, Joachim Messing4, L Curtis Hannah1, Karen E Koch1, Philip W Becraft3, Brian A Larkins2 and Donald R McCarty1 Address: 1Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA, 2Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA, 3Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA and 4Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA Email: A Mark Settles* - [email protected]; David R Holding - [email protected]; Bao Cai Tan - [email protected]; Susan P Latshaw - [email protected]; Juan Liu - [email protected]; Masaharu Suzuki - [email protected]; Li Li - [email protected]; Brent A O'Brien - [email protected]; Diego S Fajardo - [email protected]; Ewa Wroclawska - [email protected]; Chi-Wah Tseung - [email protected]; Jinsheng Lai - [email protected]; Charles T Hunter - [email protected]; Wayne T Avigne - [email protected]; John Baier - [email protected]; Joachim Messing - [email protected]; L Curtis Hannah - [email protected]; Karen E Koch - [email protected]; Philip W Becraft - [email protected]; Brian A Larkins - [email protected]; Donald R McCarty - [email protected] * Corresponding author Published: 9 May 2007 Received: 29 August 2006 Accepted: 9 May 2007 BMC Genomics 2007, 8:116 doi:10.1186/1471-2164-8-116 This article is available from: http://www.biomedcentral.com/1471-2164/8/116 © 2007 Settles et al; licensee BioMed Central Ltd.
    [Show full text]
  • Floral Homeotic Mutations Produced by Transposon-Mutagenesis in Antirrhinum Majus
    Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus Rosemary Carpenter ~ and Enrico S. Coen John Innes Institute, AFRC Institute of Plant Science Research, Norwich NR4 7UH, UK To isolate and study genes controlling floral development, we have carried out a large-scale transposon- mutagenesis experiment in Antirrhinum majus. Ten independent floral homeotic mutations were obtained that could be divided into three classes, depending on whether they affect (1) the identity of organs within the same whorl; (2) the identity and sometimes also the number of whorls; and (3) the fate of the axillary meristem that normally gives rise to the flower. The classes of floral phenotypes suggest a model for the genetic control of primordium fate in which class 2 genes are proposed to act in overlapping pairs of adjacent whorls so that their combinations at different positions along the radius of the flower can specify the fate and number of whorls. These could interact with class 1 genes, which vary in their action along the vertical axis of the flower to generate bilateral symmetry. Both of these classes may be ultimately regulated by class 3 genes required for flower initiation. The similarity between some of the homeotic phenotypes with those of other species suggests that the mechanisms controlling whorl identity and number have been highly conserved in plant evolution. Many of the mutations obtained show somatic and germinal instability characteristic of transposon insertions, allowing the cell-autonomy of floral homeotic genes to be tested for the first time.
    [Show full text]
  • Functional Analysis of Tomato Genes Expressed During the Cf-4/Avr4-Induced Hypersensitive Response Suzan Gabriëls
    Functional analysis of tomato genes expressed during the Cf-4/Avr4-induced hypersensitive response Suzan Gabriëls Promotor: Prof. dr. ir. P.J.G.M. de Wit, hoogleraar in de Fytopathologie Co-promotor: Dr. ir. M.H.A.J. Joosten, universitair docent, Laboratorium voor Fytopathologie Promotiecommissie: Dr. D.A. Jones, Australian National University, Canberra, Australië Prof. dr. ir. C.M.J. Pieterse, Universiteit Utrecht Dr. ir. M.B. Sela-Buurlage, De Ruiter Seeds CV, Bergschenhoek Prof. dr. A.H.J. Bisseling, Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool Experimental Plant Sciences. Functional analysis of tomato genes expressed during the Cf-4/Avr4-induced hypersensitive response Suzan Gabriëls Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff in het openbaar te verdedigen op maandag 15 mei 2006 des namiddags te half twee in de Aula Functional analysis of tomato genes expressed during the Cf-4/Avr4-induced hypersensitive response Suzan Gabriëls Thesis Wageningen University, The Netherlands, 2006 With references – with summaries in English and Dutch ISBN 90-8504-405-7 CONTENTS Chapter 1 General introduction and outline 7 Chapter 2 cDNA-AFLP£, combined with functional analysis, reveals novel genes involved in the hypersensitive response 19 Chapter 3 Functional analysis of Avr-responsive tomato genes reveals their role in resistance to Cladosporium fulvum 63 Chapter 4 An NB-LRR protein required for HR signaling mediated by both extra- and intracellular resistance proteins 87 Chapter 5 General discussion 117 Summary 131 Samenvatting 133 Dankwoord 137 Curriculum Vitae 141 CHAPTER 1 General Introduction and Outline Chapter 1 GENERAL INTRODUCTION Plant diseases can cause severe losses to field and glasshouse crops and have threatened global food and feed security several times in the history of mankind.
    [Show full text]
  • Analysis and Application of the En Transposable Element and Genetic Study of Resistance to Bipolaris Maydis in Maize Ru-Ying Chang Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 Analysis and application of the En transposable element and genetic study of resistance to Bipolaris maydis in maize Ru-Ying Chang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics Commons, and the Plant Pathology Commons Recommended Citation Chang, Ru-Ying, "Analysis and application of the En transposable element and genetic study of resistance to Bipolaris maydis in maize " (1995). Retrospective Theses and Dissertations. 10767. https://lib.dr.iastate.edu/rtd/10767 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI films the text directfy from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from aiQr type of conq)uter printer. The qnali^ of this reprodnction is dependent npon the qnali^ of the copy snbmitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard marging, and inqiroper alignment can adversefy affect reproduction. In the tmlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]