Department of Mechanical & Manufacturing Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of Diesel Engines
GENERAL ARTICLE The Evolution of Diesel Engines U Shrinivasa Rudolf Diesel thought of an engine which is inherently more efficient than the steam engines of the end-nineteenth century, for providing motive power in a distributed way. His intense perseverance, spread over a decade, led to the engines of today which bear his name. U Shrinivasa teaches Steam Engines: History vibrations and dynamics of machinery at the Department The origin of diesel engines is intimately related to the history of of Mechanical Engineering, steam engines. The Greeks and the Romans knew that steam IISc. His other interests include the use of straight could somehow be harnessed to do useful work. The device vegetable oils in diesel aeolipile (Figure 1) known to Hero of Alexandria was a primitive engines for sustainable reaction turbine apparently used to open temple doors! However development and working this aspect of obtaining power from steam was soon forgotten and with CAE applications in the industries. millennia later when there was a requirement for lifting water from coal mines, steam was introduced into a large vessel and quenched to create a low pressure for sucking the water to be pumped. Newcomen in 1710 introduced a cylinder piston ar- rangement and a hinged beam (Figure 2) such that water could be pumped from greater depths. The condensing steam in the cylin- der pulled the piston down to create the pumping action. Another half a century later, in 1765, James Watt avoided the cooling of the hot chamber containing steam by adding a separate condensing chamber (Figure 3). This successful steam engine pump found investors to manufacture it but the coal mines already had horses to lift the water to be pumped. -
The Diffusion of Newcomen Engines, 1706-73: a Reassessment*
1 The Diffusion of Newcomen Engines, 1706-73: A Reassessment* By Harry Kitsikopoulos Abstract The present paper attempts to quantify the diffusion of Newcomen engines in the British economy prior to the commercial application of the first Watt engine. It begins by pointing out omissions and discrepancies between the original Kanefsky database and the secondary literature leading to a number of revisions of the former. The diffusion path is subsequently drawn in terms of adopted horsepower and adjusted for the proportion of the latter being in use throughout the period. This methodology differs from previous studies which quantify diffusion based on the number of steam engines and do not take into account those falling out of use. The results are presented in terms of aggregate, sectoral, and regional patterns of diffusion. Finally, following a long held methodology of the literature on technological diffusion, the paper weighs the number of engines installed by the end of the period in relation to the potential range of adopters. In the end, this method generates a less celebratory assessment regarding the pace of diffusion of Newcomen engines. *The author wishes to thank Alessandro Nuvolari for providing access to the Kanefsky database. Two summer fellowships from the NEH/Folger Institute and Dibner Library (Smithsonian), whose staff was exceptionally helpful (especially Bill Baxter and Ron Brashear), allowed me to draw heavily material from the collection of rare books of the latter. Two graduate students, Lawrence Costa and Michel Dilmanian, proved to be superb research assistants by handling the revisions made by the author to the database, coming up with the graphs, and running the tests involved in the third appendix of the paper as well as writing it. -
MACHINES OR ENGINES, in GENERAL OR of POSITIVE-DISPLACEMENT TYPE, Eg STEAM ENGINES
F01B MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES (of rotary-piston or oscillating-piston type F01C; of non-positive-displacement type F01D; internal-combustion aspects of reciprocating-piston engines F02B57/00, F02B59/00; crankshafts, crossheads, connecting-rods F16C; flywheels F16F; gearings for interconverting rotary motion and reciprocating motion in general F16H; pistons, piston rods, cylinders, for engines in general F16J) Definition statement This subclass/group covers: Machines or engines, in general or of positive-displacement type References relevant to classification in this subclass This subclass/group does not cover: Rotary-piston or oscillating-piston F01C type Non-positive-displacement type F01D Informative references Attention is drawn to the following places, which may be of interest for search: Internal combustion engines F02B Internal combustion aspects of F02B 57/00; F02B 59/00 reciprocating piston engines Crankshafts, crossheads, F16C connecting-rods Flywheels F16F Gearings for interconverting rotary F16H motion and reciprocating motion in general Pistons, piston rods, cylinders for F16J engines in general 1 Cyclically operating valves for F01L machines or engines Lubrication of machines or engines in F01M general Steam engine plants F01K Glossary of terms In this subclass/group, the following terms (or expressions) are used with the meaning indicated: In patent documents the following abbreviations are often used: Engine a device for continuously converting fluid energy into mechanical power, Thus, this term includes, for example, steam piston engines or steam turbines, per se, or internal-combustion piston engines, but it excludes single-stroke devices. Machine a device which could equally be an engine and a pump, and not a device which is restricted to an engine or one which is restricted to a pump. -
Building a Small Horizontal Steam Engine
Building a Small Horizontal Steam Engine The front cylinder head is a pipe cap, THE small engine described in this the exterior of which is turned to pre- article was built by the writer in sent a more pleasing appearance, and his spare time—about an hour a day for drilled and threaded to receive the stuff- four months—and drives the machinery ing box, Fig. 2. The distance between in a small shop. At 40-lb. gauge pres- the edge of the front-end steam port and sure, the engine runs at 150 r.p.m., under the inner side of the cap, when screwed full load, and delivers a little over .4 home, should be much less than that brake horsepower. A cast steam chest, shown, not over ¼ in., for efficiency, and with larger and more direct steam ports, the same at the rear end. When the to reduce condensation losses; less clear- cap has been permanently screwed on ance in the cylinder ends, and larger the cylinder, one side is flattened, as bearing surfaces in several places, would shown, on the shaper or grinder, and the bring the efficiency of the engine up to a steam ports laid out and drilled. It would much higher point than this. In the be a decided advantage to make these writer's case, however, the engine is de- ports as much larger than given as is livering ample power for the purpose to possible, as the efficiency with ½-in. ports which it is applied, and consequently is far below what it might be. -
A Historical Study of Management-Labor Relations Pertaining to the Dieselization of Railroads in the United States
This dissertation has been microfilmed exactly as received 66—15,063 A D L E R , Jr., Philip, 1930— A HISTORICAL STUDY OF MANAGEMENT-LABOR RELATIONS PERTAINING TO THE DIESELIZATION OF RAILROADS IN THE UNITED STATES. The Ohio State University, Ph.D., 1966 Economics, commerce-business University Microfilms, Inc., Ann Arbor, Michigan A HISTORICAL STUDY OF laiAOSRSLT-IABCB RELATIONS PERTAINING TO THE DISSSIJSATIOE OF RAILROADS IK THE UNITED STATES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohic State University 2y Philip Adler, Jr., B. 3 B. A. The Ohio State University 1?66 sproved b y : r~Advig? Jy Depai'tment of Business Organisation ACKNOWLEDGMENTS I wish to express sincere appreciation to those who have helped in the organization and development of this investigation. It is impossible to list here the names of all who have given so generously of their time and knowledge to make this study possible. I am particularly indebted to my adviser, Dr. Michael Jucius, without whose guidance, patience, and inspiration this study would not have been possible. I would like to thank the members of ny reading committee, Professor Charles B. Hicks, Professor Rate Howell, and Professor Reed M. Powell for their valuable criticisms and suggestions. I also would like to thank the various individuals from the railroad industry for their enthusiastic cooperation throughout the research for this study. The encouragement provided by Mrs. Mildred Chavous of the Graduate School is most deeply appreciated, as is the guidance provided by the editorial staff of the Graduate School. -
P1359 Robust F HD-HDP.Pdf
(2007 =>) Users manual for frontloader ROBUST F HD / HDP 3311981 b Englisch P 1359 STOLL ROBUST F HD / HDP Table of contents page 1 Before operating 3 2 General safety information and prevention of accidents 5 2.1 Safety decal (=> 2007) 12 2.2 Safety decal (2007 =>) 13 3 Technical data 14 4 Description 16 5 Practical Application 18 5.1 Operation 18 5.1.1 Operation 19 5.1.2 Operation 20 5.2 Hydraulic system 21 5.3 Attaching of drive-in loader unit 22 5.4 Removal of the drive-in front loader 23 5.5 Mechanical single lever control unit SLV (option available) 26 5.5.1 Type 26 5.5.2 Definition of working directions 27 5.5.3 Definition of actuating directions 27 5.5.4 Additional functions joystick buttons 28 5.5.5 Operation fast stroke device 29 5.6 Quick installation and removal of attachments 30 5.7 Hydraulic implement control with switchable fast-stroke valve 31 5.8 Hydraulic diagram HE + HD 33 5.8.1 HD (standard – basic version) 33 5.8.2 HD (full equipped version) 34 5.9 Electrical Equipment HD 35 5.9.1 HD (standard – basic version) 35 5.9.2 HD Fully equipped electric version with 2-pole socket 36 5.9.3 HD Fully equipped electric version with 7-pole socket 37 5.10 Toogle switch 3rd Control circuit 38 5.11 Hydraulic parallel guidance of the implements 39 5.11.1 Advantages of hydraulic parallel motion ( HS = Hydraulical Selfleveling ) 39 5.11.2 Operation 40 5.11.3 Function 42 5.12 Control unit for "parallel motion" 43 5.13 Hydraulic diagram HDP 44 5.13.1 HDP (standard – basic version) 44 5.13.2 HDP (full equipped version) 45 5.14 Electrical -
Assessing Steam Locomotive Dynamics and Running Safety by Computer Simulation
TRANSPORT PROBLEMS 2015 PROBLEMY TRANSPORTU Volume 10 Special Edition steam locomotive; balancing; reciprocating; hammer blow; rolling stock and track interaction Dāvis BUŠS Institute of Transportation, Riga Technical University Indriķa iela 8a, Rīga, LV-1004, Latvia Corresponding author. E-mail: [email protected] ASSESSING STEAM LOCOMOTIVE DYNAMICS AND RUNNING SAFETY BY COMPUTER SIMULATION Summary. Steam locomotives are preserved on heritage railways and also occasionally used on mainline heritage trips, but since they are only partially balanced reciprocating piston engines, damage is made to the railway track by dynamic impact, also known as hammer blow. While causing a faster deterioration to the track on heritage railways, the steam locomotive may also cause deterioration to busy mainline tracks or tracks used by high speed trains. This raises the question whether heritage operations on mainline can be done safely and without influencing the operation of the railways. If the details of the dynamic interaction of the steam locomotive's components are examined with computerised calculations they show differences with the previous theories as the smaller components cannot be disregarded in some vibration modes. A particular narrow gauge steam locomotive Gr-319 was analyzed and it was found, that the locomotive exhibits large dynamic forces on the track, much larger than those given by design data, and the safety of the ride is impaired. Large unbalanced vibrations were found, affecting not only the fatigue resistance of the locomotive, but also influencing the crew and passengers in the train consist. Developed model and simulations were used to check several possible parameter variations of the locomotive, but the problems were found to be in the original design such that no serious improvements can be done in the space available for the running gear and therefore the running speed of the locomotive should be limited to reduce its impact upon the track. -
Abstract 1. Introduction 2. Robert Stirling
Stirling Stuff Dr John S. Reid, Department of Physics, Meston Building, University of Aberdeen, Aberdeen AB12 3UE, Scotland Abstract Robert Stirling’s patent for what was essentially a new type of engine to create work from heat was submitted in 1816. Its reception was underwhelming and although the idea was sporadically developed, it was eclipsed by the steam engine and, later, the internal combustion engine. Today, though, the environmentally favourable credentials of the Stirling engine principles are driving a resurgence of interest, with modern designs using modern materials. These themes are woven through a historically based narrative that introduces Robert Stirling and his background, a description of his patent and the principles behind his engine, and discusses the now popular model Stirling engines readily available. These topical models, or alternatives made ‘in house’, form a good platform for investigating some of the thermodynamics governing the performance of engines in general. ---------------------------------------------------------------------------------------------------------------- 1. Introduction 2016 marks the bicentenary of the submission of Robert Stirling’s patent that described heat exchangers and the technology of the Stirling engine. James Watt was still alive in 1816 and his steam engine was gaining a foothold in mines, in mills, in a few goods railways and even in pioneering ‘steamers’. Who needed another new engine from another Scot? The Stirling engine is a markedly different machine from either the earlier steam engine or the later internal combustion engine. For reasons to be explained, after a comparatively obscure two centuries the Stirling engine is attracting new interest, for it has environmentally friendly credentials for an engine. This tribute introduces the man, his patent, the engine and how it is realised in example models readily available on the internet. -
Queensland Railways Steam Locomotives 1900-1969
Create exciting Web pages - http://www.mcwebsoftware.com http://freespace.virgin.net/johnk.pb15/qrsl3.html QUEENSLAND RAILWAYS STEAM LOCOMOTIVES 1900 - 1969 DESIGN AND OPERATION CORRIGENDA (The book is available from ANGRMS Sales, PO Box 1135, Woodford, Queensland 4514, tel (evgs) (07)3273 2014.) This corrects various statements in the book, and expands on others to avoid misunderstanding. It also corrects errors in a review of the book. This is the October 2008 version, containing additions to earlier versions. Corrections of further errors which come to light will be added to this page. Various expansions, explanations and further examples have occurred or been told to the author since the book was published. They are being progressively added to the text of the book on his computer, along with these corrections. They are available to anyone interested. Contact the author at the email address given on the home page. Two of these expansions etc are so close to corrections that they have been added to this page. These are an important addition to 10.12, and a whole section on Conclusions from the Perform Program. 1.02 Construction Standards p 10 RH, para 1 - There were indeed vertical curves between changes in gradient, even if not shown in the Working Plans and Sections. The Standard Specifications for construction of 1896 required that a vertical curve of two miles radius be introduced between changes in gradient during construction. Such curves were important for preventing coupled axleboxes of locomotives from striking the tops of cut outs or horn blocks above and keeps below (as sometimes happened where a siding on a steep gradient joined another line without such a vertical curve). -
Steam As a General Purpose Technology: a Growth Accounting Perspective
Working Paper No. 75/03 Steam as a General Purpose Technology: A Growth Accounting Perspective Nicholas Crafts © Nicholas Crafts Department of Economic History London School of Economics May 2003 Department of Economic History London School of Economics Houghton Street London, WC2A 2AE Tel: +44 (0)20 7955 6399 Fax: +44 (0)20 7955 7730 1. Introduction* In recent years there has been an upsurge of interest among growth economists in General Purpose Technologies (GPTs). A GPT can be defined as "a technology that initially has much scope for improvement and evntually comes to be widely used, to have many uses, and to have many Hicksian and technological complementarities" (Lipsey et al., 1998a, p. 43). Electricity, steam and information and communications technologies (ICT) are generally regarded as being among the most important examples. An interesting aspect of the occasional arrival of new GPTs that dominate macroeconomic outcomes is that they imply that the growth process may be subject to episodes of sharp acceleration and deceleration. The initial impact of a GPT on overall productivity growth is typically minimal and the realization of its eventual potential may take several decades such that the largest growth effects are quite long- delayed, as with electricity in the early twentieth century (David, 1991). Subsequently, as the scope of the technology is finally exhausted, its impact on growth will fade away. If, at that point, a new GPT is yet to be discovered or only in its infancy, a growth slowdown might be observed. A good example of this is taken by the GPT literature to be the hiatus between steam and electricity in the later nineteenth century (Lipsey et al., 1998b), echoing the famous hypothesis first advanced by Phelps-Brown and Handfield-Jones, 1952) to explain the climacteric in British economic growth. -
Water, Air and Fire at Work in Hero's Machines
Water, air and fire at work in Hero’s machines Amelia Carolina Sparavigna Dipartimento di Fisica, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, Italy Known as the Michanikos, Hero of Alexandria is considered the inventor of the world's first steam engine and of many other sophisticated devices. Here we discuss three of them as described in his book “Pneumatica”. These machines, working with water, air and fire, are clear examples of the deep knowledge of fluid dynamics reached by the Hellenistic scientists. Hero of Alexandria, known as the Mechanicos, lived during the first century in the Roman Egypt [1]. He was probably a Greek mathematician and engineer who resided in the city of Alexandria. We know his work from some of writings and designs that have been arrived nowadays in their Greek original or in Arabic translations. From his own writings, it is possible to gather that he knew the works of Archimedes and of Philo the Byzantian, who was a contemporary of Ctesibius [2]. It is almost certain that Heron taught at the Museum, a college for combined philosophy and literary studies and a religious place of cult of Muses, that included the famous Library. For this reason, Hero claimed himself a pupil of Ctesibius, who was probably the first head of the Museum of Alexandria. Most of Hero’s writings appear as lecture notes for courses in mathematics, mechanics, physics and pneumatics [2]. In optics, Hero formulated the Principle of the Shortest Path of Light, principle telling that if a ray of light propagates from a point to another one within the same medium, the followed path is the shortest possible. -
Positive Displacement Reciprocating Pump Fundamentals— Power and Direct Acting Types
POSITIVE DISPLACEMENT RECIPROCATING PUMP FUNDAMENTALS— POWER AND DIRECT ACTING TYPES by Herbert H. Tackett, Jr. Reciprocating Product Manager James A. Cripe Senior Reciprocating Product Engineer Union Pump Company; A Textron Company Battle Creek, Michigan and Gary Dyson Director of Product Development - Aftermarket Union Pump, A Textron Company A Trading Division of David Brown Engineering, Limited Penistone, Sheffield ABSTRACT Herbert H. Tackett, Jr., is Reciprocating Product Manager for Union Pump Company, This tutorial is intended to provide an understanding of the in Battle Creek, Michigan. He has 39 years fundamental principles of positive displacement reciprocating of experience in the design, application, and pumps of both power and direct acting types. Topics include: maintenance of reciprocating power and • A definition and overview of the pump types—Including the direct acting pumps. Prior to Mr. Tackett’s differences between single acting and double acting pumps, how current position in Aftermarket Product both types work, where they are used, and how they are applied. Development, he served as R&D Engineer, Field Service Engineer, and new equipment • Component options—Covers aspects of valve designs and when order Engineer, in addition to several they should be used; describes the various stuffing box designs positions in Reciprocating Pump Sales and Marketing. He has been available with specific reference to their function and application, a member of ASME since 1991. and points out the differences between plungers and pistons and their selection criteria. • Specification criteria and methodology—What application James A. Cripe currently is a Senior information is needed by pump suppliers to correctly size and Reciprocating Product Engineer assigned supply appropriate equipment? to the New Product Development Team for Union Pump Company, in Battle Creek, • Additional topics—Volumetric and mechanical efficiency, net Michigan.