Risultati 2D 25

Total Page:16

File Type:pdf, Size:1020Kb

Risultati 2D 25 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Corso di Laurea Magistrale in Ingegneria Energetica Numerical modelling of molten-salt thermocline storage systems: feasibility and criteria for performance improvement Relatore: Prof. Giampaolo Manzolini Correlatori: Prof. Andrea Lucchini Prof. Michaël Kummert Tesi di Laurea di: Giovanni Angelini 770990 Anno Accademico 2011 - 2012 “Within 6 hours deserts receive more energy from the sun than humankind consumes within a year” Dr. Gerhard Knies Index Figures index ...................................................................................................... vii Tables index ........................................................................................................ xi Abstract ............................................................................................................ xiii Sommario .................................................. Errore. Il segnalibro non è definito. Estratto in lingua italiana .............................................................................. xvii Introduction ..................................................................................................... xxv Background.................................................................................................... xxv Objectives ................................................................................................... xxvii 1 Electric supply form solar energy .............................................................. 1 1.1 Photovoltaic ............................................................................................ 2 1.2 Thermoelectric conversion ..................................................................... 5 1.3 Not concentrated solar power plants ...................................................... 8 1.3.1 Solar pond ....................................................................................... 8 1.3.2 Solar updraft tower .......................................................................... 8 1.4 Concentrated solar power plant ............................................................ 10 1.4.1 Parabolic trough ............................................................................ 10 1.4.2 Linear Fresnel collectors ............................................................... 12 1.4.3 Central receiver ............................................................................. 13 1.4.4 Solar dish ....................................................................................... 15 1.5 History of CSP plants ........................................................................... 16 2 Thermal energy storage ............................................................................. 19 2.1 Thermal energy storage media ............................................................. 21 2.1.1 Steam ............................................................................................. 22 2.1.2 Mineral/synthetic oil ..................................................................... 22 2.1.3 Molten salt ..................................................................................... 23 iii 2.2 Indirect Two-Tank TES system ........................................................... 24 2.3 Direct Two-Tank TES system ............................................................. 26 2.4 Direct Thermocline TES system .......................................................... 28 2.5 Passive storage ..................................................................................... 30 2.6 Latent TES system ............................................................................... 32 2.7 Chemical thermal energy storage ......................................................... 33 2.8 Thermal energy storage cost assessment ............................................. 34 2.8.1 Choice of the filler material for molten salt thermocline TES ..... 38 3 Previous studies on molten salt thermocline TES systems .................... 39 3.1 Previous thermocline TES models ....................................................... 40 3.1.1 Schumann equation set ................................................................. 40 3.1.2 Schumann-Darcy-Brinkman-Forchheimer equation set ............... 41 3.1.3 Hypothesis and assumptions ......................................................... 42 3.2 Model implementation ......................................................................... 44 3.2.1 Pacheco ......................................................................................... 44 3.2.2 Yang .............................................................................................. 45 3.2.3 Garimella ...................................................................................... 45 3.2.4 Xu ................................................................................................. 46 3.3 Validation of the model – Pacheco’s experimental data ...................... 46 3.4 Previous findings on Thermocline Performances ................................ 47 3.4.1 Inlet fluid velocity......................................................................... 49 3.4.2 Porosity ......................................................................................... 50 3.4.3 Particle diameter ........................................................................... 50 3.4.4 Tank height ................................................................................... 50 3.4.5 Inlet temperature ........................................................................... 51 3.4.6 Thermal conductivity .................................................................... 51 3.4.7 Interstitial heat transfer coefficient ............................................... 51 3.4.8 Insulation of the tank .................................................................... 52 3.4.9 External air velocity ...................................................................... 52 iv 4 Development of the thermocline model ................................................... 53 4.1 Fundamental equations ......................................................................... 53 4.2 Discretization ........................................................................................ 54 4.2.1 Discretization of mass balance equation ....................................... 56 4.2.2 Discretization of energy equations ................................................ 58 4.2.3 Flow chart of the thermocline model ............................................ 59 4.3 Comparison with analytical solutions .................................................. 61 4.3.1 Transient radial diffusion .............................................................. 62 4.3.2 Transient axial thermal diffusion .................................................. 64 4.3.3 Heat transfer between molten salt and packed bed ....................... 66 4.3.4 Axial advective transport and axial diffusion ............................... 69 4.4 Molten salt physical properties – Sensitivity analysis .......................... 71 4.5 Comparison with Pacheco experimental results ................................... 75 4.6 Order of convergence of the numerical model ..................................... 76 4.6.1 Order of convergence - mesh dimension ...................................... 76 4.6.2 Time step length ............................................................................ 77 5 Thermocline TES issues ............................................................................ 79 5.1 Thermal ratcheting................................................................................ 79 5.1.1 Thermal ratcheting safety factor - Analytical method .................. 82 5.1.2 Thermal ratcheting factor of safety - Numerical method .............. 83 5.1.3 Proposed wall structures ............................................................... 86 5.2 Thermal Stability of the thermocline - Fingering ................................. 86 5.2.1 Hydrostatical criterion ................................................................... 87 5.2.2 Hydrodynamic criterion ................................................................ 87 5.3 Standby behavior of thermocline TES system ..................................... 90 5.3.1 Thermocline expansion during standby mode .............................. 90 5.3.2 Heat loss to the environment ......................................................... 92 6 Optimal design of the thermocline ........................................................... 97 6.1 Simulation on a typical summer week .................................................. 98 6.1.1 Optimal tank size ......................................................................... 103 v 6.2 Simulation on a early-spring week .................................................... 106 6.2.1 Optimal size of the tank – spring season .................................... 109 6.2.2 Comparison of thermocline TES performancek ......................... 109 6.3 Improvement of thermocline TES performance ................................ 110 6.3.1 Discharge efficiency and threshold temperature ........................ 110 6.3.2 Molten salt choice ....................................................................... 113 6.3.3 Molten salt and packed bed thermal conductivity ...................... 115 6.3.4 Tank height ................................................................................. 116 Conclusions .....................................................................................................
Recommended publications
  • Solar Energy Projects for the Evil Genius : [50 Build
    Malestrom 11/1/2009 Solar Energy Projects for the Evil Genius Evil Genius Series Bionics for the Evil Genius: 25 Build-it-Yourself MORE Electronic Gadgets for the Evil Genius: Projects 40 NEW Build-it-Yourself Projects Electronic Circuits for the Evil Genius: 57 Lessons 101 Spy Gadgets for the Evil Genius with Projects 123 PIC® Microcontroller Experiments for the Evil Electronic Gadgets for the Evil Genius: Genius 28 Build-it-Yourself Projects 123 Robotics Experiments for the Evil Genius Electronic Games for the Evil Genius PC Mods for the Evil Genius: 25 Custom Builds to Electronic Sensors for the Evil Genius: Turbocharge Your Computer 54 Electrifying Projects Solar Energy Projects for the Evil Genius 50 Awesome Auto Projects for the Evil Genius 25 Home Automation Projects for the Evil Genius 50 Model Rocket Projects for the Evil Genius Mechatronics for the Evil Genius: 25 Build-it-Yourself Projects Solar Energy Projects for the Evil Genius GAVIN D. J. HARPER New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data- base or retrieval system, without the prior written permission of the publisher. 0-07-150910-0 The material in this eBook also appears in the print version of this title: 0-07-147772-1.
    [Show full text]
  • Renewable Energy Use in the World and Armenia
    USE OF RENEWABLE ENERGY SOURCES IN THE WORLD AND ARMENIA THROUGH INNOVATIONS TO CLEAR TECHNOLOGIES YEREVAN - 2010 USE OF RENEWABLE ENERGY SOURCES IN THE WORLD AND ARMENIA THROUGH INNOVATIONS TO CLEAR TECHNOLOGIES United States Alumni Association of Armenia US Embassy, Yerevan, PAS office, USG Alumni Outreach Grant Program “EcoTeam” - Energy and Environmental Consulting NGO United Nations Development Program Global Environment Facility “Enabling Activities for the Preparation of Armenia’s Second National Communication to the UNFCCC” UNDP/GEF Project (2006-2009) YEREVAN - 2010 United States Alumni Association of Armenia US Embassy, Yerevan, PAS office, USG Alumni Outreach Grant Program “EcoTeam” - Energy and Environmental Consulting NGO United Nations Development Program Global Environment Facility “Enabling Activities for the Preparation of Armenia’s Second National Communication to the UNFCCC” UNDP/GEF Project (2006-2009) PREFACE The English version of brochure is prepared by Artashes Sargsyan, PhD, alumnus of IVLP program in frames of grant from United States Alumni Association of Armenia (USAAA) with support from US Embassy, Yerevan, PAS office, USG Alumni Outreach Grant Program in collaboration with ―EcoTeam‖-Energy and Environmental consulting NGO and ―Enabling Activities for the Preparation of Armenia’s Second National Communication to the UNFCCC‖ UNDP/GEF Project in 2010. The brochure is recommended by the Chair of ―Semiconductor Physics and Microelectronics‖ of Radiophysics Faculty of the Yerevan State University and the Chair of ―Industrial Enterprise Economy, Organization, Planning and Energy‖ of the Energy Faculty of the Armenian State Engineering University to use in the ―Alternative Energy Sources‖ Subject. ―Renewable Energy Use in the World and in Armenia. Through Innovations towards Clean Technologies.‖ Yerevan.
    [Show full text]
  • Solar Energy Projects for the Evil Genius Evil Genius Series
    Solar Energy Projects for the Evil Genius Evil Genius Series Bionics for the Evil Genius: 25 Build-it-Yourself MORE Electronic Gadgets for the Evil Genius: Projects 40 NEW Build-it-Yourself Projects Electronic Circuits for the Evil Genius: 57 Lessons 101 Spy Gadgets for the Evil Genius with Projects 123 PIC® Microcontroller Experiments for the Evil Electronic Gadgets for the Evil Genius: Genius 28 Build-it-Yourself Projects 123 Robotics Experiments for the Evil Genius Electronic Games for the Evil Genius PC Mods for the Evil Genius: 25 Custom Builds to Electronic Sensors for the Evil Genius: Turbocharge Your Computer 54 Electrifying Projects Solar Energy Projects for the Evil Genius 50 Awesome Auto Projects for the Evil Genius 25 Home Automation Projects for the Evil Genius 50 Model Rocket Projects for the Evil Genius Mechatronics for the Evil Genius: 25 Build-it-Yourself Projects Solar Energy Projects for the Evil Genius GAVIN D. J. HARPER New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data- base or retrieval system, without the prior written permission of the publisher. 0-07-150910-0 The material in this eBook also appears in the print version of this title: 0-07-147772-1.
    [Show full text]
  • Full Final Report
    Arizona’s Energy Future 99th Arizona Town Hall November 6 - 9, 2011 Background Report Prepared by Arizona State University 2011-2012 ARIZONA TOWN HALL OFFICERS, BOARD OF DIRECTORS, COMMITTEE CHAIRS, AND STAFF OFFICERS STEVEN BETTS EXECUTIVE COMMITTEE EX OFFICIO RON WALKER Vice Chair (Administration) The Officers and the following: JOHN HAEGER Board Chair CATHY WEISS LISA ATKINS BRUCE DUSENBERRY KIMULET WINZER Secretary GILBERT DAVIDSON Vice Chair (Programs) DENNIS MITCHEM LINDA ELLIOTT-NELSON Treasurer RICHARD MORRISON HANK PECK BOARD OF DIRECTORS JOSEPH E. LA RUE DANIELLE VIOLA Executive Vice President, Sun Health; CEO, Sun Health Judge, Maricopa County Superior Court, Phoenix KAREN ABRAHAM Partners; Attorney, Sun City RICHARD S. WALDEN Senior Vice President, Finance, Blue Cross Blue Shield THOMAS LARGO President, Farmers Investment Co., Sahuarita of Arizona, Phoenix Councilmember, Salt River Pima-Maricopa Indian Com- RON E. WALKER LARRY ALDRICH munity, Scottsdale Mohave County Manager, Kingman President and CEO, University Physicians Healthcare, GORDON LEWIS JANICE WASHINGTON Tucson Attorney; Jones, Skelton & Hochuli, P.L.C., Phoenix State Director, Arizona Small Business Development LISA A. ATKINS LISA LOVALLO Network, Tempe Vice President, Public Policy, Greater Phoenix Leader- Vice President and Systems Manager, Cox Communica- DEVAN WASTCHAK ship; Board Member, Central Arizona Project, Litchfield tions, Southern Arizona, Tucson Managing Partner, VIVO Development Partners, LLC, Park FRANCES MCLANE MERRYMAN Phoenix STEVEN A. BETTS Ret. President & C.E.O., SunCor Development Co.; Vice President and Senior Wealth Strategist, Tucson CATHY WEISS Attorney, Tempe Catalina Foothills Office, Northern Trust Bank, Tucson Director, Del E. Webb Center for the Performing Arts, BRIAN BICKEL BENJAMIN H. MILLER Wickenburg Chief Executive Officer, Southeast Arizona Medical Manager, Real Estate & Investments, Miller Bros., DAVID WELSH Center, Douglas L.L.C., Sedona Executive Vice President, Tucson Regional Economic KERRY BLUME DENNIS E.
    [Show full text]
  • TYLER HAMILTON MAD LIKE TESLA Tyler Hamilton
    MAD LIKE TESLA Underdog Inventors and their Relentless Pursuit of Clean Energy TYLER HAMILTON MAD LIKE TESLA Tyler Hamilton Copyright © Tyler Hamilton, 2011 Published by ECW Press 2120 Queen Street East, Suite 200, Toronto, Ontario, Canada m4e 1e2 416-694-3348 / [email protected] All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any process — electronic, mechanical, photocopying, recording, or otherwise — without the prior written permission of the copyright owners and ECW Press. The scanning, uploading, and distribution of this book via the Internet or via any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions, and do not participate in or encourage electronic piracy of copyrighted materials. Your support of the author’s rights is appreciated. library and archives canada cataloguing in publication Hamilton, Tyler J. Mad like Tesla : underdog inventors and their relentless pursuit of clean energy / Tyler Hamilton. isbn 978-1-77041-008-4 also issued as: 978-1-77090-074-5 (pdf) ; 978-1-77090-073-8 (epub) 1. Renewable energy sources—Popular works. 2. Energy development—Popular works. 3. Inventors. i. Title. tj808.h36 2011 333.79’4 c2011-902853-0 Editor for the press: Crissy Boylan Cover and text design: David Gee Typesetting: Rachel Ironstone Production: Troy Cunningham Printing: Webcom 1 2 3 4 5 Interior images by Tyler Hamilton, except p. 74/75, illustrations by Tania Craan based on an illustration by Brian Kaas for Sierra magazine; p. 120 PAX Scientific; and p.
    [Show full text]
  • Arizona Wind and Solar Development Status Report 2011
    Arizona Wind and Solar Development Status Report Date: February 2012 By: Karin Wadsack, Kevin Ordean, Cara Corbinmeyer Northern Arizona University Landsward Institute / Institute for Sustainable Energy Solutions Introduction Until recently, wind and solar development in Arizona lagged behind neighboring states. In the last few years, utility-scale development of both technologies has expanded in Arizona in response to a number of factors: aggressive state Renewable Portfolio Standards in the region; the potential shutdown of older coal-fired power plants; and the availability of federal and state incentives for utility-scale renewable energy development. In 2009, Northern Arizona University released a Wind Development Status Report. The present report is an update to that document, and has been expanded to include utility- scale solar energy development. Historically, developers in Arizona have been slow to embrace utility-scale wind, and to a lesser degree solar, for several reasons: the perception that Arizona has relatively poor wind resources compared to its neighbors; the fact that inexpensive coal power makes Arizona wind and solar energy less competitive; the burden placed on developers by the differences in local, state, and national guidelines regarding permitting, zoning, and pre-construction environmental monitoring; the checkerboard nature of Arizona land and the fact that much of the wind resource falls on tribal lands, which are governed by entirely different authorities; and lack of access to large available quantities of transmission.1 Nevertheless, wind and solar energy are emerging in Arizona as viable, stably-priced and local renewable electricity sources. The Dry Lake wind plant, located near Snowflake, Arizona was the first utility-scale project to be built in the state of Arizona.
    [Show full text]
  • Utility-Scale Concentrating Solar Power and Photovoltaics Projects: a Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan
    Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-6A20-51137 April 2012 Contract No. DE-AC36-08GO28308 Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Prepared under Task No. SM10.2442 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 1617 Cole Boulevard NREL/TP-6A20-51137 Golden, Colorado 80401 April 2012 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Modelo Radiación Solar (MATLAB)
    ANÁLISIS, COMPARACIÓN Y EVALUACIÓN ECONÓMICA DE TECNOLOGÍAS TERMOSOLARES MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL INDUSTRIAL GONZALO MATIAS ARAYA SEPULVEDA PROFESOR GUÍA: MARIA TERESA CORDOVEZ MELERO MIEMBROS DE LA COMISIÓN: MANUEL DIAZ ROMERO HUGO VÁSQUEZ GUARDAMAGNA SANTIAGO DE CHILE ENERO 2013 RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL INDUSTRIAL AUTOR: GONZALO ARAYA SEPÚLVEDA FECHA: 21-01-2013 PROF. GUIA: MARIA TERESA CORDOVEZ MELERO ANÁLISIS, COMPARACIÓN Y EVALUACIÓN ECONÓMICA DE TECNOLOGÍAS TERMOSOLARES El objetivo principal del presente trabajo es realizar un análisis técnico y económico de la implementación de centrales termosolares en el norte de Chile. Para esto se estudiarán tanto el recurso solar como las tecnologías disponibles. La energía solar se considera una energía renovable no convencional (ERNC). Este tipo de energía posee un enorme potencial debido a que utiliza un recurso en esencia inagotable y que supera notablemente a sus contrapartes convencionales (fósil o nuclear) en términos de cantidad disponible. El norte de Chile, particularmente el desierto de Atacama, presenta características únicas para iniciar el desarrollo de distintas tecnologías que utilicen la energía solar. Entre estas características se destacan una alta irradiancia diaria y ausencia de nubosidad la mayor parte del año. En este trabajo se revisó el estado del arte de la tecnología termosolar, para luego -a través de comparaciones- escoger dos tecnologías para evaluar con mayor detalle y estudiar su factibilidad económica. Para conseguir esto, se modeló el recurso solar del norte grande y se escogió como posible ubicación un sitio cercano a la estación Crucero, debido a sus buenas condiciones solares y cercanía a la red de distribución eléctrica.
    [Show full text]
  • 1-800 Flowers.Com, Inc
    FLWS 1-800 Flowers.Com, Inc. - Class A Common Stock FCOB 1St Colonial Bancorp Inc FNRC 1St Nrg Corp TDCH 30Dc Inc TSIOF 361 Degrees Intl Ltd TDEY 3D Eye Solutions Inc DPSM 3D Pioneer Systems Inc DDD 3D Systems Corporation Common Stock TDCP 3Dicon Corp DDDX 3Dx Industries Inc MMM 3M Company Common Stock PSPW 3Power Energy Group Inc CATV 4Cable Tv Intl Inc FOUR 4Licensing Corp BARZ 5Barz International Inc RNWR 808 Renewable Energy Corp EIHDF 888 Holdings Plc Ord EGHT 8X8 Inc - Common Stock DRWN A Clean Slate Inc SHLM A. Schulman, Inc. - Common Stock AOS A.O. Smith Corporation Common Stock AMKBY A.P Moller-Mrs Uns/Adr AEMMY A2A Spa Unsp/Adr AACAY Aac Techs Hldgs Unsp/Adr ELUXY Ab Electrolux B S/Adr RJA Ab Svensk Ekportkredit (Swedish Export Credit Corporation) Elements Linked To The Rogers International Commodity Index - Agriculture Total Return Structured Product ABCFF Abacus Mining & Expl Corp ABKI Abakan Inc ATTBF Abattis Bioceuticals Ord ABB Abb Ltd Common Stock ABLZF Abb Ltd Zuerich ABT Abbott Laboratories Common Stock ABBV Abbvie Inc. Common Stock ABBY Abby Inc ABCZY Abcam Plc Adr AGOAF Abengoa Sa Abg/Ac B ABGOF Abengoa Sa Ord ABGB Abengoa, S.A. - American Depositary Shares ANF Abercrombie & Fitch Company Common Stock ABBAF Aberdeen Asian Income Fun ABDNY Aberdeen Asset Mgmt Adr IAF Aberdeen Australia Equity Fund Inc Common Stock GCH Aberdeen Greater China Fund, Inc. Common Stock IF Aberdeen Indonesia Fund, Inc. (Common Stock ABMD Abiomed, Inc. - Common Stock ABOT Abot Mining Co Ida Cap ABHD Abtech Holdings Inc ACCA Acacia Diversified Hldgs ACTG Acacia Research Corporation - Common Stock AKR Acadia Realty Trust Common Stock AXDX Accelerate Diagnostics, Inc.
    [Show full text]
  • Energies Renouvelables
    Préparation à l’agrégation de Ressources énergétiques Génie Electrique 2011 renouvelables et solutions électriques Généralités sur l’énergie, conversion Aérogénérateurs électriques (diaporama 2) Génération photovoltaïque (diaporama 3) Stockage d’énergie électrique (diaporama 4) © Ecole Normale Supérieure de Cachan, avril 2011 ISBN : 9782909968940 Bernard MULTON Unités d’énergie Système international : le joule J Facture d’électricité : le kilowatt.heure kWh 1 kWh = 3600 000 J = 3,6 106J (MJ) Carburants : tonne équivalent pétrole tep 1 tep <=> 11 600 kWh Notation en puissance de 10 k kilo = 1000 = 103 M méga = 1000 000 = 106 Ggiga = 109 T téra = 1012 (attention 1 TWh = 1012 Wh P péta = 1015 et bien 109 kWh) Eexa = 1018 10 Gtep ≅ 116 000 TWh ≅ 420 EJ Bernard MULTON Equivalences 1 Wh = 3600 J (1 TWh = 1012 Wh, 1 EJ = 1018 J) 1 tep ≅ 11 600 kWh (tonne équivalent pétrole) 1 baril (159 l ou 140 kg) ≅ 1700 kWh 1 BTU (British Thermal Unit) ≅ 252 cal ≅ 1050 J 1 quad BTU : 1015BTU ≅ 292 TWh ≅ 25 Mtep 1 BTU = énergie pour accroître de 1°F une livre (pound, 453 grammes) d’eau Valeurs énergétiques PCI/PCS de quelques combustibles Uranium natur. (fission) 116 000 kWh/kg Gaz Naturel 13,8/15,3 kWh/kg Hydrogène 34/39 kWh/kg Charbon 7 à 9 / 9 à 10 kWh/kg Fuel 11,6/12,4 kWh/kg Bois 2 à 4 kWh/kg Essence 12,4/13,4 kWh/kg Bagasse 2,2 kWh/kg GPL : Propane 12,8/13,8 kWh/kg Ordures 0,3 à 0,5 kWh/kg Butane 12,7/13,7 ménagères Selon les gisements : 3 Gaz naturel : 37 à 42 MJ/m PCI = pouvoir calorifique inférieur (lower heating value: LHV) Pétrole brut : 1 à 1,07 tep/tonne PCS = pouvoir calorifique supérieur (higher heating value : HHV) Charbon : 0,44 à 0,64 tep/tonne Bernard MULTON Formes de l’énergie Chaleur Travail mécanique Rayonnement Chimique Electricité Matière : E = m.c2 Dans l’univers, la matière se dégrade inexorablement en chaleur.
    [Show full text]
  • CSP World Plant Locations
    CSP World plant locations SPAIN USA E1 E2 E3 E4 E5 E6 E7 E8 U1 U3 U6 U9 U2 U7 U8 U10 U13 U100 E9 E10 E11 E12 E13 E14 E15 E16 U12 U18 U27 U28 U11 U16 U17 U20 U14 U101 E17 E18 E19 E20 E21 E22 E23 E24 U29 U30 U31 U32 U24 U25 U26 U34 U15 U102 E25 E26 E27 E28 E29 E30 E31 E32 E33 E34 E35 E36 E37 E38 E39 E40 U33 U41 U42 U43 U36 U37 U38 U39 U54 U103 E41 E42 E43 E44 E45 E46 E47 E48 U44 U45 U46 U55 U40 U47 U48 U49 U19 E49 E50 E51 E52 E53 E54 E55 E56 U57 U58 U60 U61 U50 U51 U52 U53 U35 E57 E58 E59 E60 E61 E62 U67 U68 U71 U72 U56 U62 U63 U64 U4 U75 U76 U77 U78 U65 U66 U69 U70 U21 W1 C8 U79 U80 U81 U82 U90 U91 U92 U93 U23 W3 C5 U83 U84 U85 U86 U94 U95 U96 U74 U5 W4 W7 C2 M16 C7 U87 U88 U89 U97 U99 U98 U73 U22 U59 M12 M11 M17 M8 C6 M13 M14 M9 C4 W2 M15 M10 M1 M2 M5 M3 M4 M6 I6 I4 I5 M7 M18 C1 I2 I7 I1 I13 I14 I10 I3 I11 I12 I9 I8 A14 A3 A15 A6 A4 A5 W8 A7 W5 A12 A10 A13 KEY W6 A1 A8 A11 A2 A9 Planning Under Construction Operational Parabolic Trough Power Tower Fresnel Dish Stirling Multi Tower Greenhouse CSP USA plant Maine locations North Dakota New York Washington Montana U 1.
    [Show full text]
  • G:\Data\Wpdocs\SI\Environmental Studies\Renewable Energy\Design\Abstract.Wpd
    United States International Trade Commission Renewable Energy Services: An Examination of U,S, and Foreign Markets Investigation No. 332-462 USlTC Publication 3805 October 2005 U.S. International Trade Commission COMMISSIONERS Stephen Koplan, Chairman Deanna Tanner Okun, Vice Chairman Jennifer A. Hillman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Robert A. Rogowsky Director of Operations Karen Laney-Cummings Director of Industries Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Renewable Energy Services: An Examination of U.S. and Foreign Markets Investigation No. 332-462 Publication 3805 October 2005 This report was principally prepared by the Office of Industries Project Team Lisa Ferens Alejandro, Project Leader [email protected] Dennis Luther, Deputy Project Leader [email protected] Robert Feinberg, Economist Staff assigned: Jennifer Baumert, Laura Bloodgood, William Chadwick, John Cutchin, Eric Forden, Samuel Huleatt, David Ingersoll, Christopher Mapes, Robert Randall, Elizabeth Ryvkin, Audry Tafoya, Norman Van Toai, and Joann Tortorice With special assistance from: Lynette Gabourel, Louise Gillen, and Cynthia Payne Primary Reviewers Dennis Rapkins and Sandra Rivera under the direction of Richard Brown, Chief Services and Investment Division ABSTRACT As requested by the United States Trade Representative (USTR), this report examines global markets for renewable energy services as well as issues related to the international trade of these services, for the purpose of providing information that would be useful in conducting trade negotiations and environmental reviews. The report finds that demand for renewable energy services is driven largely by government policies including those that stem from national obligations under international environmental agreements.
    [Show full text]