Itu150-17May-Brochure.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ACM Multimedia 2007
ACM Multimedia 2007 Call for Papers (PDF) University of Augsburg Augsburg, Germany September 24 – 29, 2007 http://www.acmmm07.org ACM Multimedia 2007 invites you to participate in the premier annual multimedia conference, covering all aspects of multimedia computing: from underlying technologies to applications, theory to practice, and servers to networks to devices. A final version of the conference program is now available. Registration will be open from 7:30am to 7pm on Monday and 7:30am to 5pm on Tuesday, Wednesday and Thursday On Friday registration is only possible from 7:30am to 1pm. ACM Business Meeting is schedule for Wednesday 9/26/2007 during Lunch (Mensa). Ramesh Jain and Klara Nahrstedt will talk about the SIGMM status SIGMM web status Status of other conferences/journals (TOMCCAP/MMSJ/…) sponsored by SIGMM Miscellaneous Also Chairs of MM’08 will give their advertisement Call for proposals for MM’09 + contenders will present their pitch Announcement of Euro ACM SIGMM Miscellaneous Travel information: How to get to Augsburg How to get to the conference sites (Augsburg public transport) Conference site maps and directions (excerpt from the conference program) Images of Augsburg The technical program will consist of plenary sessions and talks with topics of interest in: (a) Multimedia content analysis, processing, and retrieval; (b) Multimedia networking, sensor networks, and systems support; (c) Multimedia tools, end-systems, and applications; and (d) Multimedia interfaces; Awards will be given to the best paper and the best student paper as well as to best demo, best art program paper, and the best-contributed open-source software. -
Extended Multiple Feature-Based Classifications for Adaptive Loop Filtering
SIP (2019),vol.8,e28,page1of11©TheAuthors,2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/ATSIP.2019.19 original paper Extended multiple feature-based classifications for adaptive loop filtering johannes erfurt,1‡ wang-q lim,1‡ heiko schwarz,1 detlev marpe1 andthomas wiegand 1,2 Recent progress in video compression is seemingly reaching its limits making it very hard to improve coding efficiency significantly further. The adaptive loop filter (ALF) has been a topic of interest for many years. ALF reaches high coding gains and has motivated many researchers over the past years to further improve the state-of-the-art algo- rithms. The main idea of ALF is to apply a classification to partition the set of all sample locations into multiple classes. After that, Wiener filters are calculated and applied for each class. Therefore, the performance of ALF essen- tially relies on how its classification behaves. In this paper, we extensively analyze multiple feature-based classifica- tions for ALF (MCALF) and extend the original MCALF by incorporating sample adaptive offset filtering. Further- more, we derive new block-based classifications which can be applied in MCALF to reduce its complexity. Experimental results show that our extended MCALF can further improve compression efficiency compared to the original MCALF algorithm. Keywords: Video compression, Adaptive loop filtering, Multiple classifications, SAO filtering Received 24 May 2019; Revised 06 October 2019 1. -
ITU-T Workshop Video and Image Coding and Applications (VICA)
ITU-T Workshop Video and Image Coding and Applications (VICA) BIO Geneva, 22-23 July 2005 Thomas Wiegand Assoc. Rapporteur ITU-T Q.6/16; HHI/ Germany Session: 2: Applications Title of Presentation: H.264/MPEG-4 AVC Application & Deployment Status Session: 6: Future trends in VICA Title of Presentation: New techniques for improved video coding Thomas Wiegand is the head of the Image Communication Group in the Image Processing Department of the Fraunhofer Institute for Telecommunications - Heinrich Hertz Institute Berlin, Germany. He received the Dipl.-Ing. degree in Electrical Engineering from the Technical University of Hamburg-Harburg, Germany, in 1995 and the Dr.-Ing. degree from the University of Erlangen-Nuremberg, Germany, in 2000. From 1993 to 1994, he was a Visiting Researcher at Kobe University, Japan. In 1995, he was a Visiting Scholar at the University of California at Santa Barbara, USA, where he started his research on video compression and transmission. Since then he has published a number of conference and journal papers on the subject and has contributed substantially to the ITU-T Video Coding Experts Group (ITU-T SG16 Q.6 - VCEG), ISO/IEC Moving Pictures Experts Group (ISO/IEC JTC1/SC29/WG11 - MPEG), and Joint Video Team (JVT) standardization efforts, and he holds various international patents in this field. From 1997 to 1998, was a Visiting Researcher at Stanford University, USA. In October 2000, he was appointed as the Associated Rapporteur of ITU-T VCEG. In December 2001, he was appointed as the Associated Rapporteur / Vice-Chair of the JVT. In February 2002, he was appointed as the Editor of the H.264/AVC video coding standard. -
The H.264/MPEG4 Advanced Video Coding Standard and Its Applications
SULLIVAN LAYOUT 7/19/06 10:38 AM Page 134 STANDARDS REPORT The H.264/MPEG4 Advanced Video Coding Standard and its Applications Detlev Marpe and Thomas Wiegand, Heinrich Hertz Institute (HHI), Gary J. Sullivan, Microsoft Corporation ABSTRACT Regarding these challenges, H.264/MPEG4 Advanced Video Coding (AVC) [4], as the latest H.264/MPEG4-AVC is the latest video cod- entry of international video coding standards, ing standard of the ITU-T Video Coding Experts has demonstrated significantly improved coding Group (VCEG) and the ISO/IEC Moving Pic- efficiency, substantially enhanced error robust- ture Experts Group (MPEG). H.264/MPEG4- ness, and increased flexibility and scope of appli- AVC has recently become the most widely cability relative to its predecessors [5]. A recently accepted video coding standard since the deploy- added amendment to H.264/MPEG4-AVC, the ment of MPEG2 at the dawn of digital televi- so-called fidelity range extensions (FRExt) [6], sion, and it may soon overtake MPEG2 in further broaden the application domain of the common use. It covers all common video appli- new standard toward areas like professional con- cations ranging from mobile services and video- tribution, distribution, or studio/post production. conferencing to IPTV, HDTV, and HD video Another set of extensions for scalable video cod- storage. This article discusses the technology ing (SVC) is currently being designed [7, 8], aim- behind the new H.264/MPEG4-AVC standard, ing at a functionality that allows the focusing on the main distinct features of its core reconstruction of video signals with lower spatio- coding technology and its first set of extensions, temporal resolution or lower quality from parts known as the fidelity range extensions (FRExt). -
Human-Computer Interaction Technologies in Japan
Japanese Technology Evaluation Center JTEC JTEC Panel Report on HUMAN-COMPUTER INTERACTION TECHNOLOGIES IN JAPAN James D. Foley (Panel Chair) Ephraim P. Glinert James D. Hollan Robert E. Kraut Thomas B. Sheridan Tim Skelly March 1996 _________________________________________________________________________ International Technology Research Institute Michael J. DeHaemer, JTEC/WTEC Director Geoffrey M. Holdridge, JTEC/WTEC Series Editor Loyola College in Maryland 4501 North Charles Street Baltimore, Maryland 21210-2699 _________________________________________________________________________ JTEC PANEL ON HUMAN-COMPUTER INTERACTION TECHNOLOGIES Sponsored by the National Science Foundation, the Defense Advanced Research Projects Agency, the Department of Commerce, and the Office of Naval Research of the United States Government Dr. James D. Foley (Panel Chair) Dr. Robert E. Kraut Professor of Computer Science Professor of Social Psychology and Director of Graphics, Visualization Human Computer Interaction & Usability Center Carnegie Mellon University Georgia Institute of Technology 1307 Wean Hall 801 Atlantic Pittsburgh, PA 15213 Atlanta, GA 30332-0280 Dr. Thomas B. Sheridan Dr. Ephraim P. Glinert Professor of Engineering and Applied Psychology Professor of Computer Science Massachusetts Institute of Technology Rensselaer Polytechnic Institute Room 3-346 127 Amos Eaton Bldg. Cambridge, MA 02139 Troy, NY 12180-3590 Mr. Tim Skelly Dr. James D. Hollan Microsoft Corporation Professor and Chair 1 Microsoft Way Department of Computer Science Redmond, WA 98052-6399 University of New Mexico Albuquerque, NM 87131-1386 INTERNATIONAL TECHNOLOGY RESEARCH INSTITUTE JTEC/WTEC PROGRAM The Japanese Technology Evaluation Center (JTEC) and its companion World Technology Evaluation Center (WTEC) at Loyola College provide assessments of foreign research and development in selected technologies under a cooperative agreement with the National Science Foundation (NSF). -
TRON Forum Admission Guide
TRON Forum Admission Guide TRON Forum TRON Forum (Location: Shinagawa, Tokyo, Chair: Ken Sakamura, Dean, Faculty of Information Networking for Innovation and Design (INIAD), Toyo University) has been established in 2002 to promote TRON Project which aims to realize the open IoT (Internet of Things) free from constraints of organizations and applications based on “open source,” “open data” and “open API.” The forum has conducted vigorous activities led by Chair Sakamura focusing on T-Engine Project that aims to improve the development environment of embedded systems and operating Ubiquitous ID Center which promotes and disseminates ubiquitous ID architecture and its component technologies such as ucode. The forum has received good reviews worldwide for its activities. For example, Chair Ken Sakamura was honored with an ITU150 Award (*) in May 2015 for proposing TRON open architecture, the origin of ubiquitous networking and the IoT. He was the only winner in Asia among the six winners that included Bill Gates. In 2018, TRON Forum has contributed to create the real-time OS standard for small embedded systems such as IoT terminal devices, "IEEE 2050-2018" (IEEE is TRON Forum Chair: Ken Sakamura the world's largest organization for electric and electronic engineers). In 2019, it has created "TRON IoT Vulnerability Advisory Center”. Its activity has expanded in many directions. (*)On the occasion of the 150th Anniversary of ITU (International Telecommunication Union, the United Nations specialized agency for ICTs, HQ: Geneva, Switzerland), ITU150 Awards were launched to recognize individuals past and present from government, ICT industry, academia, and civil society that have contributed to improving lives of world citizens through ICT innovations developed, promoted or implemented by ITU. -
Annual Report
Annual Report 2018–2019 Research for the networked society The German Internet Institute About the Weizenbaum Institute The Weizenbaum Institute for the Networked Society – The German Internet Institute is a joint project funded by the Federal Ministry of Education and Research (BMBF). The consortium is composed of the four Berlin universities – Freie Universität Berlin (FU Berlin), Humboldt-Universität zu Berlin (HU Berlin), Technische Universität Berlin (TU Berlin), University of the Arts Berlin (UdK Berlin) – and the University of Potsdam (Uni Potsdam) as well as the Fraunhofer Institute for Open Communication Systems (FOKUS) and the WZB Berlin Social Science Center as coordinator. The Weizenbaum Institute conducts interdisciplinary and basic research on the transformation of society through digitalisation and develops options for shaping politics, business and civil society. The aim is to better understand the dynamics, mechanisms and implications of digitalisation. To this end, the Weizenbaum Institute investigates the ethical, legal, economic and political aspects of the digital transformation. This creates an empirical basis for responsibly shaping digitalisation. In order to develop options for politics, business and society, the Weizenbaum Institute links interdisciplinary problem-oriented basic research with explorations of concrete solutions and dialogue with society. Contents 4 TABLE OF CONTENTS ANNUAL REPORT 2018/2019 Editorial 6 I. Annual Report 2018/19 10 1.1 Institutional developments 12 1.2 Promotion of young talent 18 -
Japan's Visible Light Communications Consortium and Its Standardization Activities
Japan's Visible Light Communications Consortium and Its Standardization Activities Shinichiro Haruyama, Ph.D. Vice Chairman VLCC (Visible Light Communications Consortium) Tokyo, Japan Department of Information and Computer Science, Faculty of Science and Technology, Keio University Yokohama, Japan Shinichiro Haruyama Visible Light Communications Consortium 1 Contents • Why is the standard for visible light communication needed? • Position Detection: One of the important applications of Visible Light Communication • Visible Light Communications Consortium (VLCC) • Standardization Activities in Japan Shinichiro Haruyama Visible Light Communications Consortium 2 Why is the standard for visible light communication needed? Various applications and products of Visible Light Communication are expected to appear. The problem of the mutual interference between different products and the problem and interchangeability are expected if they use different communication methods. Moreover, it is necessary to consider interference of Visible light communication devices against existing infrared devices. Shinichiro Haruyama Visible Light Communications Consortium 3 Contents • Why is the standard for visible light communication needed? • Position Detection: One of the important applications of Visible Light Communication • Visible Light Communications Consortium (VLCC) • Standardization Activities in Japan Shinichiro Haruyama Visible Light Communications Consortium 4 Position Detection Position Detection is one of the important applications of Visible Light Communication. A visible light source such as an A visible light source such as an LED lamp sends a code indicating LED lamp sends a code indicating that its location is “Position 1”. that its location is “Position 1”. It is possible to detect a fairly accurate position using a visible light source if it sends a code indicating its position. When a use moves around, he/she can know an accurate position indoor or outdoor. -
Ken Sakamura
2014 TRON Symposium. 30th Anniversary TRON Project 30th Anniversary and Its Future Outlook Embedded systems technology to support the utilization of the IoT big data and future plan for T-Engine Ken Sakamura Professor, Graduate School of Interdisciplinary Studies, The University of Tokyo Director of YRP Ubiquitous Networking Laboratory Chair of T-Engine Forum / uID Center 2014 TRON Symposium. 30th Anniversary ① TRON Project The Real-time Operating system Nucleus The 30th anniversary in 2014 One of the longest lasting projects related to Japanese computing Copyright © 2014 by Ken SAKAMURA 2 2014 TRON Symposium. 30th Anniversary What is TRON? RTOS for system control, and has different basic architecture from Windows and Linux RTOS: Real-Time Operating System Copyright © 2014 by Ken SAKAMURA 3 2014 TRON Symposium. 30th Anniversary TRON RTOS Is Embedded in Many Things “HAYABUSA” (MUSES-C), an asteroid explorer “IKAROS, ” Interplanetary Kite-craft Accelerated by Radiation Of the Sun 4 2014 TRON Symposium. 30th Anniversary TRON Project’s Root Is in Embedded Systems 5 2014 TRON Symposium. 30th Anniversary ② 30 Years of TRON Copyright © 2014 by Ken SAKAMURA 6 2014 TRON Symposium. 30th Anniversary Started in 1984 Copyright © 2014 by Ken SAKAMURA 7 2014 TRON Symposium. 30th Anniversary Historical Background at the Time Copyright © 2014 by Ken SAKAMURA 8 I4004 by Intel (1971) 2014 TRON Symposium. 30th Anniversary Alto by Xerox (1973) 2014 TRON Symposium. 30th Anniversary 2014 TRON Symposium. 30th Anniversary ③ Future Design Copyright © 2014 by Ken SAKAMURA 11 2014 TRON Symposium. 30th Anniversary How the Society Will Change Based on Newly Available Computers? Copyright © 2014 by Ken SAKAMURA 12 2014 TRON Symposium. -
The Emerging H.264/AVC Standard
AUDIO / VIDEO CODING The emerging H.264 /AVC standard Ralf Schäfer, Thomas Wiegand and Heiko Schwarz Heinrich Hertz Institute, Berlin, Germany H.264/AVC is the current video standardization project of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). The main goals of this standardization effort are to develop a simple and straightforward video coding design, with enhanced compression performance, and to provide a “network-friendly” video representation which addresses “conversational” (video telephony) and “non-conversational” (storage, broadcast or streaming) applications. H.264/AVC has achieved a significant improvement in the rate-distortion efficiency – providing, typically, a factor of two in bit-rate savings when compared with existing standards such as MPEG-2 Video. The MPEG-2 video coding standard [1], which was developed about 10 years ago, was the enabling technol- ogy for all digital television systems worldwide. It allows an efficient transmission of TV signals over satellite (DVB-S), cable (DVB-C) and terrestrial (DVB-T) platforms. However, other transmission media such as xDSL or UMTS offer much smaller data rates. Even for DVB-T, there is insufficient spectrum available – hence the number of programmes is quite limited, indicating a need for further improved video compression. In 1998, the Video Coding Experts Group (VCEG – ITU-T SG16 Q.6) started a project called H.26L with the target to double the coding efficiency when compared with any other existing video coding standard. In December 2001, VCEG and the Moving Pictures Expert Group (MPEG – ISO/IEC JTC 1/SC 29/WG 11) formed the Joint Video Team (JVT) with the charter to finalize the new video coding standard H.264/AVC [2]. -
Uid Architecture Uid Architecture
uIDuID ArchitectureArchitecture anan OpenOpen FoundationFoundation forfor UbiquitousUbiquitous computingcomputing Ken Sakamura, Ph.D. Professor, the University of Tokyo Director, YRP Ubiquitous Networking Laboratory (UNL) Chair, T-Engine Forum / uID Center UbiquitousUbiquitous ComputingComputing TechnologyTechnology ■ Very interesting and useful technology ■ Conventional Usage Pattern: ● Closed, proprietary solution in a single organization ■ Our Approach (uID Architecture) ● Not limited to a single organization ● Open Standard ● Works across organizational boundary and national boundary Copyright by Ken Sakamura. 2005 All rights reserved 2 1 BeneficiariesBeneficiaries ofof uIDuID ArchitectureArchitecture ■ The benefit of RFID technology is shared among producers, distributors, and end- consumers and people beyond simple Supply-Chain Management (SCM) ■ Food Traceability Experiment ● later explained ■ Medicine Traceability Experiment ● later explained Copyright by Ken Sakamura. 2005 All rights reserved 3 OutlineOutline ofof Today'sToday's SpeechSpeech 1. Basic uID Architecture 2. Wide applicability of open uID Architecture ●Exemplified by many feasibility study experiments 3. Comparison of approaches taken by uID Architecture / EPCglobal Copyright by Ken Sakamura. 2005 All rights reserved 4 2 BasicBasic uIDuID ArchitectureArchitecture ■The objective of uID Architecture is to recognize many objects and places in our surrounding “Context Awareness” Copyright by Ken Sakamura. 2005 All rights reserved 5 ContextContext Awareness:Awareness: RecognizingRecognizing manymany objectsobjects andand placesplaces ■ Identifying something so that you can tell that it is differentiate from others ■ To make machine identification easy, we store a unique identification number (ucode) in a tag and place it on an object or a location ■ cf. In our approach, creating and managing the unique number is very important ● This is why we have uID Center to manage such requirements Copyright by Ken Sakamura. -
Cpaas.Io: an Eujapan Collaboration on Open Smart City Platforms
CPaaS.io: An EUJapan Collaboration on Open Smart City Platforms Noboru Koshizuka (The University of Tokyo) Stephan Haller (Bern University of Applied Sciences) Ken Sakamura (Toyo University) Abstract Data-driven cities and governments rely significantly on data collec- tion, management, and distribution platforms. In this article, we intro- duce CPaaS.io, a collaborative project between Japan and the European Union with the goal of establishing common smart city platforms for de- ployment in real smart city use cases. 1 INTRODUCTION Today, data are crucial to the functioning of society. In fact, it is sometimes said that the most competitive area in information and communications technology (ICT) is not algorithms but data. The ICT National Strategy of Japan known as Society 5.0 proposes a data-driven society in which data help solve problems in the fields of mobility, supply chains, healthcare, and lifestyle to name a few. This will generate further economic growth and increase quality of life. Conse- quently, both in Japan and the European Union (EU), data have been termed the oil of the 21st century. These data come from a variety of sources: the Internet of Things (IoT) and sensors, open government resources, social media, and industry and business repositories, not to mention the wealth of personal information from individual users. These can be obtained, linked, and analyzed to extract valuable intelligence and transform our society for a better future. In the deployment of smart city services, providing a platform for data collection, management, and distribution is crucial. This manuscript has been published in Computer (Volume: 51 , Issue: 12 , Dec.