How to Define an Irregular Graph
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Graph Theory: a Discovery Course for Undergraduates
Introduction to Graph Theory: A Discovery Course for Undergraduates James M. Benedict Augusta State University Contents 1 Introductory Concepts 1 1.1 BasicIdeas ...................................... 1 1.2 Graph Theoretic Equality . 2 1.3 DegreesofVertices .................................. 4 1.4 Subgraphs....................................... 6 1.5 The Complement of a Graph . 7 2 Special Subgraphs 9 2.1 Walks ......................................... 9 2.2 Components...................................... 10 2.3 BlocksofaGraph................................... 11 3 Three Famous Results and One Famous Graph 14 3.1 The Four-Color Theorem . 14 3.2 PlanarGraphs..................................... 16 3.3 ThePetersenGraph ................................. 18 3.4 TraceableGraphs ................................... 18 K(3;3;3) = H1 H2 Removing the edge w1v2 destroys the only C4 v 3 u1 H1: H2: w3 v v2 3 u w1 u 2 u u 2 v 1 3 w 1 w 2 2 w3 u3 w1 v2 v1 Place any edge of H1 into H2 or (vice versa) and a C4 is created. i Remarks By reading through this text one can acquire a familiarity with the elementary topics of Graph Theory and the associated (hopefully standard) notation. The notation used here follows that used by Gary Chartrand at Western Michigan University in the last third of the 20th century. His usage of notation was in‡uenced by that of Frank Harary at the University of Michigan beginning in the early 1950’s. The text’s author was Chartrand’s student at WMU from 1973 to 1976. In order to actually learn any graph theory from this text, one must work through and solve the problems found within it. Some of the problems are very easy. -
Canadam 2019 the Canadian Discrete and Algorithmic Mathematics Conference 2019.Canadam.Math.Ca
Program and Abstracts CanaDAM 2019 The Canadian Discrete and Algorithmic Mathematics Conference 2019.canadam.math.ca May 28 { May 31, 2019 Simon Fraser University, Harbour Centre Vancouver, British Columbia, Canada ii CanaDAM 2019 thanks web design, registration, and support services student and postdoc support Welcome Reception Women's Lunch Graduate Networking Reception, Tutte Student Paper Award generous support from the Faculty of Science, Faculty of Applied Science, Department of Mathematics, School of Computing Science, Conference Fund, VP Academic, and VP Finance iii We greatly appreciate the many contributions of the members of the Program Committee, Executive Committee, Local Arrangements Committee, Canadian Mathematical Society staff, SFU Department of Mathematics staff, and SFU Student Volunteer Group, to the successful planning and smooth running of CanaDAM 2019. Gena Hahn and Joy Morris, Executive Committee Co-Chairs Daniel Kr´al',Program Committee Chair Jonathan Jedwab, Local Arrangements Committee Chair Program Committee (PC) Canadian Mathematical Society Staff Rick Brewster (Thompson Rivers) Alan Kelm Vida Dujmovi´c(Ottawa) Yvette Roberts Jim Geelen (Waterloo) Gosia Skrobutan Ang`eleHamel (Laurier) { EC liaison to the PC Sarah Watson Daniel Kr´al'(Brno and Warwick) { Chair Catherine McGeoch (D-Wave) SFU Dept of Mathematics Staff Pawel Pralat (Ryerson) Casey Bell Saket Saurabh (IMSc Chennai) Christie Carlson Charles Semple (Canterbury, NZ) Sofia Leposavic Anastasios Sidiropoulos (UI, Chicago) Jozsef Solymosi (UBC) SFU Student -
Discrete Mathematics a Dedication to Professor Gary Chartrand
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 309 (2009) 5803–5805 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc A dedication to Professor Gary Chartrand Teresa W. Haynes a, Michael A. Henning b, Ping Zhang c,∗ a Department of Mathematics, East Tennessee State University, Johnson City, TN 37614-0002, USA b School of Mathematical Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa c Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, USA article info Article history: Received 28 May 2008 Accepted 30 May 2008 Available online 2 July 2008 Gary Chartrand was born on August 24, 1936 in the small town of Sault Ste. Marie (pronounced ``Soo Saint Marie'') in the upper peninsula of Michigan, across a river from Canada. Although his parents valued education highly, none of his parents, grandparents, aunts, or uncles ever finished high school, although his father later received his high school diploma through correspondence school. Both parents worked for the telephone company. His father had many interests. He played semi-professional hockey, he played the piano in a band (although he could never read music), and had his own ham radio station (call letters W8PRL). In fact, he built his own radio receiver, even blowing glass for the tubes, and it worked. His father worked part-time for local movie theaters, playing his own music on the piano for silent movies. His parents loved the movies (especially musicals) and took Gary to the movies regularly from the age of 3. -
Rainbow Ramsey Numbers
Western Michigan University ScholarWorks at WMU Dissertations Graduate College 6-2000 Rainbow Ramsey Numbers Linda Eroh Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Statistics and Probability Commons Recommended Citation Eroh, Linda, "Rainbow Ramsey Numbers" (2000). Dissertations. 1448. https://scholarworks.wmich.edu/dissertations/1448 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. RAINBOW RAMSEY NUMBERS by Linda Eroh A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of requirements for the Degree of Doctor of Philosophy Department of Mathematics and Statistics Western Michigan University Kalamazoo, Michigan June 2000 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. RAINBOW RAMSEY NUMBERS Linda Eroh, Ph.D. Western Michigan University, 2000 We investigate a new generalization of the generalized ramsey number for graphs. Recall that the generalized ramsey number for graphs Gi,G 2,--- , Gc is the minimum positive integer N such that any coloring of the edges of the complete graph K n with c colors must contain a subgraph isomorphic to G, in color i for some i. Bialostocki and Voxman defined RM (G) for a graph G to be the minimum N such that any edge-coloring of K n with any number of colors must contain a subgraph isomorphic to G in which either every edge is the same color (a monochromatic G) or every edge is a different color (a rainbow G). -
Graduate Student Handbook
WESTERN MICHIGAN UNIVERSITY DEPARTMENT OF MATHEMATICS GRADUATE STUDENT HANDBOOK (REVISED April 2021) I. FACTS ABOUT WESTERN MICHIGAN UNIVERSITY AND THE MATHEMATICS DEPARTMENT 5 II. ORGANIZATION OF THE DEPARTMENT 7 III. ORGANIZATION OF EVERETT TOWER AND ROOD HALL 8 Departmental Classrooms 8 Departmental Offices 8 Faculty Offices & Conference Rooms 8 IV. RESOURCES AND OPPORTUNITIES 8 Waldo Library 9 University Computing Services 9 Professional Society Memberships 9 Math Club and Math Honors Society 9 Graduate Student Representative 9 Awards 10 V. SEMINARS AND COLLOQUIA 12 Purpose 12 Seminars 12 The Department Colloquium 12 Math Club Talks and Math Honors Society 13 Graduate Student Talk 13 The TA Seminar 13 VI. TALK ATTENDANCE REQUIREMENT 13 VII. PERMANENT PROGRAM OF STUDY AND ANNUAL REVIEW OF GRADUATE STUDENTS 15 Program Planning 15 Program of Study 15 Annual Review of Graduate Students 16 Definition of Good Standing 17 VIII. REGISTERING FOR CLASSES 18 IX. THE PH.D. COMPREHENSIVE EXAMINATIONS 18 Purpose 18 Policies and Procedures for Comprehensive Exams 18 Mathematics Education 18 Mathematics 19 Substituting Coursework and Comprehensive Exam 19 Writing and Proctoring Exams 20 2 Evaluation of the Exam 20 Policy on Non-Program Students 20 X. GUIDELINES FOR THE DIRECTED TEACHING REQUIREMENT FOR DOCTORAL STUDENTS 21 XI. THE PROCEDURES LEADING TO THE COMPLETION OF A DOCTORAL DISSERTATION IN THE DEPARTMENT OF MATHEMATICS 23 The Procedures for the Ph.D. in Mathematics 23 The Procedures for the Ph.D. in Mathematics Education 24 “Stopping the Clock” for Graduate Degree Programs 26 XII. RESEARCH TOOLS REQUIREMENT FOR THE PH.D. DEGREE IN THE DEPARTMENT OF MATHEMATICS 26 Ph.D. -
Program of the Sessions, Chattanooga, Volume 48, Number 10
Program of the Sessions Chattanooga, Tennessee, October 5–6, 2001 Special Session on New Directions in Combinatorics Friday, October 5 and Graph Theory, I Meeting Registration 8:00 AM –10:50AM Ocoee Room (#204), University Center 7:30 AM –4:30PM Rooms 153 and 155, Metro Complex Organizers: Teresa Haynes, East Tennessee State University AMS Book Sale and Exhibit Debra J. Knisley, East Tennessee State University 7:30 AM –4:30PM Rooms 153 and 155, Metro Complex 8:10AM Channel assignments with distance conditions. (7) Preliminary report. Special Session on Commutative Ring Theory, I Jerrold R Griggs, University of South Carolina (970-05-48) 8:00 AM –10:50AM SequoyahRoom (#203), University Center 8:10AM Distance in graphs: Reflecting on the past reviewing (8) the present. Organizers: David F. Anderson,Universityof Gary Chartrand, Western Michigan University Tennessee, Knoxville (970-05-164) David E. Dobbs,Universityof 9:30AM Colored and chromatic distance. Tennessee, Knoxville (9) Peter J. Slater, University of Alabama in Huntsville 8:00AM Singulars and Specker Domains: Preliminary (970-05-218) (1) Report. Preliminary report. 10:00AM List-multicoloring problems with different kinds of Warren Wm McGovern, Bowling Green State (10) lists. Preliminary report. University (970-13-148) Peter D. Johnson, Jr., Auburn University 8:30AM On decomposing ideals into products of comaximal (970-05-55) (2) ideals. 10:30AM Graphs with small upper line-distinguishing and James W Brewer*, Florida Atlantic University, and (11) upper harmonious chromatic numbers. Preliminary William Heinzer, Purdue University (970-13-35) report. 9:00AM Boolean algebras and von Neumann regular rings. Johannes H Hattingh*, Georgia State University, (3) David F Anderson, University of Tennessee, Ron Michael A Henning, University of Natal, Levy,GeorgeMasonUniverity,andJay Shapiro*, Pietermaritzburg, and Elna Ungerer,Rand George Mason University (970-13-74) Afrikaans University (970-05-87) 9:30AM An Ideal-Based Zero-Divisor Graph. -
Hamiltonicity and Connectivity in Distance-Colored Graphs
Western Michigan University ScholarWorks at WMU Dissertations Graduate College 1-2011 Hamiltonicity and Connectivity in Distance-Colored Graphs Kyle C. Kolasinski Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Applied Mathematics Commons, and the Mathematics Commons Recommended Citation Kolasinski, Kyle C., "Hamiltonicity and Connectivity in Distance-Colored Graphs" (2011). Dissertations. 431. https://scholarworks.wmich.edu/dissertations/431 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. Hamiltonicity and Connectivity in Distance-Colored Graphs by Kyle C. Kolasinski A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment for the requirement for the Degree of Doctor of Philosophy Department of Mathematics Advisor: Ping Zhang, Ph.D. Western Michigan University Kalamazoo, Michigan June 2011 Hamiltonicity and Connectivity in Distance-Colored Graphs Kyle Kolasinski, Ph.D. Western Michigan University, 2011 For a connected graph G and a positive integer fc, the fcth power Gk of G is the graph with V(Gk) — V(G) where uv E E(Gk) if the distance dc{u^v) between u and v is at most fc. The edge coloring of Gk defined by assigning each edge uv of Gk the color da(u,v) produces an edge-colored graph Gk called a distance-colored graph. A distance-colored graph Gk is Hamiltonian-colored if Gk contains a properly colored Hamiltonian cycle. -
Autobiographical Notes∗ School Life Bachelor's Degree
Discrete Mathematics Letters Discrete Math. Lett. 1 (2019) 83–92 www.dmlett.com Autobiographical notes∗ Gary Chartrand Professor Emeritus of Mathematics, Western Michigan University, Kalamazoo, MI 49008–5248, USA (Published online: 18 May 2019.) c 2019 the author. This is an open access article under the CC BY (International 4.0) license (https://creativecommons.org/licenses/by/4.0/). School life I was born in Sault Ste. Marie, Michigan, in 1936 (the same year that the first book on graph theory, written by Denes´ Konig,˝ was published). As a youngster, I attended many movies with my parents. In fact, my parents started taking me to movies when I was three years old. My father especially liked movie musicals, which I did too. When he was young, he played the piano in movie theaters for silent movies. (I remember very often, after coming home from watching a musical at the movies, my father would play some of the songs he just heard on the piano.) Having lived through the depression, he worked hard to support his family. Through him I learned the importance of accomplishing something, contributing to society, and not doing something just for money. I was especially interested in comic books when I was a kid. My parents would often buy comic books for me. Because of that, I learned to read before I went to Kindergarten. When I thought the stories could have been better, I started writing my own comic books but I was terrible at drawing. I lived in Sault Ste. Marie until I was 13 years old, when my parents moved to Lansing, Michigan. -
Lecture Notes in Computer Science 3418 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan Van Leeuwen
Lecture Notes in Computer Science 3418 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich, Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen University of Dortmund, Germany Madhu Sudan Massachusetts Institute of Technology, MA, USA Demetri Terzopoulos New York University, NY, USA Doug Tygar University of California, Berkeley, CA, USA Moshe Y. Vardi Rice University, Houston, TX, USA Gerhard Weikum Max-Planck Institute of Computer Science, Saarbruecken, Germany Ulrik Brandes Thomas Erlebach (Eds.) Network Analysis Methodological Foundations 13 Volume Editors Ulrik Brandes University of Konstanz Department of Computer and Information Science Box D 67, 78457 Konstanz, Germany E-mail: [email protected] Thomas Erlebach University of Leicester Department of Computer Science University Road, Leicester, LE1 7RH, U.K. E-mail: [email protected] Library of Congress Control Number: 2005920456 CR Subject Classification (1998): G.2, F.2.2, E.1, G.1, C.2 ISSN 0302-9743 ISBN 3-540-24979-6 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. -
Graph Theory, an Antiprism Graph Is a Graph That Has One of the Antiprisms As Its Skeleton
Graph families From Wikipedia, the free encyclopedia Chapter 1 Antiprism graph In the mathematical field of graph theory, an antiprism graph is a graph that has one of the antiprisms as its skeleton. An n-sided antiprism has 2n vertices and 4n edges. They are regular, polyhedral (and therefore by necessity also 3- vertex-connected, vertex-transitive, and planar graphs), and also Hamiltonian graphs.[1] 1.1 Examples The first graph in the sequence, the octahedral graph, has 6 vertices and 12 edges. Later graphs in the sequence may be named after the type of antiprism they correspond to: • Octahedral graph – 6 vertices, 12 edges • square antiprismatic graph – 8 vertices, 16 edges • Pentagonal antiprismatic graph – 10 vertices, 20 edges • Hexagonal antiprismatic graph – 12 vertices, 24 edges • Heptagonal antiprismatic graph – 14 vertices, 28 edges • Octagonal antiprismatic graph– 16 vertices, 32 edges • ... Although geometrically the star polygons also form the faces of a different sequence of (self-intersecting) antiprisms, the star antiprisms, they do not form a different sequence of graphs. 1.2 Related graphs An antiprism graph is a special case of a circulant graph, Ci₂n(2,1). Other infinite sequences of polyhedral graph formed in a similar way from polyhedra with regular-polygon bases include the prism graphs (graphs of prisms) and wheel graphs (graphs of pyramids). Other vertex-transitive polyhedral graphs include the Archimedean graphs. 1.3 References [1] Read, R. C. and Wilson, R. J. An Atlas of Graphs, Oxford, England: Oxford University Press, 2004 reprint, Chapter 6 special graphs pp. 261, 270. 2 1.4. EXTERNAL LINKS 3 1.4 External links • Weisstein, Eric W., “Antiprism graph”, MathWorld.