What's the Difference?

Total Page:16

File Type:pdf, Size:1020Kb

What's the Difference? Aegean and Black Sea 2006 Expedition What’s the Difference? (adapted from the 2005 New Zealand American Submarine Ring of Fire Expedition) FOCUS SEATING ARRANGEMENT Volcanic processes at convergent and divergent Classroom style if students are working individu- tectonic plate boundaries ally, or groups of two to four students GRADE LEVEL MAXIMUM NUMBER OF STUDENTS 9-12 (Earth Science) 30 FOCUS QUESTION KEY WORDS How do volcanic processes differ at convergent Volcano and divergent tectonic plate boundaries? Caldera Asthenosphere LEARNING OBJECTIVES Lithosphere Students will be able to compare and contrast Magma volcanoes at convergent and divergent plate Fault boundaries. Transform boundary Convergent boundary Students will be able to identify three geologic Divergent boundary features that are associated with most volcanoes Subduction on Earth. Tectonic plate Students will be able to explain why some volca- BACKGROUND INFORMATION noes erupt explosively while others do not. The geographic region surrounding the Aegean and Black Seas has been the stage for many MATERIALS spectacular performances in Earth’s geologic and Copies of “Submarine Volcanism Worksheet,” human history. Human activities on the region’s one copy for each student or student group stage began during Paleolithic times; artifacts dis- covered near Istanbul are believed to be at least AUDIO/VISUAL MATERIALS 100,000 years old. Well-known Aegean cultures (Optional) Computer projection equipment to include the Minoans (ca 2,600 – 1,450 BC), show downloaded video materials Mycenaeans (ca 1,600 – 1,100 BC), Ancient Greeks (776 – 323 BC), and Hellenistic Greeks TEACHING TIME (323 – 146 BC). Istanbul—“the only city that One 45-minute class period, plus time for student spans two continents”—has been a crossroads research of travel and trade for more than 26 centuries. Mariners have traveled the Aegean and Black 1 Aegean and Black Sea 2006 – Grades 9-12 (Earth Science) Focus: Volcanic processes at convergent and divergent tectonic plate boundaries oceanexplorer.noaa.gov Seas since Neolithic (“Stone Age” times; 6,500 to move several centimeters per year relative to – 3,200 BC), probably for a combination of each other. purposes, including trading, exploration, and warfare. The junction of two tectonic plates is known as a plate boundary. Where two plates slide horizon- Interactions between these cultures and many tally past each other, the junction is known as a others were often violent and destructive. So, transform plate boundary. Movement of the plates too, were interactions with geological processes. causes huge stresses, breaks portions of the rock, Some of these processes are directly related and produces earthquakes. Places where these to the same forces that are believed to have breaks occur are called faults. A well-known caused the breakup of Pangaea (see “Volcanoes, example of a transform plate boundary is the San below). One of the most dramatic and destruc- Andreas Fault in California. tive events was the eruption of a volcano near a small Aegean island called Thera (also known as Where tectonic plates are moving apart, they Santorini), sometime between 1,650 and 1,450 form a divergent plate boundary. At these bound- BC. Estimated to be four times more powerful aries, magma (molten rock) rises from deep than the Krakatoa volcano of 1883, the eruption within the Earth and erupts to form new crust on left a crater 18 miles in diameter, spewed volca- the lithosphere. Most divergent plate boundaries nic ash throughout the Eastern Mediterranean, are underwater (Iceland is an exception), and and may have resulted in global climactic form submarine mountain ranges called oceanic impacts. Accompanied by earthquakes and a tsu- spreading ridges. nami, the volcano destroyed human settlements, fleets of ships, and may have contributed to the If two tectonic plates collide more or less head- collapse of the Minoan civilization on the island on, they produce a convergent plate boundary. of Crete, 110 km to the south. On Thera, the larg- Usually, one of the converging plates moves est of the islands near the volcano, the ancient beneath the other in a process called subduc- city of Akrotiri was completely buried beneath the tion. Subduction produces deep trenches, and ash. Excavation of the city began in 1967, and is earthquakes are common. As the sinking plate ongoing. The Bronze Age eruption of the Theran moves deeper into the mantle, increasing pressure volcano was by no means its last. In fact, the and heat release fluids from the rock, causing volcano erupted at least 12 times between 197 the overlying mantle to partially melt. The new BC and 1950 and most geologists agree that a magma rises and may erupt violently to form violent eruption will happen again. volcanoes that often form arcs of islands along the convergent boundary. These island arcs are Many volcanoes, including the one near Thera, always landward of the neighboring trenches. are caused by movement of tectonic plates. These This process can be visualized as a huge con- plates are portions of Earth’s outer crust (litho- veyor belt on which new crust is formed at the sphere) about 5 km thick, as well as the upper 60 oceanic spreading ridges and older crust is recy- - 75 km of the underlying mantle. Tectonic plates cled to the lower mantle at the convergent plate move on a hot flowing mantle layer called the boundaries. asthenosphere, which is several hundred kilome- ters thick. Heat within the asthenosphere creates The tectonic setting of the Aegean/Black/ convection currents (similar to the currents that Mediterranean Sea area is complex, and includes can be seen if food coloring is added to a heated two major plates (the Eurasian and African container of water) that cause the tectonic plates Plates) as well as several minor ones (including 2 Aegean and Black Sea 2006 – Grades 9-12 (Earth Science) oceanexplorer.noaa.gov Focus: Volcanic processes at convergent and divergent tectonic plate boundaries the Hellenic, Turkish, Arabian, and Van Plates). and possibly mud that flowed down the sides Boundaries between these plates are not always of the volcano at speeds of 60 miles per hour clear, but motion at plate boundaries is undoubt- or more. In the final and most violent stage of edly responsible for earthquakes and volcanoes all, the pyroclastic flow reached the coast with throughout the region. This is not considered a temperatures approaching 400°C. Visit http://www. highly volcanic area, but even one Thera-type vol- immersionpresents.org/content/ for more information cano can do plenty of damage! about the Minoan eruption, including photo- graphs of other volcanoes in similar eruptive Thera and its neighboring islands are the most stages. active volcanic center in the Aegean Arc, and are part of a single volcano that has erupted Exploring the history of the Theran volcano is one many times. At one time, there were fewer than of the primary goals of the Aegean and Black the five islands visible today. In fact, one of it Sea 2006 Expedition. In this lesson, students will older names is “Strongyle,” which means circular investigate the characteristics of volcanoes at or rounded, suggesting that the overall appear- divergent and convergent plate boundaries, and ance was different in the past. During some of make inferences to account for observed differ- its eruptions, the floor of the volcano’s crater col- ences between volcanoes at these locations. lapsed into the magma chamber below, forming a caldera. Over time, the caldera was partially LEARNING PROCEDURE re-filled by other volcanic activity. Before the erup- 1. To prepare for this lesson: tion during Minoan times, the rim of the caldera • Review the background essays for the was an almost-continuous ring, with only a single Aegean and Black Sea 2006 Expedition at entrance. The floor of the caldera collapsed http://oceanexplorer.noaa.gov/explorations/06blacksea/wel- again during the Minoan eruption, destroying come.html and part of the above-water ring, thereby creating two • The Submarine Ring of Fire 2004 back- new channels. ground essay, “Submarine Volcanism 2004” (http://oceanexplorer.noaa.gov/explorations/04fire/back- Studies of volcanic ash deposits suggest that the ground/volcanism/volcanism.html). Minoan eruption happened in at least five stages. The first was a series of precursory volcanic If students do not have internet access, you will events that took place over several months and also need to download diagrams of the struc- may have provided the inhabitants with a warn- ture of mid-ocean ridges and subduction zones ing of things to follow, perhaps accounting for (http://oceanexplorer.noaa.gov/explorations/03fire/logs/ridge. the absence of human remains at Akrotiri. The html and http://oceanexplorer.noaa.gov/explorations/03fire/ next stage should have left no doubt about what logs/subduction.html), as well as reference materials was coming: An eruption column 36 km high cited on the “Submarine Volcanism Worksheet.” was ejected into the atmosphere, blanketing the Eastern Mediterranean with hot pumice and ash. 2. Introduce the Aegean and Black Sea 2006 Then came an even more violent stage. Cracks Expedition, emphasizing the Bronze Age erup- in the crater floor allowed seawater to contact tion of the Theran volcano. Briefly review the hot magma, producing explosions of steam that concepts of plate tectonics and continental hurled large blocks of rock and clouds of steam drift. Be sure students understand the distinc- and ash over the islands and adjacent ocean. tion between mid-ocean ridges and subduction These explosions were followed by a classic zones. “pyroclastic flow;” a river of ash, pumice, gases, 3 Aegean and Black Sea 2006 – Grades 9-12 (Earth Science) Focus: Volcanic processes at convergent and divergent tectonic plate boundaries oceanexplorer.noaa.gov 3. Provide each student or student group with a Sheet lavas resemble broad blankets and are copy of the “Submarine Volcanism Worksheet,” formed by lava that is very fluid and flows and have students answer the worksheet ques- quickly (high effusion rate), while pillow lavas tions.
Recommended publications
  • Ocean Trench
    R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Ocean trench Ocean trenches are long, narrow depressions on the seafloor. These chasms are the deepest parts of the ocean—and some of the deepest natural spots on Earth. G R A D E S 5 - 12+ S U B J E C T S Earth Science, Geology, Geography, Physical Geography C O N T E N T S 11 Images, 1 Video, 2 Links For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/ocean-trench/ Ocean trenches are long, narrow depressions on the seafloor. These chasms are the deepest parts of the ocean—and some of the deepest natural spots on Earth. Ocean trenches are found in every ocean basin on the planet, although the deepest ocean trenches ring the Pacific as part of the so-called “Ring of Fire” that also includes active volcanoes and earthquake zones. Ocean trenches are a result of tectonic activity, which describes the movement of the Earth’s lithosphere. In particular, ocean trenches are a feature of convergent plate boundaries, where two or more tectonic plates meet. At many convergent plate boundaries, dense lithosphere melts or slides beneath less-dense lithosphere in a process called subduction, creating a trench. Ocean trenches occupy the deepest layer of the ocean, the hadalpelagic zone. The intense pressure, lack of sunlight, and frigid temperatures of the hadalpelagic zone make ocean trenches some of the most unique habitats on Earth.
    [Show full text]
  • Hawaii Volcanoes National Park Geologic Resources Inventory Report
    National Park Service U.S. Department of the Interior Natural Resource Program Center Hawai‘i Volcanoes National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/163 THIS PAGE: Geologists have lloongng been monimonittoorriing the volcanoes of Hawai‘i Volcanoes National Park. Here lalava cascades durduriingng the 1969-1971 Mauna Ulu eruption of Kīlauea VolVolcano. NotNotee the Mauna Ulu fountountaiain in the background. U.S. Geologiogicalcal SurSurvveyey PhotPhotoo by J. B. Judd (12/30/1969). ON THE COVER: ContContiinuouslnuouslyy eruptuptiingng since 1983, Kīllaueaauea Volcano contcontiinues to shapshapee Hawai‘Hawai‘i VoVollccanoes NatiNationalonal ParkPark.. Photo courtesy Lisa Venture/UniversiUniversitty of Cincinnati. Hawai‘i Volcanoes National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/163 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 December 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Geologists Suggest Horseshoe Abyssal Plain May Be Start of a Subduction Zone 8 May 2019, by Bob Yirka
    Geologists suggest Horseshoe Abyssal Plain may be start of a subduction zone 8 May 2019, by Bob Yirka against one another. Over by the Iberian Peninsula, the opposite appears to be happening—the African and Eurasian plates are pulling apart as the former creeps east toward the Americas. Duarte noted that back in 2012, other researchers conducting seismic wave tests found what appeared to be a dense mass of unknown material beneath the epicenter of the 1969 quake. Some in the field suggested it could be the start of a subduction zone. Then, last year, another team conducted high-resolution imaging of the area and also found evidence of the mass, confirming that it truly existed. Other research has shown that the area just above the mass experiences routine tiny earthquakes. Duarte suggests the evidence to date indicates that the bottom of the plate is peeling away. This could happen, he explained, due to serpentinization in which water percolates through plate fractures and reacts with material beneath the surface, resulting A composite image of the Western hemisphere of the in the formation of soft green minerals. The soft Earth. Credit: NASA mineral layer, he suggests, is peeling away. And if that is the case, then it is likely the area is in the process of creating a subduction zone. He reports that he and his team members built models of their A team of geologists led by João Duarte gave a ideas and that they confirmed what he suspected. presentation at this past month's European The earthquakes were the result of the process of Geosciences Union meeting that included a birthing a new subduction zone.
    [Show full text]
  • PLATE TECTONICS.Docx
    GTheory of Plate Tectonics Critique and interpret major types of evidence supporting the Theory of Plate Tectonics. Plate tectonics is the most important concept in modern geology. This section will introduce you to the concept of plate tectonics, how it works, why it is important and how it is shaping the world today. WHAT YOU’LL LEARN TO DO · Describe and compare different types of plate motions, rates of motion and the driving mechanisms and forces involved with each. · Know the role of technology in Plate Tectonics. Theory of Plate Tectonics When the concept of seafloor spreading came along, scientists recognized that it was the mechanism to explain how continents could move around Earth’s surface. Like the scientists before us, we will now merge the ideas of continental drift and seafloor spreading into the theory of plate tectonics. Earth’s Tectonic Plates Seafloor and continents move around on Earth’s surface, but what is actually moving? What portion of the Earth makes up the “plates” in plate tectonics? This question was also answered because of technology developed during war times – in this case, the Cold War. The plates are made up of the lithosphere. Figure 1. Earthquakes outline the plates. During the 1950s and early 1960s, scientists set up seismograph networks to see if enemy nations were testing atomic bombs. These seismographs also recorded all of the earthquakes around the planet. The seismic records could be used to locate an earthquake’s epicentre, the point on Earth’s surface directly above the place where the earthquake occurs. Earthquake epicentres outline the plates.
    [Show full text]
  • Poroelastic Responses of Confined Aquifers to Subsurface Strain And
    Solid Earth, 6, 1207–1229, 2015 www.solid-earth.net/6/1207/2015/ doi:10.5194/se-6-1207-2015 © Author(s) 2015. CC Attribution 3.0 License. Poroelastic responses of confined aquifers to subsurface strain and their use for volcano monitoring K. Strehlow, J. H. Gottsmann, and A. C. Rust School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol BS8 1RJ, UK Correspondence to: K. Strehlow ([email protected]) Received: 11 May 2015 – Published in Solid Earth Discuss.: 9 June 2015 Revised: 18 September 2015 – Accepted: 21 October 2015 – Published: 10 November 2015 Abstract. Well water level changes associated with mag- aquifer and are commonly neglected in analytical models. matic unrest can be interpreted as a result of pore pressure These findings highlight the need for numerical models for changes in the aquifer due to crustal deformation, and so the interpretation of observed well level signals. However, could provide constraints on the subsurface processes caus- simulated water table changes do indeed mirror volumetric ing this strain. We use finite element analysis to demonstrate strain, and wells are therefore a valuable addition to monitor- the response of aquifers to volumetric strain induced by pres- ing systems that could provide important insights into pre- surized magma reservoirs. Two different aquifers are invoked eruptive dynamics. – an unconsolidated pyroclastic deposit and a vesicular lava flow – and embedded in an impermeable crust, overlying a magma chamber. The time-dependent, fully coupled models simulate crustal deformation accompanying chamber pres- 1 Introduction surization and the resulting hydraulic head changes as well as flow through the porous aquifer, i.e.
    [Show full text]
  • THE MYTH of ORPHEUS and EURYDICE in WESTERN LITERATURE by MARK OWEN LEE, C.S.B. B.A., University of Toronto, 1953 M.A., Universi
    THE MYTH OF ORPHEUS AND EURYDICE IN WESTERN LITERATURE by MARK OWEN LEE, C.S.B. B.A., University of Toronto, 1953 M.A., University of Toronto, 1957 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OP PHILOSOPHY in the Department of- Classics We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September, i960 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver 8, Canada. ©he Pttttrerstt^ of ^riitsl} (Eolimtbta FACULTY OF GRADUATE STUDIES PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of MARK OWEN LEE, C.S.B. B.A. University of Toronto, 1953 M.A. University of Toronto, 1957 S.T.B. University of Toronto, 1957 WEDNESDAY, SEPTEMBER 21, 1960 AT 3:00 P.M. IN ROOM 256, BUCHANAN BUILDING COMMITTEE IN CHARGE DEAN G. M. SHRUM, Chairman M. F. MCGREGOR G. B. RIDDEHOUGH W. L. GRANT P. C. F. GUTHRIE C. W. J. ELIOT B. SAVERY G. W. MARQUIS A. E. BIRNEY External Examiner: T. G. ROSENMEYER University of Washington THE MYTH OF ORPHEUS AND EURYDICE IN WESTERN Myth sometimes evolves art-forms in which to express itself: LITERATURE Politian's Orfeo, a secular subject, which used music to tell its story, is seen to be the forerunner of the opera (Chapter IV); later, the ABSTRACT myth of Orpheus and Eurydice evolved the opera, in the works of the Florentine Camerata and Monteverdi, and served as the pattern This dissertion traces the course of the myth of Orpheus and for its reform, in Gluck (Chapter V).
    [Show full text]
  • I. Convergent Plate Boundaries (Destructive Margins) (Colliding Plates)
    I. Convergent plate boundaries (destructive margins) (colliding plates) 1. Plates collide, an ocean trench forms, lithosphere is subducted into the mantle 2. Types of convergence—three general classes, created by two types of plates —denser oceanic plate subsides into mantle SUBDUCTION --oceanic trench present where this occurs -- Plate descends angle average 45o a. Oceanic-continental convergence 1. Denser oceanic slab sinks into the asthenosphere—continental plate floats 2. Pockets of magma develop and rise—due to water added to lower part of overriding crust—100-150 km depth 3. Continental volcanic arcs form a. e.g., Andes Low angle, strong coupling, strong earthquakes i. Nazca plate ii. Seaward migration of Peru-Chile trench b. e.g., Cascades c. e.g., Sierra Nevada system example of previous subduction b. Oceanic-oceanic convergence 1. Two oceanic slabs converge HDEW animation Motion at Plate Boundaries a. one descends beneath the other b. the older, colder one 2. Often forms volcanoes on the ocean floor 3. Volcanic island arcs forms as volcanoes emerge from the sea 200-300 km from subduction trench TimeLife page 117 Philippine Arc a. e.g., Aleutian islands b. e.g., Mariana islands c. e.g., Tonga islands all three are young volcanic arcs, 20 km thick crust Japan more complex and thicker crust 20-35 km thick c. Continental-continental convergence— all oceaninc crust is destroyed at convergence, and continental crust remains 1. continental crust does not subside—too buoyant 2. two continents collide—become ‘sutured’ together 3. Can produce new mountain ranges such as the Himalayas II. Transform fault boundaries 1.
    [Show full text]
  • Plate Tectonics Says That Earth’S Plates Move Because of Convection Currents in the Mantle
    Bellringer Which ocean is getting smaller and which ocean is getting bigger due to subduction and sea floor spreading? Plate Tectonic Theory Notes How Plates Move • Earth’s crust is broken into many jagged pieces. The surface is like the shell of a hard-boiled egg that has been rolled. The pieces of Earth’s crust are called plates. Plates carry continents, oceans floors, or both. How Plates Move • The theory of plate tectonics says that Earth’s plates move because of convection currents in the mantle. Currents in the mantle carry plates on Earth’s surface, like currents in water carry boats on a river, or Cheerios in milk. How Plates Move • Plates can meet in three different ways. Plates may pull apart, push together, or slide past each other. Wherever plates meet, you usually get volcanoes, mountain ranges, or ocean trenches. Plate Boundaries • A plate boundary is where two plates meet. Faults form along plate boundaries. A fault is a break in Earth’s crust where blocks of rock have slipped past each other. Plate Boundaries • Where two plates move apart, the boundary is called a divergent boundary. • A divergent boundary between two oceanic plates will result in a mid-ocean ridge AND rift valley. (SEE: Sea-Floor Spreading) • A divergent boundary between two continental plates will result in only a rift valley. This is currently happening at the Great Rift Valley in east Africa. Eventually, the Indian Ocean will pour into the lowered valley and a new ocean will form. Plate Boundaries • Where two plates push together, the boundary is called a convergent boundary.
    [Show full text]
  • 3.16 Oceanic Plateaus A.C.Kerr Cardiffuniversity,Wales,UK
    3.16 Oceanic Plateaus A.C.Kerr CardiffUniversity,Wales,UK 3.16.1 INTRODUCTION 537 3.16.2 FORMATION OF OCEANIC PLATEAUS 539 3.16.3 PRESERVATIONOFOCEANIC PLATEAUS 540 3.16.4GEOCHEMISTRY OF CRETACEOUSOCEANICPLATEAUS 540 3.16.4.1 GeneralChemicalCharacteristics 540 3.16.4.2 MantlePlumeSource Regions ofOceanic Plateaus 541 3.16.4.3 Caribbean–ColombianOceanic Plateau(, 90 Ma) 544 3.16.4.4OntongJavaPlateau(, 122 and , 90 Ma) 548 3.16.5THE INFLUENCE OF CONTINENTALCRUST ON OCEANIC PLATEAUS 549 3.16.5.1 The NorthAtlantic Igneous Province ( , 60 Ma to Present Day) 549 3.16.5.2 The KerguelenIgneous Province ( , 133 Ma to Present Day) 550 3.16.6 IDENTIFICATION OF OCEANIC PLATEAUS IN THE GEOLOGICAL RECORD 551 3.16.6.1 Diagnostic FeaturesofOceanic Plateaus 552 3.16.6.2 Mafic Triassic Accreted Terranesinthe NorthAmericanCordillera 553 3.16.6.3 Carboniferous to CretaceousAccreted Oceanic Plateaus inJapan 554 3.16.7 PRECAMBRIAN OCEANICPLATEAUS 556 3.16.8ENVIRONMENTAL IMPACT OF OCEANICPLATEAU FORMATION557 3.16.8.1 Cenomanian–TuronianBoundary (CTB)Extinction Event 558 3.16.8.2 LinksbetweenCTB Oceanic PlateauVolcanism andEnvironmentalPerturbation 558 3.16.9 CONCLUDING STATEMENTS 560 REFERENCES 561 3.16.1 INTRODUCTION knowledge ofthe oceanbasins hasimproved over the last 25years,many moreoceanic plateaus Although the existence oflarge continentalflood havebeenidentified (Figure1).Coffinand basalt provinceshasbeenknownfor some Eldholm (1992) introduced the term “large igneous considerabletime, e.g.,Holmes(1918),the provinces” (LIPs) asageneric term encompassing recognition thatsimilarfloodbasalt provinces oceanic plateaus,continentalfloodbasalt alsoexist belowthe oceans isrelatively recent. In provinces,andthoseprovinceswhich form at the early 1970s increasingamounts ofevidence the continent–oceanboundary (volcanic rifted fromseismic reflection andrefraction studies margins).
    [Show full text]
  • Geometrical Effects of a Subducted Seamount on Stopping Megathrust
    GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1–6, doi:10.1002/grl.50509, 2013 Geometrical effects of a subducted seamount on stopping megathrust ruptures Hongfeng Yang,1,2 Yajing Liu,1,3 and Jian Lin1 Received 6 March 2013; revised 18 April 2013; accepted 25 April 2013. [1] We have numerically simulated dynamic ruptures along rich sediments into seismogenic zone [Bangs et al., 2006]. a “slip-weakening” megathrust fault with a subducted The presence of entrained fluid-rich sediments in the vicinity seamount of realistic geometry, demonstrating that of a subducted seamount would reduce effective normal seamounts can act as a barrier to earthquake ruptures. Such stress and lubricate the thrust interface, leading to little barrier effect is calculated to be stronger for increased elastic strain accumulation and thus inhibiting coseismic seamount normal stress relative to the ambient level, for ruptures [Mochizuki et al., 2008; Singh et al., 2011]. Further- larger seamount height-to-width ratio, and for shorter more, it was proposed that seamount subduction may create seamount-to-nucleation distance. As the seamount height a complex fracture network in the overriding plate, making it increases from 0 to 40% of its basal width, the required unfavorable for the generation of large earthquakes [Wang increase in the effective normal stress on the seamount to and Bilek, 2011]. Thus, the specific mechanisms for stop ruptures drops by as much as ~20%. We further subducted seamounts to stop coseismic ruptures could be demonstrate that when a seamount is subducted adjacent to complex and remain open for debate. the earthquake nucleation zone, coseismic ruptures can be [3] Previous numerical studies have modeled a subducted stopped even if the seamount has a lower effective normal seamount as a patch under elevated effective normal stress stress than the ambient level.
    [Show full text]
  • Depth of Magma Chamber Determined by Experimental Petrologic Methods
    DEPTH OF MAGMA CHAMBER DETERMINED BY EXPERIMENTAL PETROLOGIC METHODS Akihiko Tomiya Geological Survey of Japan, 1-1-3, Higashi, Tsukuba, Ibaraki, Japan Keywords: magma chamber, experimental petrology, Usu magma and, therefore, the composition of the residual melt, volcano, deep-seated geothermal resource that is, the evolved magma. ABSTRACT Thermodynamic conditions of a magma chamber can be estimated using petrographic information (e.g., compositions Depth of magma chamber (or young intrusive body) is one of and modal fractions of phenocrysts and groundmass) from a the most important parameters that determine the thermal representative rock erupted from the chamber. In order to structure and the circulation pattern of fluid around a estimate the pressure of magma chamber, the following geothermal area. The depth is also important when we methods are generally used; (1) geobarometer, (2) water recognize the magma chamber as a deep-seated geothermal content, and (3) melting experiment. One of the examples of resource itself. Here, we introduce an experimental petrologic the first method is an amphibole geobarometer (e.g., method for determining the depth of magma chamber. There Hammarstrom and Zen, 1986) where pressure is estimated are several methods in order to determine the depth (pressure) from the aluminum content of the amphibole crystallized from of a magma chamber. Among them, a melting experiment for the magma. This method, however, is difficult to apply to the rock erupted from the magma chamber is the most reliable natural magma because the geobarometer should be applied method. The method consists of the following procedure: (1) only when the mineral assemblage of the magma is the same as Select a sample (volcanic rock) which is representative of that of experimental products for which the geobarometer was magma in the chamber; (2) Give a petrographic description of calibrated.
    [Show full text]
  • Lucan's Natural Questions: Landscape and Geography in the Bellum Civile Laura Zientek a Dissertation Submitted in Partial Fulf
    Lucan’s Natural Questions: Landscape and Geography in the Bellum Civile Laura Zientek A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: Catherine Connors, Chair Alain Gowing Stephen Hinds Program Authorized to Offer Degree: Classics © Copyright 2014 Laura Zientek University of Washington Abstract Lucan’s Natural Questions: Landscape and Geography in the Bellum Civile Laura Zientek Chair of the Supervisory Committee: Professor Catherine Connors Department of Classics This dissertation is an analysis of the role of landscape and the natural world in Lucan’s Bellum Civile. I investigate digressions and excurses on mountains, rivers, and certain myths associated aetiologically with the land, and demonstrate how Stoic physics and cosmology – in particular the concepts of cosmic (dis)order, collapse, and conflagration – play a role in the way Lucan writes about the landscape in the context of a civil war poem. Building on previous analyses of the Bellum Civile that provide background on its literary context (Ahl, 1976), on Lucan’s poetic technique (Masters, 1992), and on landscape in Roman literature (Spencer, 2010), I approach Lucan’s depiction of the natural world by focusing on the mutual effect of humanity and landscape on each other. Thus, hardships posed by the land against characters like Caesar and Cato, gloomy and threatening atmospheres, and dangerous or unusual weather phenomena all have places in my study. I also explore how Lucan’s landscapes engage with the tropes of the locus amoenus or horridus (Schiesaro, 2006) and elements of the sublime (Day, 2013).
    [Show full text]