Observation Guidelines and Recording Standards for Weather, Snowpack and Avalanches
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture Notes on Marine Meteorology
Lecture notes on Marine Meteorology By Shri S. P. Joshi Assistant. Meteorologist Office of DDGM (WF) India Meteorological Department Pune-5 Preface The aim of these lecture notes is to provide training to the marine observers in handling and maintenance of meteorological instruments and collect meteorological observations in the form of logbooks. The chapters included in these lecture notes are from the Basic and Intermediate training courses of the department. The present lecture notes are merely a collection of information available on Internet and are compiled from various WMO sites, freely available, keeping in view the up-and-coming trends and new technological advancements. This collection is for private circulation for trainees of Basic and Intermediate training courses of the department and the author do not intend to violate copyrights of anybody what so ever. Port Meteorological Officers in the immediate future have to deal with the modernization of the marine equipments and automation of Marine Data collection, its transmission and archival by observing minimum quality control through the in-built software like TURBOWIN. These lecture notes will also be useful to Port Meteorological Officers in understanding the nature of work of PMOs and will provide them the useful guidelines. A separate chapter on installation of Turbowin is also included in these notes. S. P. Joshi. 9th April 2005. Gudhi Padva Table of contents Chapter no Contents Page no. 1 WMO Voluntary Observing Ships’ Scheme 1 2 Meteorological Instrumentation on board ships 8 3 Port Meteorological Office ( PMO ) 15 4 The Ship Weather Code 19 5 Broadcast of weather bulletins for Merchant shipping 24 6 Broadcast of weather bulletins for Indian navy 28 7 Warnings to Ports and Storm Warning Signals 30 8 Broadcast of weather warnings for fishermen through 34 All India Radio. -
METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR)
U.S. DEPARTMENT OF TRANSPORTATION N JO 7900.11 NOTICE FEDERAL AVIATION ADMINISTRATION Effective Date: Air Traffic Organization Policy September 1, 2018 Cancellation Date: September 1, 2019 SUBJ: METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR) 1. Purpose of this Notice. This Notice coincides with a revision to the Federal Meteorological Handbook (FMH-1) that was effective on November 30, 2017. The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) approved the changes to the reporting requirements of small hail and snow pellets in weather observations (METAR/SPECI) to assist commercial operators in deicing operations. 2. Audience. This order applies to all FAA and FAA-contract weather observers, Limited Aviation Weather Reporting Stations (LAWRS) personnel, and Non-Federal Observation (NF- OBS) Program personnel. 3. Where can I Find This Notice? This order is available on the FAA Web site at http://faa.gov/air_traffic/publications and http://employees.faa.gov/tools_resources/orders_notices/. 4. Cancellation. This notice will be cancelled with the publication of the next available change to FAA Order 7900.5D. 5. Procedures/Responsibilities/Action. This Notice amends the following paragraphs and tables in FAA Order 7900.5. Table 3-2: Remarks Section of Observation Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Volcanic eruptions must be reported whenever first noted. Pre-eruption activity must not be reported. (Use Volcanic Eruptions 14.20 X X PIREPs to report pre-eruption activity.) Encode volcanic eruptions as described in Chapter 14. Distribution: Electronic 1 Initiated By: AJT-2 09/01/2018 N JO 7900.11 Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Whenever tornadoes, funnel clouds, or waterspouts begin, are in progress, end, or disappear from sight, the event should be described directly after the "RMK" element. -
Ships Observing Marine Climate a Catalogue of the Voluntary
WORLD METEOROLOGICAL ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPIDC COMMISSION (Of UNESCO) MARINE METEOROLOGY AND RELATED OCEANOGRAPHIC ACTIVITIES REPORT NO. 25 SHIPS OBSERVING MARINE CLIMATE A CATALOGUE OF THE VOLUNTARY OBSERVING SHIPS PARTICIPATING IN THE VSOP-NA WMO/TD-No. 456 1991 NOTE The designations employed and the presentation of material in this publication do not imply the expression ofany opinion whatsoever on the part of the Secretariats of the World Meteorological Organization and the Intergovernmental Oceanographic Commission concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation ofits frontiers or boundaries. Editorial note: This publication is an offset reproduction of a typescript submitted by the authors and has been produced withoutadditional revision by the WMO and IOC Secretariats. SHIPS OBSERVING MARINE CLIMATE A CATALOGUE OF THE VOLUNTARY OBSERVING SHIPS PARTICIPATING IN THE VSOP-NA Elizabeth.C.Kent and Peter.K.Taylor .James .Rennell. centre for Ocean Circulation, Chilworth Research Park. Southampton. UK PREFACE Meteorological observations made onboard merchant vessels of the i'H) vollIDtary observing shipa (ves) scheme, when transmitted to shore in real-time:J are a substantial canponent of the Global Observing System of the World Weather Watch and are essential tc> the pr<>vision of marine lleteorological services ~ as well as tc> ID€:teorol.ogical analyses and forecasts generally. These observations are also recorded in ships r meteorological log1xx>ks:t for later exchange., archival and p:roc-essing -through the i'H) Marine CliJDa.tc>logical StlJllDa'ries Scheme, and as such. they conatitute an equally essential source of data for determining the cliJDa.tc>logy of the marineatlooaphere and ocean surface, and 'for OJIIIPUt.ing a variety of air-sea fluxes. -
Weather and Snow Observations for Avalanche Forcasting: an Evaluation of Errors in Measurement and Interpretation
143 WEATHER AND SNOW OBSERVATIONS FOR AVALANCHE FORCASTING: AN EVALUATION OF ERRORS IN MEASUREMENT AND INTERPRETATION R.T. Marriottl and M.B. Moorel Abstract.--Measurements of weather and snow parameters for snow stability forecasting may frequently contain false or misleading information. Such error~ can be attributed primarily to poor selection of the measuring sites and to inconsistent response of the sensors to changing weather conditions. These problems are examined in detail and some remedies are suggested. INTRODUCTION SOURCES OF ERROR A basic premise of snow stability analysis for Errors which arise in instrumented snow and avalanche forecasting is that point measurements of weather measurements can be broken into two, if snow and weather parameters can be used to infer the somewhat overlapping, parts: those associated with snow and weather conditions over a large area. Due the representativeness of the site where the to the complexity of this process in the mountain measurements are to be taken, and those associated environment, this "extrapolation" of data has with the response of the instrument to its largely been accomplished subjectively by an environment. individual experienced with the area in question. This experience was usually gained by visiting the The first source of error is associated with areas of concern, during many differing types of the site chosen for measurements. The topography of conditions, allowing a qualitative correlation mountains results in dramatic variations in between the measured point data and variations in conditions over short distances and often times the snow and weather conditions over the area. these variations are not easily predictable. For example, temperature, which may often be In many instances today, the forecast area has extrapolated to other elevations using approximate expanded, largely due to increased putlic use of lapse rates, may on some occasions be complicated by avalanche-prone terrain (e.g. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Response to Comments the Authors Thank the Reviewers for Their
Response to comments The authors thank the reviewers for their constructive comments, which provide the basis to improve the quality of the manuscript and dataset. We address all points in detail and reply to all comments here below. We also updated SCDNA from V1 to V1.1 on Zenodo based on the reviewer’s comments. The modifications include adding station source flag, adding original files for location merged stations, and adding a quality control procedure based on the final SCDNA. SCDNA estimates are generally consistent between the two versions, with the total number of stations reduced from 27280 to 27276. Reviewer 1 General comment The manuscript presents and advertises a very interesting dataset of temperature and precipitation observation collected over several years in North America. The work is certainly well suited for the readership of ESSD and it is overall very important for the meteorological and climatological community. Furthermore, creation of quality controlled databases is an important contribution to the scientific community in the age of data science. I have a few points to consider before publication, which I recommend, listed below. 1. Measurement instruments: from my background, I am much closer to the instruments themselves (and their peculiarities and issues), as hardware tools. What I missed here was a description of the stations and their instruments. Questions like: which are the instruments deployed in the stations? How is precipitation measured (tipping buckets? buckets? Weighing gauges? Note for example that some instruments may have biases when measuring snowfall while others may not)? How is it temperature measured? How is this different from station to station in your database? Response: We have added the descriptions of measurement instruments in both the manuscript and dataset documentation. -
Creating an Atmosphere for STEM Literacy in the Rural South Through
JOURNAL OF GEOSCIENCE EDUCATION 63, 105–115 (2015) Creating an Atmosphere for STEM Literacy in the Rural South Through Student-Collected Weather Data Lynn Clark,1,a Saswati Majumdar,1 Joydeep Bhattacharjee,2 and Anne Case Hanks3 ABSTRACT This paper is an examination of a teacher professional development program in northeast Louisiana, that provided 30 teachers and their students with the technology, skills, and content knowledge to collect data and explore weather trends. Data were collected from both continuous monitoring weather stations and simple school-based weather stations to better understand core disciplinary ideas connecting Life and Earth sciences. Using a curricular model that combines experiential and place-based educational approaches to create a rich and relevant atmosphere for STEM learning, the goal of the program was to empower teachers and their students to engage in ongoing data collection analysis that could contribute to greater understanding and ownership of the environment at the local and regional level. The program team used a mixed- methodological approach that examined implementation at the site level and student impact. Analysis of teacher and student surveys, teacher interviews and classroom observation data suggest that the level of implementation of the program related directly to the ways in which students were using the weather data to develop STEM literacy. In particular, making meaning out of the data by studying patterns, interpreting the numbers, and comparing with long-term data from other sites seemed to drive critical thinking and STEM literacy in those classrooms that fully implemented the program. Findings also suggest that the project has the potential to address the unique needs of traditionally underserved students in the rural south, most notably, those students in high-needs rural settings that rely on an agrarian economy. -
Meteorological Monitoring Guidance for Regulatory Modeling Applications
United States Office of Air Quality EPA-454/R-99-005 Environmental Protection Planning and Standards Agency Research Triangle Park, NC 27711 February 2000 Air EPA Meteorological Monitoring Guidance for Regulatory Modeling Applications Air Q of ua ice li ff ty O Clean Air Pla s nn ard in nd g and Sta EPA-454/R-99-005 Meteorological Monitoring Guidance for Regulatory Modeling Applications U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Air and Radiation Office of Air Quality Planning and Standards Research Triangle Park, NC 27711 February 2000 DISCLAIMER This report has been reviewed by the U.S. Environmental Protection Agency (EPA) and has been approved for publication as an EPA document. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii PREFACE This document updates the June 1987 EPA document, "On-Site Meteorological Program Guidance for Regulatory Modeling Applications", EPA-450/4-87-013. The most significant change is the replacement of Section 9 with more comprehensive guidance on remote sensing and conventional radiosonde technologies for use in upper-air meteorological monitoring; previously this section provided guidance on the use of sodar technology. The other significant change is the addition to Section 8 (Quality Assurance) of material covering data validation for upper-air meteorological measurements. These changes incorporate guidance developed during the workshop on upper-air meteorological monitoring in July 1998. Editorial changes include the deletion of the “on-site” qualifier from the title and its selective replacement in the text with “site specific”; this provides consistency with recent changes in Appendix W to 40 CFR Part 51. -
Danish Meteorological Institute Ministry of Transport
DANISH METEOROLOGICAL INSTITUTE MINISTRY OF TRANSPORT ——— TECHNICAL REPORT ——— 98-14 The Climate of The Faroe Islands - with Climatological Standard Normals, 1961-1990 John Cappelen and Ellen Vaarby Laursen COPENHAGEN 1998 Front cover picture Gásadalur located north west of Sørvágur on the western part of the island of Vágar. Heinanøv Fjeld, 813 m high can be seen in the north and Mykinesfjørdur in the west. The heliport is located to the right in the picture - near the river Dalsá. The photo was taken during a helicopter trip in May 1986. Photographer: Helge Faurby ISSN 0906-897X Contents 1. Introduction....................................................................................................3 2. Weather and climate in the Faroe Islands..................................................5 3. Observations and methods............................................................................9 3.1. General methods...................................................................9 3.2. Observations........................................................................9 4. Station history and metadata.......................................................................13 5. Standard Normal Homogeneity Test..........................................................15 5.1. Background.........................................................................15 5.2. Testing for homogeneity.....................................................15 6. Climatological normals.................................................................................17 -
Snow Accumulation Algorithm for the Wsr-88D Radar: Supplemental Report
R-99-11 SNOW ACCUMULATION ALGORITHM FOR THE WSR-88D RADAR: SUPPLEMENTAL REPORT November 1999 U.S. DEPARTMENT OF THE INTERIOR Bureau of Reclamation Technical Service Center Civil Engineering Services Materials Engineering and Research Laboratory Denver, Colorado R-99-11 SNOW ACCUMULATION ALGORITHM FOR THE WSR-88D RADAR: SUPPLEMENTAL REPORT by Edmond W. Holroyd, III Technical Service Center Civil Engineering Services Materials Engineering and Research Laboratory Denver, Colorado November 1999 UNITED STATES DEPARTMENT OF THE INTERIOR ò BUREAU OF RECLAMATION ACKNOWLEDGMENTS This work extends previous efforts that were supported primarily by the WSR-88D (Weather Surveillance Radar - 1988 Doppler) OSF (Operational Support Facility) and the NEXRAD (Next Generation Weather Radar) Program. Significant additional support was provided by the Bureau of Reclamation’s Research and Technology Transfer Program, directed by Dr. Stanley Ponce, and by the NOAA (National Oceanic and Atmospheric Administration) Office of Global Programs GEWEX (Global Energy and Water Cycle Experiment) GCIP (Continental-Scale International Project ), directed by Dr. Rick Lawford. Most of the work for this supplemental report was performed and coordinated by Dr. Arlin B. Super, since retired. Programming and data support was provided by Ra Aman, Linda Rogers, and Anne Reynolds. In additional, we had useful feedback from several NWS (National Weather Service) personnel. Reviewer comments by Curt Hartzell and Mark Fresch were very helpful. U.S. Department of the Interior Mission Statement The Mission of the Department of the Interior is to protect and provide access to our Nation’s natural and cultural heritage and honor our trust responsibilities to tribes. Bureau of Reclamation Mission Statement The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. -
Vol.37 No.6 D'océanographie
ISSN 1195-8898 . CMOS Canadian Meteorological BULLETIN and Oceanographic Society SCMO La Société canadienne de météorologie et December / décembre 2009 Vol.37 No.6 d'océanographie Le réseau des stations automatiques pour les Olympiques ....from the President’s Desk Volume 37 No.6 December 2009 — décembre 2009 Friends and colleagues: Inside / En Bref In late October I presented the CMOS from the President’s desk Brief to the House of Allocution du président Commons Standing by/par Bill Crawford page 177 Committee on Finance at its public hearing in Cover page description Winnipeg. (The full text Description de la page couverture page 178 of this brief was published in our Highlights of Recent CMOS Meetings page 179 October Bulletin). Ron Correspondence / Correspondance page 179 Stewart accompanied me in this presentation. Articles He is a past president of CMOS and Head of the The Notoriously Unpredictable Monsoon Department of by Madhav Khandekar page 181 Environment and Geography at the The Future Role of the TV Weather Bill Crawford Presenter by Claire Martin page 182 CMOS President University of Manitoba. In the five minutes for Président de la SCMO Ocean Acidification by James Christian page 183 our talk we presented three requests for the federal government to consider in its The Interacting Scale of Ocean Dynamics next budget: Les échelles d’interaction de la dynamique océanique by/par D. Gilbert & P. Cummins page 185 1) Introduce measures to rapidly reduce greenhouse gas emissions; Interview with Wendy Watson-Wright 2) Invest funds in the provision of science-based climate by Gordon McBean page 187 information; 3) Renew financial support for research into meteorology, On the future of operational forecasting oceanography, climate and ice science, especially in tools by Pierre Dubreuil page 189 Canada’s North, through independent, peer-reviewed projects managed by agencies such as CFCAS and Weather Services for the 2010 Winter NSERC. -
Guide Wave Analysis and Forecasting
WORLD METEOROLOGICAL ORGANIZATION GUIDE TO WAVE ANALYSIS AND FORECASTING 1998 (second edition) WMO-No. 702 WORLD METEOROLOGICAL ORGANIZATION GUIDE TO WAVE ANALYSIS AND FORECASTING 1998 (second edition) WMO-No. 702 Secretariat of the World Meteorological Organization – Geneva – Switzerland 1998 © 1998, World Meteorological Organization ISBN 92-63-12702-6 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities or concerning the delimitation of its fontiers or boundaries. CONTENTS Page FOREWORD . V ACKNOWLEDGEMENTS . VI INTRODUCTION . VII Chapter 1 – AN INTRODUCTION TO OCEAN WAVES 1.1 Introduction . 1 1.2 The simple linear wave . 1 1.3 Wave fields on the ocean . 6 Chapter 2 – OCEAN SURFACE WINDS 2.1 Introduction . 15 2.2 Sources of marine data . 16 2.3 Large-scale meteorological factors affecting ocean surface winds . 21 2.4 A marine boundary-layer parameterization . 27 2.5 Statistical methods . 32 Chapter 3 – WAVE GENERATION AND DECAY 3.1 Introduction . 35 3.2 Wind-wave growth . 35 3.3 Wave propagation . .36 3.4 Dissipation . 39 3.5 Non-linear interactions . .40 3.6 General notes on application . 41 Chapter 4 – WAVE FORECASTING BY MANUAL METHODS 4.1 Introduction . 43 4.2 Some empirical working procedures . 45 4.3 Computation of wind waves . 45 4.4 Computation of swell . 47 4.5 Manual computation of shallow-water effects . 52 Chapter 5 – INTRODUCTION TO NUMERICAL WAVE MODELLING 5.1 Introduction .