Applied Mathematics, 2012, 3, 851-856 http://dx.doi.org/10.4236/am.2012.38126 Published Online August 2012 (http://www.SciRP.org/journal/am) Numerical Study of Fractional Differential Equations of Lane-Emden Type by Method of Collocation Mohammed S. Mechee1,2, Norazak Senu3 1Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia 2Department of Mathematics, College of Mathematics and Computer Sciences, University of Kufa, Najaf, Iraq 3Department of Mathematics, Institute for Mathematical Research, Universiti Putra Malaysia, Selangor, Malaysia Email:
[email protected],
[email protected] Received December 29, 2011; revised July 12, 2012; accepted July 19, 2012 ABSTRACT Lane-Emden differential equations of order fractional has been studied. Numerical solution of this type is considered by collocation method. Some of examples are illustrated. The comparison between numerical and analytic methods has been introduced. Keywords: Fractional Calculus; Fractional Differential Equation; Lane-Emden Equation; Numerical Collection Method 1. Introduction further explored in detail by Emden [7], represents such phenomena and having significant applications, is a Lane-Emden Differential Equation has the following second-order ordinary differential equation with an arbi- form: trary index, known as the polytropic index, involved in k yt yt fty ,= gt ,0<1,0 t k (1) one of its terms. The Lane-Emden equation describes a t variety of phenomena in physics and astrophysics, in- with the initial condition cluding aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and y 0=Ay , 0= B , thermionic currents [8]. where A, B are constants, f ty, is a continuous real The solution of the Lane-Emden problem, as well as valued function and gtC0,1 (see [1]).