Exploring the Evolutionary History of Cultivated Rice

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Evolutionary History of Cultivated Rice EXPLORING THE EVOLUTIONARY HISTORY OF CULTIVATED RICE: THE ORIGIN AND EVOLUTION OF FRAGRANCE AND THE GENETIC CONTROL OF BLACK HULL COLORATION A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Michael James Kovach May 2010 © 2010 Michael James Kovach EXPLORING THE EVOLUTIONARY HISTORY OF CULTIVATED RICE: THE ORIGIN AND EVOLUTION OF FRAGRANCE AND THE GENETIC CONTROL OF BLACK HULL COLORATION Michael James Kovach, Ph.D. Cornell University 2010 Cultivated Asian rice traveled a long and complex journey from a low-yielding, weedy grass species to the high-yielding staple crop consumed by billions of people today. This journey, driven by human selection, involved a series of genetic changes that transformed the rice plant in many profound ways. Modern genetics and genomics techniques have made it possible to re-trace the history of rice domestication and evolution. This new knowledge not only renders a clearer picture of the evolutionary paths traveled during rice domestication, but it also provides new insights for plant breeders, who are faced with the challenge of feeding an ever-growing human population. This dissertation examines the current body of knowledge pertaining to rice evolution, and in the process, attempts to improve our understanding of the genetic diversity within Oryza sativa and its wild progenitor, Oryza rufipogon . An in- depth haplotype analysis is presented to reveal the origin and evolution of fragrance in rice, which remains one of the most important grain quality characteristics from the perspective of both the international export industry and indigenous peoples who have treasured this trait for centuries. The evolutionary history of the major allele responsible for fragrance in most modern varieties, badh2.1 , is investigated, as well as the origins of several novel fragrance-causing alleles of BADH2 in unique rice germplasm from across Asia. Also, in an effort to further our understanding of the rice domestication syndrome, a genetic mapping study is presented that identifies the causal mutation responsible for a fundamental change during rice domestication: the loss of black pigmentation from the outer covering (hull) of the rice seed. A striking genetic phenomenon is revealed, in which the black hull trait is found to be controlled by an epistatic relationship between two physically linked genes. BIOGRAPHICAL SKETCH Michael was born November 11, 1983 in Baltimore, Maryland to Gerald and Kathleen Kovach. He grew up in Glen Burnie, MD where he attended Point Pleasant Elementary School until the 5 th grade, at which point his family moved to Duncansville, PA. There, Michael attended St. Patrick’s parochial school and then Bishop Guilfoyle High School. Michael was an active member of the cross country team, track and field team, and the ski club. He was also an avid home gardener, and spent his summers working for the Baronner Vegetable Farm in Hollidaysburg, PA, inspiring him to pursue a career in the plant sciences. Michael graduated as valedictorian of his senior class, and was accepted into the Schreyer Honors College at the Pennsylvania State University. While pursuing a Bachelors of Science in Horticulture at Penn State, Michael served as President of the Horticulture Club, completed a life sciences internship at the University of Missouri, conducted a research project on wild tomatoes, and had the opportunity to study briefly in Peru and New Zealand. Michael graduated in 2005 as the College of Agriculture Sciences Class Marshall and entered the PhD program in Plant Breeding & Genetics at Cornell University. Michael’s experiences at Cornell have included attending a workshop at the International Rice Research Institute in the Philippines, studying international agriculture in southern India, presenting his research at a conference in the U.K., and teaching a molecular breeding course at the Biosciences Eastern and Central Africa (BecA) hub in Nairobi, Kenya. Michael is beginning his plant breeding career as a maize Line Development Breeder for Monsanto Co. in Thomasboro, Illinois. iii ACKNOWLEDGMENTS Foremost and above all, I thank God for providing me with life, a loving family, and the vast opportunities and privileges that have made it possible for me to come this far. My awe at the biological complexities of His creation drives my desire to use crop breeding as a means of maximizing life’s potential. My Mom and Dad, who have sacrificed so much to provide me with an excellent education and who have stayed with me through every fault and tribulation, deserve more acknowledgement than could ever be expressed. Without their loving support, I would never have had access to the resources I needed to pursue this degree, nor the self-confidence to always strive to be the best I can be in all that I do. To Susan, who took a chance on me, and proceeded to form me into the thinker, the researcher, the plant breeder, and the person I am today. Also to Rebecca and Steve, for helping me to navigate the bumpy road of a PhD career. I am grateful to the members of the McCouch research program for their valuable critical analysis and helpful comments on my work. I acknowledge financial support from the Plant Genome Program of the National Science Foundation (Award Numbers #0606461 and #0110004), the EU project META-PHOR (FOOD-CT-2006-036220), the College of Agriculture and Life Sciences, and the Department of Plant Breeding and Genetics. iv TABLE OF CONTENTS Biographical Sketch iii Acknowledgements iv Table of Contents v List of Figures vi List of Tables viii Preface ix Chapter 1: Introduction 1 Chapter 2: Leveraging Natural Diversity: Back Through the Bottleneck 11 Chapter 3: New Insights into the History of Rice Domestication 35 Chapter 4: The Origin and Evolution of Fragrance in Rice 70 ................ (Oryza sativa L.) Chapter 5: The Origin of Fragrance in NERICA1 119 Chapter 6: Mapping the Genetic Determinant of Fragrance in 134 ................ Kai Noi Leuang Chapter 7: The Genetic Control of Black Hull in Rice 146 Chapter 8: The Genetic and Geographic Origin of the badh2.1 FNP: 197 ................ Scenarios Chapter 9: Characterization of RC-Mediated Regulation of 207 ................ Proanthocyanidin Biosynthesis as a Prerequisite for a ................ Novel Transgene Containment Strategy in Rice Glossary of Key Terms 245 v LIST OF FIGURES Figure 2.1: The complex domestication process of O. sativa 14 Figure 2.2: Subpopulation structure of O. sativa 15 Figure 2.3: Transgressive segregation 20 Figure 2.4: Rice breeding options: How to generate novelty? 22 Figure 3.1: The domestication transformation— 38 ................. From O. rufipogon to O. sativa Figure 3.2: Subpopulation structure in O. sativa 42 Figure 3.3: The origin and dispersal of cultivated rice 48 Figure 3.4: Haplotype network for the Rc gene 53 Figure 4.1: Subpopulation structure in O. sativa 73 Figure 4.2: Haplotype analysis of the BADH2 gene region 79 Figure 4.3: Extended haplotype homozygosity (EHH) across the 84 ................. BADH2 genomic region Figure 4.4: BADH2 allelic diversity 86 Supplemental Figure 4.1: Extended haplotype homozygosity 111 . .......... (EHH) across the BADH2 genomic region in ...... ..... individual subpopulations Figure 5.1: Results of the badh2.1 allele-specific marker 123 Figure 5.2: The origin of badh2.1 in NERICA1 125 Figure 6.1: Illumina BeadXpress results for 138 ............... .TSN1 x KNL BC 4F2 Figure 6.2: Ex4_F / Ex5_R amplification in KNL 140 Figure 6.3: Genomic DNA and predicted protein of Badh2 141 .................. (wild-type) and badh2.11 (fragrant) alleles Figure 6.4: badh2.11 allele-specific marker 143 vi Figure 7.1: Detailed anatomy of a rice spikelet; Pre-fertilization 147 Figure 7.2: Informative recombinants for hull color from 158 .................. SL population Figure 7.3: Informative recombinants for hull color from 161 .................. Cyb x 506A and Cyb x 549A populations Figure 7.4: Structure of Loc_Os04g38660 and 164 .................. Loc_Os04g38670 with and without 22bp deletion Figure 7.5: Bh-a protein comparisons 165 Figure 7.6: Allele-specific marker for 22 bp deletion 166 Figure 9.1: Model for RC-mediated transcriptional activation of 219 .................. a proanthocyanidin biosynthetic gene in the rice .................. pericarp Figure 9.2: The general proanthocyanidin biosynthetic pathway 222 .................... in plants Figure 9.3: RT-PCR results for proanthocyanidin biosynthetic 224 ................. genes in rice pericarp Figure 9.4: DFR Promoter Deletions 228 Figure 9.5: pCAMBIA1301 and pCAMBIA1301mod 229 Figure 9.6: pCAMBIA1302_mGFP and 230 .................pCAMBIA1302_mGFP5mod vii LIST OF TABLES Table 3.1: Key domestication-related genes cloned in rice 39 Table 4.1: Frequency of badh2.1 allele in wild and cultivated rice 77 Table 4.2: Average nucleotide diversity across BADH2 gene 83 ................. (θπ per kb) Supplemental Table 4.1: Rice accessions used in this study 94 Supplemental Table 4.2: Gene haplotypes for all 242 O. sativa 101 .................. accessions Supplemental Table 4.3: Extended haplotypes for all 242 105 .................. O. sativa accessions and the heterozygous wild .................. accession Supplemental Table 4.4: Novel coding mutations in BADH2 109 Supplemental Table 4.5: Primers used in this study 110 Supplemental Table 5.1: Rice accessions used in this study 126 Supplemental Table 5.2: Primers Used in This
Recommended publications
  • Ecological Differentiation and Incipient Speciation in the Fungal Pathogen Causing
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.02.129296; this version posted June 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ECOLOGICAL DIFFERENTIATION AND INCIPIENT SPECIATION IN THE FUNGAL PATHOGEN CAUSING 2 RICE BLAST 3 Maud THIERRY1,2,3, Joëlle MILAZZO1,2, Henri ADREIT1,2, Sébastien RAVEL1,2,4, Sonia BORRON1, Violaine 4 SELLA3, Renaud IOOS3, Elisabeth FOURNIER1, Didier THARREAU1,2,5, Pierre GLADIEUX1,5 5 1UMR BGPI, Université de Montpellier, INRAE, CIRAD, Institut Agro, F-34398 Montpellier, France 6 2 CIRAD, UMR BGPI, F-34398 Montpellier, France. 7 3ANSES Plant Health Laboratory, Mycology Unit, Domaine de Pixérécourt, Bâtiment E, F-54220 Malzéville, France 8 4 South Green Bioinformatics Platform, Alliance Bioversity-international CIAT, CIRAD, INRAE, IRD, Montpellier, 9 France. 10 [email protected]; [email protected] 11 12 ABSTRACT 13 Natural variation in plant pathogens has an impact on food security and ecosystem health. The rice 14 blast fungus Pyricularia oryzae, which limits rice production in all rice-growing areas, is structured into 15 multiple lineages. Diversification and the maintenance of multiple rice blast lineages have been 16 proposed to be due to separation in different areas and differential adaptation to rice subspecies. 17 However, the precise world distribution of rice blast populations, and the factors controlling their 18 presence and maintenance in the same geographic areas, remain largely unknown.
    [Show full text]
  • The Evolution of Animal Domestication
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266740619 The Evolution of Animal Domestication Article in Annual Review of Ecology Evolution and Systematics · October 2014 DOI: 10.1146/annurev-ecolsys-120213-091620 CITATIONS READS 179 3,162 2 authors: Greger Larson Dorian Q Fuller University of Oxford University College London 196 PUBLICATIONS 6,523 CITATIONS 322 PUBLICATIONS 12,021 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Dog Domestication View project Rwandan Archaeology View project All content following this page was uploaded by Dorian Q Fuller on 12 October 2014. The user has requested enhancement of the downloaded file. ES45CH06-Larson ARI 16 September 2014 11:18 V I E E W R S I E N C N A D V A The Evolution of Animal Domestication Greger Larson1 and Dorian Q. Fuller2 1Durham Evolution and Ancient DNA, Department of Archaeology, Durham University, Durham, DH1 3LE, United Kingdom; email: [email protected] 2Institute of Archaeology, University College London, London WC1H 0PY, United Kingdom Annu. Rev. Ecol. Evol. Syst. 2014. 66:115–36 Keywords The Annual Review of Ecology, Evolution, and archaeology, genetics, livestock, introgression, selection, agriculture Systematics is online at ecolsys.annualreviews.org This article’s doi: Abstract 10.1146/annurev-ecolsys-120213-091620 The domestication of plants and animals over the past 11,500 years has Copyright c 2014 by Annual Reviews. had a significant effect not just on the domesticated taxa but also on human All rights reserved evolution and on the biosphere as a whole.
    [Show full text]
  • Archaeological Central American Maize Genomes Suggest Ancient Gene Flow from South America
    Archaeological Central American maize genomes suggest ancient gene flow from South America Logan Kistlera,1, Heather B. Thakarb, Amber M. VanDerwarkerc, Alejandra Domicd,e, Anders Bergströmf, Richard J. Georgec, Thomas K. Harperd, Robin G. Allabyg, Kenneth Hirthd, and Douglas J. Kennettc,1 aDepartment of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; bDepartment of Anthropology, Texas A&M University, College Station, TX 77843; cDepartment of Anthropology, University of California, Santa Barbara, CA 93106; dDepartment of Anthropology, The Pennsylvania State University, University Park, PA 16802; eDepartment of Geosciences, The Pennsylvania State University, University Park, PA 16802; fAncient Genomics Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom; and gSchool of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom Edited by David L. Lentz, University of Cincinnati, Cincinnati, OH, and accepted by Editorial Board Member Elsa M. Redmond November 3, 2020 (received for review July 24, 2020) Maize (Zea mays ssp. mays) domestication began in southwestern 16). However, precolonial backflow of divergent maize varieties Mexico ∼9,000 calendar years before present (cal. BP) and humans into Central and Mesoamerica during the last 9,000 y remains dispersed this important grain to South America by at least 7,000 understudied, and could have ramifications for the history of cal. BP as a partial domesticate. South America served as a second- maize as a staple in the region. ary improvement center where the domestication syndrome be- Morphological evidence from ancient maize found in ar- came fixed and new lineages emerged in parallel with similar chaeological sites combined with DNA data confirms a complex processes in Mesoamerica.
    [Show full text]
  • Global Rice Market Projections Distinguishing Japonica and Indica Rice
    Global Rice Market Projections Distinguishing Japonica and Indica Rice JARQ 54 (1), 63-91 (2020) https://www.jircas.go.jp Global Rice Market Projections Distinguishing Japonica and Indica Rice Global Rice Market Projections Distinguishing Japonica and Indica Rice under Climate Change Tatsuji KOIZUMI* and Gen FURUHASHI Policy Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan Abstract Rice is not strictly a homogeneous commodity, with the international rice market largely divided into the japonica and indica rice markets. Both follow different market structures and the international prices of japonica and indica show different trends. We projected and simulated the future global japonica and indica rice markets under climate change in the long term, using a partial equilibrium model. The Rice Economy Climate Change (RECC) model thus developed covers the japonica and indica rice markets in 24 countries and regions as the entire world rice market. The simulation results suggest that the international price of japonica rice will be more volatile than that of indica rice, and that both price indicators will exhibit different trends due to the impact of long-term climate change. Discipline: Social Science Additional key words: rice varieties, price volatility, MIROC, RCPs, partial equilibrium model Introduction developed the Arkansan Global Rice Model,1 distinguishing only the markets for long-grain and short-/ Rice production and consumption have gradually medium-grain rice in the United States (US), without increased over the years, reaching a trade volume of completely specifying the markets for other types of rice. almost 46 million tons in 2016 (USDA-FAS 2018b). Koizumi and Kanamaru (2016) conducted a simulation However, rice in the global market is not, strictly using a partial equilibrium model to alleviate climate speaking, a homogeneous commodity.
    [Show full text]
  • Progress and Prospect of Breeding Utilization of Green Revolution Gene SD1 in Rice
    agriculture Review Progress and Prospect of Breeding Utilization of Green Revolution Gene SD1 in Rice Youlin Peng 1 , Yungao Hu 1, Qian Qian 2 and Deyong Ren 2,* 1 Rice Research Institute, Southwest University of Science and Technology, Mianyang 621010, China; [email protected] (Y.P.); [email protected] (Y.H.) 2 State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; [email protected] * Correspondence: [email protected] Abstract: Rice (Oryza sativa L.) is one of the most important cereal crops in the world. The iden- tification of sd1 mutants in rice resulted in a semi-dwarf phenotype that was used by breeders to improve yields. Investigations of sd1 mutants initiated the “green revolution” for rice and staved off famine for many people in the 1960s. The smaller plant height conferred by sd1 allele gives the plants lodging resistance even with a high amount of nitrogen fertilizer. Guang-chang-ai-carrying sd1 was the first high-yielding rice variety that capitalized on the semi-dwarf trait, aiming to significantly improve the rice yield in China. IR8, known as the miracle rice, was also bred by using sd1. The green revolution gene sd1 in rice has been used for decades, but was not identified for a long time. The SD1 gene encodes the rice Gibberellin 20 oxidase-2 (GA20ox2). As such, the SD1 gene is instrumental in uncovering the molecular mechanisms underlying gibberellin biosynthesis There are ten different alleles of SD1. These alleles are identified by genome sequencing within several donor lines in breeding for semi-dwarf rice.
    [Show full text]
  • Evaluation of Japonica Rice (Oryza Sativa L.) Varieties and Their Improvement in Terms of Stability, Yield and Cooking Quality by Pure-Line Selection in Thailand
    ESEARCH ARTICLE R ScienceAsia 46 (2020): 157–168 doi: 10.2306/scienceasia1513-1874.2020.029 Evaluation of japonica rice (Oryza sativa L.) varieties and their improvement in terms of stability, yield and cooking quality by pure-line selection in Thailand Pawat Nakwilaia, Sulaiman Cheabuc, Possawat Narumona, Chatree Saensukb, Siwaret Arikita,b, a,b, Chanate Malumpong ∗ a Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140 Thailand b Rice Science Center & Rice Gene Discovery Unit, Kasetsart University, Nakhon Pathom 73140 Thailand c Faculty of Agriculture, Princess of Naradhiwas University, Narathiwat 96000 Thailand ∗Corresponding author, e-mail: [email protected] Received 3 Aug 2019 Accepted 3 Apr 2020 ABSTRACT: Many companies in Thailand have encouraged farmers, especially those in the northern regions, to cultivate DOA1 and DOA2 japonica rice varieties. Recently, the agronomic traits of DOA1 and DOA2 were altered, affecting yield and cooking quality. Thus, the objectives of this study were to evaluate the agronomic traits and cooking quality of DOA1 and DOA2 and those of exotic japonica varieties in different locations, including the Kamphaeng Saen and Phan districts (WS16). DOA2 was improved by pure-line selection. The results showed that the Phan district was better suited to grow japonica varieties than the Kamphaeng Saen district and that DOA2 produced high grain yields in both locations. Furthermore, DOA2 was selected by the pure-line method in four generations, after which five candidate lines, Tana1 to Tana5, were selected for yield trials. The results of yield trials in three seasons (WS17, DS17/18, WS18) confirmed that Tana1 showed high performance in terms of its agronomic traits and grain yield.
    [Show full text]
  • The History of Farm Foxes Undermines the Animal Domestication Syndrome, Trends in Ecology & Evolution (2019)
    Please cite this article in press as: Lord et al., The History of Farm Foxes Undermines the Animal Domestication Syndrome, Trends in Ecology & Evolution (2019), https://doi.org/10.1016/j.tree.2019.10.011 Trends in Ecology & Evolution Opinion The History of Farm Foxes Undermines the Animal Domestication Syndrome Kathryn A. Lord,1,2 Greger Larson,3,@ Raymond P. Coppinger,4,6 and Elinor K. Karlsson1,2,5,@,* The Russian Farm-Fox Experiment is the best known experimental study in animal domestication. Highlights By subjecting a population of foxes to selection for tameness alone, Dimitry Belyaev generated The ‘domestication syndrome’ has foxes that possessed a suite of characteristics that mimicked those found across domesticated been a central focus of research species. This ‘domestication syndrome’ has been a central focus of research into the biological into the biological processes un- pathways modified during domestication. Here, we chart the origins of Belyaev’s foxes in derlying domestication. The eastern Canada and critically assess the appearance of domestication syndrome traits across an- Russian Farm-Fox Experiment was imal domesticates. Our results suggest that both the conclusions of the Farm-Fox Experiment the first to test whether there is a and the ubiquity of domestication syndrome have been overstated. To understand the process causal relationship between selec- tion for tameness and the domes- of domestication requires a more comprehensive approach focused on essential adaptations to tication syndrome. human-modified environments. Historical records and genetic The Origins of Domestication Syndrome analysis show that the foxes used in The domestication syndrome describes a suite of behavioral and morphological characteristics the Farm-Fox Experiment origi- consistently observed in domesticated populations.
    [Show full text]
  • 2015 Top 100 Founders Whether It’S in Plant Breeding Or Business, Policy Or Marketing, Sales Or Education, Leadership in the Seed Industry Takes Many Forms
    FOUNDERS SERIES PART 6 OF 6 2015 Top 100 Founders Whether it’s in plant breeding or business, policy or marketing, sales or education, leadership in the seed industry takes many forms. Meet the most transformational men and women in the seed industry during the past 100 years. From all across the globe, they shape your world. THESE ARE THE individuals his first batch of okra seeds research stations and farmers’ fields of Mexico that Borlaug who have provided leadership to his neighbors, his com- developed successive generations of wheat varieties with broad during trying times, insight to pany contracts with more and stable disease resistance, broad adaptation to growing con- complex issues, and a com- than 100,000 growers. Since ditions across many degrees of latitude and with exceedingly mitment to something larger then, seed distribution in India high yield potential. These new wheat varieties and improved than self. has grown 40-fold. In 1998, crop management practices transformed agricultural produc- The 100 founders of the he received the World Food tion in Mexico during the 1940s and 1950s and later in Asia and seed industry that we’ve Prize award and invested that Latin America, sparking the Green Revolution. Because of his chosen to represent the money into research pro- achievements and efforts to prevent hunger, famine and misery dramatic changes during the grams for hybrid rice varieties. around the world, it is said that Borlaug has saved more lives past century have all left a than any other person who has ever lived. tremendous mark — be it in Henry Beachell plant breeding, technology, Creator of IR8 Rice Kent Bradford business or the policy arena — Today, most of the rice Launched the Seed Biotechnology Center that impacts the seed indus- grown in the world comes Through workshops and courses, the try.
    [Show full text]
  • Hered 445 Master..Hered 445 .. Page648
    Heredity 81 (1998) 648–658 Received 19 March 1998, accepted 15 June 1998 Genetic analysis of the domestication syndrome in pearl millet (Pennisetum glaucum L., Poaceae): inheritance of the major characters V. PONCET*%, F. LAMY%, J. ENJALBERT^, H. JOLY§, A. SARR% & T. ROBERT% %Laboratoire d’Evolution et Syst´ematique, Universit´e Paris XI, Bˆat. 362, F-91405 Orsay Cedex, France, ^Station de G´en´etique V´eg´etale, Ferme du Moulon, F-91190 Gif sur Yvette, France and §CIRAD-Forˆet, campus international de Baillarguet, BP 5035, F-34032 Montpellier Cedex 1, France The inheritance of domestication traits distinguishing pearl millet (Pennisetum glaucum) from its wild relatives (P. mollissimum) was assessed in F2 progenies derived from a cross between a typical landrace of pearl millet and a wild ecotype. Despite a high level of recombination between the two genomes, the existence of preferential associations between some characters was demonstrated, leading, in particular, to cultivated-like phenotypes. Traits determining spikelet structure showed simple Mendelian inheritance. Moreover, the genes encoding these traits mapped in a linkage group where quantitative trait loci for spike size and tillering habit were found. This linkage group could correspond to one of the two chromosome segments that have already been shown to be involved in the variation for spikelet structure in progenies from several cultivatedÅwild crosses. A synthetic map of these two regions is given. The evolutionary significance of this genomic organization in relation to the domestication process is discussed, as well as its potential use for pearl millet genetic resources enhancement. Keywords: domestication, genetic map, pearl millet, Pennisetum glaucum.
    [Show full text]
  • Paleogenomics of Animal Domestication
    Paleogenomics of Animal Domestication Evan K. Irving-Pease, Hannah Ryan, Alexandra Jamieson, Evangelos A. Dimopoulos, Greger Larson, and Laurent A. F. Frantz Abstract Starting with dogs, over 15,000 years ago, the domestication of animals has been central in the development of modern societies. Because of its importance for a range of disciplines – including archaeology, biology and the humanities – domestication has been studied extensively. This chapter reviews how the field of paleogenomics has revolutionised, and will continue to revolutionise, our under- standing of animal domestication. We discuss how the recovery of ancient DNA from archaeological remains is allowing researchers to overcome inherent shortcom- ings arising from the analysis of modern DNA alone. In particular, we show how DNA, extracted from ancient substrates, has proven to be a crucial source of information to reconstruct the geographic and temporal origin of domestic species. We also discuss how ancient DNA is being used by geneticists and archaeologists to directly observe evolutionary changes linked to artificial and natural selection to generate a richer understanding of this fascinating process. Keywords Ancient DNA · Archaeology · Domestication · Entomology · Evolution · Genomics · Zoology E. K. Irving-Pease (*) · H. Ryan · A. Jamieson · E. A. Dimopoulos · G. Larson The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK e-mail: [email protected] L. A. F. Frantz (*) The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK School of Biological and Chemical Sciences, Queen Mary University of London, London, UK e-mail: [email protected] Charlotte Lindqvist and Om P.
    [Show full text]
  • Final Report V1.2 Q01108 12 NOV 07
    Rice LabChip Analysis - Q01108 Adaptation Of DNA Analysis Techniques for the Analysis of Basmati Rice Varieties, Adulterant Varieties and other Fragrant Rice Varieties for use on the Agilent 2100 BioAnalyzer Final Technical Report October 2007 12 June 2006 – 20 June 2007 Katherine Steele and Rob Ogden Page 1 of 27 Table of Contents 1. Executive Summary 3 2. Glossary 5 3. Aims and Objectives of the Investigation 6 3.1 Why is enforcement needed for basmati rice? 6 3.2 Existing basmati rice tests with SSR markers 7 3.3 Alternative marker systems for rice 7 3.4 Aims and Objectives 8 4. Experimental Procedures 9 4.1. Sourcing of standard varieties and DNA extraction 9 4.2. Testing INDEL markers in different rice genotypes 10 4.3. Testing Rim2/Hipa and ISSR markers in different rice genotypes 10 4.4. Optimizing multiplex PCRs for INDELS 10 4.5. Developing a SOP for variety analysis of bulk extracts using the LabChip system 10 4.6. Optimizing existing SSRs for LabChip analysis 11 4.7. Evaluating INDEL markers for quantitative testing 11 5. Results and Discussion 12 5.1 Results with INDEL markers 12 5.2 Results with Rim2/Hipa and ISSR markers 12 5.3 Database of markers 14 5.4 Development of INDEL markers for variety testing 16 5.5 Quantitative analysis 16 5.6 Problems encountered when adapting the tests for the Agilent Bioanalyzer 17 6. Acknowledgements 17 7. References 18 Appendices 20 Page 2 of 27 1. Executive Summary Aromatic basmati rice is sold at a premium price on the world market.
    [Show full text]
  • Genetic and Molecular Analysis of Utility of Sd1 Alleles in Rice Breeding
    Breeding Science 57 : 53–58 (2007) Genetic and Molecular Analysis of Utility of sd1 Alleles in Rice Breeding Kenji Asano1), Tomonori Takashi2), Kotaro Miura1), Qian Qian3), Hidemi Kitano1), Makoto Matsuoka1) and Motoyuki Ashikari*1) 1) Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan 2) Honda Research Institute Japan Co., Ltd., 2-1-4 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan 3) China National Rice Research Institute, Hangzhou, Zhejiang 310006, China The widespread adoption of the high-yielding semi-dwarf rice variety, IR8, led to the “green revolution” in Asia in the 1960s. The short stature of this variety is due to a loss-of-function of the SD1 gene that encodes a GA20 oxidase-2 (GA20ox-2) which catalyzes late steps of gibberellin biosynthesis. In this study, we inves- tigated how widely sd1 mutations have been employed in the generation of semi-dwarf varieties of rice. Ge- netic and molecular analyses revealed that the sd1 allele of IR8 has been used in the production of japonica varieties. Sequence analysis of the SD1 locus of 57 semi-dwarf varieties showed that at least 7 sd1 alleles have been used in the breeding of semi-dwarf rice varieties in China, USA and Japan. The utilization of such a high number of different alleles all controlling the same target trait highlights that mutations in GA20ox-2 induce an agronomically advantageous architecture in rice. Key Words: rice, semi-dwarf, sd1, IR8. Introduction (IRRI), contributed to the green revolution in Asia. IR8 was bred by crossing between a Taiwanese native semi-dwarf In the 1960s, the rapid expansion of the world popula- variety, Dee-geo-woo-gen (DGWG), which carries the semi- tion and dramatic decrease in cultivated lands raised concern dwarf 1 (sd1) gene, and an Indonesian good-taste variety, that food production would not meet the growing demand, Peta (Hargrove and Cabanilla 1979, Dalrymple 1986).
    [Show full text]