Geometrical Optics

Total Page:16

File Type:pdf, Size:1020Kb

Geometrical Optics Electromagnetic scattering Graduate Course Electrical Engineering (Communications) 1st Semester, 1388-1389 Sharif University of Technology Contents of lecture 9 � High frequency approximations: • Physical optics • Geometrical optics � Maxwell equations at high frequencies � Eikonal equation and rays � Reflection of rays from conductive surfaces Geometrical optics 2 Introduction � We have, so far, approached the problem of scattering by • Exactly solution (cylinders, spheres, wedges,…) • Integral equation method (surface and volume formulations) � If objects cannot be treated by exact methods, we have to resort to numerical solution of integral equations k � This is OK if the object is not much i larger than the wavelength, otherwise the number of variables will be huge! Geometrical optics 3 Introduction � For such large objects, the of integral equations is impossible, given the limitations of today’s computers � The usual way to handle these cases is to use approximations (asymptotic solutions) Geometrical optics 4 Physical optics � Consider the simple problem of wave reflection by a flat perfect conductor. As in case of scattering by layered objects, one can distinguish a TEz and a TMz case. � Rotate the coordinate system such that z is along the surface ˆ normal n ˆ and y is along nˆ � k i nˆ kˆ ˆ ˆ ˆ ˆ ˆ kˆ r kr� k i �2� k i � n� n i Geometrical optics 5 Physical optics � In this system: TEz Incident wave Ei ( r )� yˆE0 exp � � j ki � r � Reflected wave Er ( r )� � yˆE0 exp � � j kr � r � z i�k�k i,, x, 0, k i z � �k, 0, �k k nˆ r� i,, x i z � kˆ ˆ r k i x Geometrical optics 6 Physical optics � Magnetic field 1 ˆ H( r )� k � yˆE exp � � jk � r � Incident wave i� i 0 i 1 H( r )� � kˆ � yˆE exp � � jk� r � Reflected wave r� r 0 r z H nˆ i kˆ ˆ r k i x H r Geometrical optics 7 Physical optics � On the surface of the conductor: nˆ� H � n ˆ � H � H � i r � Hi �2nˆ � H i H r � The same can be shown for the TM case Hi ( r )� yˆH0 exp � � j ki � r � nˆ� H � n ˆ �� Hi � H r � Hr ( r )� yˆH0 exp � � j kr � r � �2nˆ � H i Geometrical optics 8 Physical optics � In both cases the surface current density is given by Js � nˆ � H �2 n ˆ � H i 1 H( r )� kˆ � yˆE exp � � jk � r � i� i 0 i 1 �kˆ � nˆ � k ˆ Eexp � � j k � r � z � i� i � 0 i nˆ kˆ ˆ r k i x Geometrical optics 9 Physical optics � Now consider a perfect conductor with an arbitrary shape � The incident wave induced surface currents on such objects, which generate the scattering field ˆ F rˆ�expjk r ˆ � r�J ( r � ) dS � Js � n � H � � �� � � s S exp �� jkr � Ef () r �jk� rˆ � � r ˆ� F� r ˆ � � 4� r � � jkexp �� jkr � Hf () r � �rˆ � F� r ˆ � 4� r Geometrical optics 10 Physical optics � Physics optics approximation: if the curvature of the surface of the perfect conductor is much larger than wavelength then surface locally approximated by a flat tangential surface � Current on the surface approximated by J s � 0 �2nˆ � Hi in the illuminated region Js � � � 0 in the shadow region nˆ Js�2 nˆ � H i F rˆ�expjk r ˆ � r�J ( r � ) dS � � � � � � s Sill Geometrical optics 11 Physical optics 1 H� Hexp� �j k � r � , H �kˆ � E i i,0 i i,0� i i ,0 � � F rˆ �2 exp �j k �k � r� � nˆ () r � dS � � H � �� � � � s i � � � i,0 � Sill � J s � 0 � Physics optics can also be generalized to include diffraction effects. For this we need to compute additional surface Sill currents at the edges of rapidly Js�2 nˆ � H i varying surfaces Geometrical optics 12 ��������������������������������������������������������������������������� ��������������������������������������������������������������������������������� �����������������������������������������������������.
Recommended publications
  • PHYSICS 4420 Physical Optics Fall 2017 Lecture Section 001, Physics Room 311, MWF 11:00–11:50 A.M
    PHYSICS 4420 Physical Optics Fall 2017 Lecture Section 001, Physics Room 311, MWF 11:00–11:50 a.m. Recitation Sections 201, Physics Room 311, W 1–1:50 p.m. Professor: Bibhudutta Rout Rout’s Office: Physics Bldg., Room 007 Telephone: (940) 369-8127 E-mail: [email protected] Office Hours: M 9:30a.m.–10:30 a.m., and by appointment Prerequisite: PHYS 2220 Text: Principles of Physical Optics, by C.A. Bennett, Wiley 2008, ISBN 10 0-470-12212-9. A useful reference is Optics, 4th Edition, by Eugene Hecht, Pearson 2002, ISBN 0-8053-8566-5. Exams: There will be two in-class exams during the semester, and a comprehensive final exam. Exam questions will be based on material covered in the lecture, contained in the text, and in the homework assignments. There will be no makeup exams. Homework: Homework sets will be assigned and collected each week. You may collaborate on the homework, but the solutions you hand in must represent your own intellectual effort. You must present complete explanations to receive full credit. Participation: Part of your grade will be based on your participation in recitation, in which problem solutions will be discussed and students will be expected to contribute. You will also be required to give a 10 minute talk in recitation on an approved topic of interest to you related to optics and not covered in class. Grade: The grading in the course will be based on the total points earned from exams and homework as follows: Exams 20 points for each of the two in-class exams 30 points for the final Homework 20 points Participation/Attendance 10 points Total 100 points Note: This document is for informational purposes only and is subject to change upon notification.
    [Show full text]
  • Scattering Characteristics of Simplified Cylindrical Invisibility Cloaks
    Scattering characteristics of simplified cylindrical invisibility cloaks Min Yan, Zhichao Ruan, Min Qiu Department of Microelectronics and Applied Physics, Royal Institute of Technology, Electrum 229, 16440 Kista, Sweden [email protected] (M.Q.) Abstract: The previously reported simplified cylindrical linear cloak is improved so that the cloak’s outer surface is impedance-matched to free space. The scattering characteristics of the improved linear cloak is compared to the previous counterpart as well as the recently proposed simplified quadratic cloak derived from quadratic coordinate transforma- tion. Significant improvement in invisibility performance is noticed for the improved linear cloak with respect to the previously proposed linear one. The improved linear cloak and the simplified quadratic cloak have comparable invisibility performances, except that the latter however has to fulfill a minimum shell thickness requirement (i.e. outer radius must be larger than twice of inner radius). When a thin cloak shell is desired, the improved linear cloak is much more superior than the other two versions of simplified cloaks. ©2007 OpticalSocietyofAmerica OCIS codes: (290.5839) Scattering, invisibility; (260.0260) Physical optics; (999.9999) Invis- ibility cloak. References and links 1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). 2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). 3. A. Al`u, and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016,623 (2005). 4. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113,903 (2007).
    [Show full text]
  • Descartes' Optics
    Descartes’ Optics Jeffrey K. McDonough Descartes’ work on optics spanned his entire career and represents a fascinating area of inquiry. His interest in the study of light is already on display in an intriguing study of refraction from his early notebook, known as the Cogitationes privatae, dating from 1619 to 1621 (AT X 242-3). Optics figures centrally in Descartes’ The World, or Treatise on Light, written between 1629 and 1633, as well as, of course, in his Dioptrics published in 1637. It also, however, plays important roles in the three essays published together with the Dioptrics, namely, the Discourse on Method, the Geometry, and the Meteorology, and many of Descartes’ conclusions concerning light from these earlier works persist with little substantive modification into the Principles of Philosophy published in 1644. In what follows, we will look in a brief and general way at Descartes’ understanding of light, his derivations of the two central laws of geometrical optics, and a sampling of the optical phenomena he sought to explain. We will conclude by noting a few of the many ways in which Descartes’ efforts in optics prompted – both through agreement and dissent – further developments in the history of optics. Descartes was a famously systematic philosopher and his thinking about optics is deeply enmeshed with his more general mechanistic physics and cosmology. In the sixth chapter of The Treatise on Light, he asks his readers to imagine a new world “very easy to know, but nevertheless similar to ours” consisting of an indefinite space filled everywhere with “real, perfectly solid” matter, divisible “into as many parts and shapes as we can imagine” (AT XI ix; G 21, fn 40) (AT XI 33-34; G 22-23).
    [Show full text]
  • CHAPTER 1 PHYSICAL OPTICS: INTERFERENCE • Introduction
    CHAPTER 1 PHYSICAL OPTICS: INTERFERENCE What is “physical optics”? • Introduction The methods of physical optics are used when the • Waves wavelength of light and dimensions of the system are of • Principle of superposition a comparable order of magnitude, when the simple ray • Wave packets approximation of geometric optics is not valid. So, it is • Phasors • Interference intermediate between geometric optics, which ignores • Reflection of waves wave effects, and full wave electromagnetism, which is a precise theory. • Young’s double-slit experiment • Interference in thin films and air gaps In General Physics II you studied some aspects of geometrical optics. Geometrical optics rests on the assumption that light propagates along straight lines and is reflected and refracted according to definite laws, such Or the use of a convex lens as a magnifying lens: as Fermat’s principle and Snell’s Law. As a result the positions of images in mirrors and through lenses, etc. can be determined by scaled drawings. For example, the s ! s production of an image in a concave mirror. s Object object y Image • F • C f f y ! image 2 s ! 1 But many optical phenomena cannot be adequately The colors you see in a soap bubble are also due to an explained by geometrical optics. For example, the interference effect between light rays reflected from the iridescence that makes the colors of a hummingbird so front and back surfaces of the thin film of soap making brilliant are not due to pigment but to an interference the bubble. The color depends on the thickness of film, effect caused by structures in the feathers.
    [Show full text]
  • Rays, Waves, and Scattering: Topics in Classical Mathematical Physics
    chapter1 February 28, 2017 © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Chapter One Introduction Probably no mathematical structure is richer, in terms of the variety of physical situations to which it can be applied, than the equations and techniques that constitute wave theory. Eigenvalues and eigenfunctions, Hilbert spaces and abstract quantum mechanics, numerical Fourier analysis, the wave equations of Helmholtz (optics, sound, radio), Schrödinger (electrons in matter) ... variational methods, scattering theory, asymptotic evaluation of integrals (ship waves, tidal waves, radio waves around the earth, diffraction of light)—examples such as these jostle together to prove the proposition. M. V. Berry [1] There is a theory which states that if ever anyone discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable. There is another theory which states that this has already happened. Douglas Adams [155] Douglas Adams’s famous Hitchhiker trilogy consists of five books; coincidentally this book addresses the three topics of rays, waves, and scattering in five parts: (i) Rays, (ii) Waves, (iii) Classical Scattering, (iv) Semiclassical Scattering, and (v) Special Topics in Scattering Theory (followed by six appendices, some of which deal with more specialized topics). I have tried to present a coherent account of each of these topics by separating them insofar as it is possible, but in a very real sense they are inseparable. We are in effect viewing each phenomenon (e.g.
    [Show full text]
  • Ophthalmic Optics
    Handbook of Ophthalmic Optics Published by Carl Zeiss, 7082 Oberkochen, Germany. Revised by Dr. Helmut Goersch ZEISS Germany All rights observed. Achrostigmat®, Axiophot®, Carl Zeiss T*®, Clarlet®, Clarlet The publication may be repro• Aphal®, Clarlet Bifokal®, Clarlet ET®, Clarlet rose®, Clarlux®, duced provided the source is Diavari ®, Distagon®, Duopal ®, Eldi ®, Elta®, Filter ET®, stated and the permission of Glaukar®, GradalHS®, Hypal®, Neofluar®, OPMI®, the copyright holder ob• Plan-Neojluar®, Polatest ®, Proxar ®, Punktal ®, PunktalSL®, tained. Super ET®, Tital®, Ultrafluar®, Umbral®, Umbramatic®, Umbra-Punktal®, Uropal®, Visulas YAG® are registered trademarks of the Carl-Zeiss-Stiftung ® Carl Zeiss CR 39 ® is a registered trademark of PPG corporation. 7082 Oberkochen Optyl ® is a registered trademark of Optyl corporation. Germany Rodavist ® is a registered trademark of Rodenstock corporation 2nd edition 1991 Visutest® is a registered trademark of Moller-Wedel corpora• tion Reproduction and type• setting: SCS Schwarz Satz & Bild digital 7022 L.-Echterdingen Printing and production: C. Maurer, Druck und Verlag 7340 Geislingen (Steige) Printed in Germany HANDBOOK OF OPHTHALMIC OPTICS: Preface 3 Preface A decade has passed since the appearance of the second edition of the "Handbook of Ophthalmic Optics"; a decade which has seen many innovations not only in the field of ophthalmic optics and instrumentation, but also in standardization and the crea• tion of new terms. This made a complete revision of the hand• book necessary. The increasing importance of the contact lens in ophthalmic optics has led to the inclusion of a new chapter on Contact Optics. The information given in this chapter provides a useful aid for the practical work of the ophthalmic optician and the ophthalmologist.
    [Show full text]
  • Studying Charged Particle Optics: an Undergraduate Course
    IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 29 (2008) 251–256 doi:10.1088/0143-0807/29/2/007 Studying charged particle optics: an undergraduate course V Ovalle1,DROtomar1,JMPereira2,NFerreira1, RRPinho3 and A C F Santos2,4 1 Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n◦. Gragoata,´ Niteroi,´ 24210-346 Rio de Janeiro, Brazil 2 Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, Brazil 3 Departamento de F´ısica–ICE, Universidade Federal de Juiz de Fora, Campus Universitario,´ 36036-900, Juiz de Fora, MG, Brazil E-mail: [email protected] (A C F Santos) Received 23 August 2007, in final form 12 December 2007 Published 17 January 2008 Online at stacks.iop.org/EJP/29/251 Abstract This paper describes some computer-based activities to bring the study of charged particle optics to undergraduate students, to be performed as a part of a one-semester accelerator-based experimental course. The computational simulations were carried out using the commercially available SIMION program. The performance parameters, such as the focal length and P–Q curves are obtained. The three-electrode einzel lens is exemplified here as a study case. Introduction For many decades, physicists have been employing charged particle beams in order to investigate elementary processes in nuclear, atomic and particle physics using accelerators. In addition, many areas such as biology, chemistry, engineering, medicine, etc, have benefited from using beams of ions or electrons so that their phenomenological aspects can be understood. Among all its applications, electron microscopy may be one of the most important practical applications of lenses for charged particles.
    [Show full text]
  • Geodesic Conformal Transformation Optics: Manipulating Light With
    Geodesic conformal transformation optics: manipulating light with continuous refractive index profile Lin Xu1 , Tomáš Tyc 2 and Huanyang Chen1* 1 Institute of Electromagnetics and Acoustics and Department of Electronic Science, Xiamen University Xiamen 361005, China 2Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic Conformal transformation optics provides a simple scheme for manipulating light rays with inhomogeneous isotropic dielectrics. However, there is usually discontinuity for refractive index profile at branch cuts of different virtual Riemann sheets, hence compromising the functionalities. To deal with that, we present a special method for conformal transformation optics based on the concept of geodesic lens. The requirement is a continuous refractive index profile of dielectrics, which shows almost perfect performance of designed devices. We demonstrate such a proposal by achieving conformal transparency and reflection. We can further achieve conformal invisible cloaks by two techniques with perfect electromagnetic conductors. The geodesic concept may also find applications in other waves that obey the Helmholtz equation in two dimensions. Introduction.-Based on covariance of Maxwell’s equations and multi-linear constitutive equations, optical property of virtual space and physical space could be connected by a coordinate mapping [1]. In 2006, Leonhardt [2] presented that a conformal coordinate mapping between two complex planes could be performed for scalar field of refractive index of dielectrics such that light rays could be manipulated freely. Coincidentally, Pendry et al [3] provided a general method for controlling electromagnetic field in space of three dimensions. These two seminal papers launched a new research field named transformation optics (TO) [4-7], which originally mainly focused on optical invisibility.
    [Show full text]
  • The Physical Optics Approximation and the Modified Equivalent Current Approximation (MECA)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional de la Universidad de Oviedo 8 High Frequency Techniques: the Physical Optics Approximation and the Modified Equivalent Current Approximation (MECA) Javier Gutiérrez-Meana, José Á. Martínez-Lorenzo and Fernando Las-Heras University of Oviedo Spain 1. Introduction In most of the electromagnetic problems, the number of unknowns to evaluate the scattered fields grows whenever the size of the antenna, device or scenario increases or the working frequency becomes higher. In this context, the rigorous full-wave methods –e.g. Method of Moments (MoM), Fast Multipole Method (FMM) (Engheta et al., 1992), Finite-Difference Time-Domain (FDTD) (Taflove & Umashankar, 1987) or Finite-Difference Frequency- Domain (FDFD) (Rappaport & McCartin, 1991), Finite Element Method (FEM) (Kempel et al., 1998) – can not tackle the analysis of such problems beyond an upper limit determined by the computational requirements in terms of time and memory. High frequency techniques consist in the asymptotic evaluation of the Maxwell’s equations. As a consequence, they provide good accuracy when dealing with electrically large geometries meanwhile the computational needs diminish with respect to the aforementioned methods. Within the high frequency techniques, the Geometrical Optics (GO) and the Physical Optics (PO) approximation are the most extended methods due to the successful results obtained in various fields such as Radar Cross Section (RCS), design of reflector antennas or radioelectric coverage calculation. Since the Physical Optics approximation is detailed in the following section, the Geometrical Optics is briefly summarised. The main interest in the GO lies in the fact that incident, reflected and transmitted electromagnetic waves are studied based on the conservation of the energy flux along a ray tube between a source and an observation point.
    [Show full text]
  • The Ray Optics Module User's Guide
    Ray Optics Module User’s Guide Ray Optics Module User’s Guide © 1998–2018 COMSOL Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; and 9,454,625. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks. Version: COMSOL 5.4 Contact Information Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information. If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include: • Support Center: www.comsol.com/support • Product Download: www.comsol.com/product-download • Product Updates: www.comsol.com/support/updates • COMSOL Blog: www.comsol.com/blogs • Discussion Forum: www.comsol.com/community • Events: www.comsol.com/events • COMSOL Video Gallery: www.comsol.com/video • Support Knowledge Base: www.comsol.com/support/knowledgebase Part number: CM024201 Contents Chapter 1: Introduction About the Ray Optics Module 8 The Ray Optics Module Physics Interface Guide .
    [Show full text]
  • Geometric Optics 1 7.1 Overview
    Contents III OPTICS ii 7 Geometric Optics 1 7.1 Overview...................................... 1 7.2 Waves in a Homogeneous Medium . 2 7.2.1 Monochromatic, Plane Waves; Dispersion Relation . ........ 2 7.2.2 WavePackets ............................... 4 7.3 Waves in an Inhomogeneous, Time-Varying Medium: The Eikonal Approxi- mationandGeometricOptics . .. .. .. 7 7.3.1 Geometric Optics for a Prototypical Wave Equation . ....... 8 7.3.2 Connection of Geometric Optics to Quantum Theory . ..... 11 7.3.3 GeometricOpticsforaGeneralWave . .. 15 7.3.4 Examples of Geometric-Optics Wave Propagation . ...... 17 7.3.5 Relation to Wave Packets; Breakdown of the Eikonal Approximation andGeometricOptics .......................... 19 7.3.6 Fermat’sPrinciple ............................ 19 7.4 ParaxialOptics .................................. 23 7.4.1 Axisymmetric, Paraxial Systems; Lenses, Mirrors, Telescope, Micro- scopeandOpticalCavity. 25 7.4.2 Converging Magnetic Lens for Charged Particle Beam . ....... 29 7.5 Catastrophe Optics — Multiple Images; Formation of Caustics and their Prop- erties........................................ 31 7.6 T2 Gravitational Lenses; Their Multiple Images and Caustics . ...... 39 7.6.1 T2 Refractive-Index Model of Gravitational Lensing . 39 7.6.2 T2 LensingbyaPointMass . .. .. 40 7.6.3 T2 LensingofaQuasarbyaGalaxy . 42 7.7 Polarization .................................... 46 7.7.1 Polarization Vector and its Geometric-Optics PropagationLaw. 47 7.7.2 T2 GeometricPhase .......................... 48 i Part III OPTICS ii Optics Version 1207.1.K.pdf, 28 October 2012 Prior to the twentieth century’s quantum mechanics and opening of the electromagnetic spectrum observationally, the study of optics was concerned solely with visible light. Reflection and refraction of light were first described by the Greeks and further studied by medieval scholastics such as Roger Bacon (thirteenth century), who explained the rain- bow and used refraction in the design of crude magnifying lenses and spectacles.
    [Show full text]
  • Coulomb's Law Thu January 12, 2017 Ch16
    Matching Objectives from AAMC report Scientific Foundations for Future Week Day Date Reading Content MCAT Content Categories Physicians 4C. Electrostatics:: Charge, conductors, charge conservation 1 Tue January 10, 2017 Ch16 - Electrostatics I 16.1-16.3 Electric Charge/ Coulomb's Law 4C. Electrostatics:: Insulators E1-2c. Use spatial reasoning to interpret multidimensional numerical and visual data (e.g., protein structure or geographic information or electric/magnetic 4C. Electrostatics:: Electric field: field lines Thu January 12, 2017 Ch16 - Electrostatics I 16.4 Electric Field fields). 4C. Electrostatics:: Electric field due to charge distribution E4-3a. Distinguish between ionic interactions, van derWaals interactions, hydrogen bonding, and hydrophobic interactions. Electric Field due to charge 2 Tue January 17, 2017 Ch16 - Electrostatics I 16.5 4C. Electrostatics:: Electric field due to charge distribution distributions Thu January 19, 2017 Ch16 - Electrostatics I 16.6 Gauss' Law 3 Tue January 24, 2017 Ch16 - Electrostatics I 16.7 Gauss' Law 4C. Electrostatics:: Electric field due to charge distribution Thu January 26, 2017 Ch17 - Electrostatics II 17.1-17.3 Electric Potential, Equipotential 4C. Electrostatics:: Potential difference, absolute potential at a location 4C. Circuit Elements:: Capacitance 4C. Circuit Elements:: Parallel plate capacitor Capacitors, Capacitor Combinations 4C. Circuit Elements:: Dielectrics 4 Tue January 31, 2017 Ch17 - Electrostatics II 17.4-17.7 and Dielectrics 4C. Circuit Elements:: Capacitors in series 4C. Circuit Elements:: Capacitors in parallel 4C. Circuit Elements:: Energy of charged capacitor 4C. Circuit Elements:: Current, sign conventions, units E3-2c. Apply understanding of electrical principles to the hazards of electrical Thu February 2, 2017 Ch18 - Moving Charges 18.1-18.3 Current and Resistance 4C.
    [Show full text]