7489 Category: Informational E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proactive Cyberfraud Detection Through Infrastructure Analysis
PROACTIVE CYBERFRAUD DETECTION THROUGH INFRASTRUCTURE ANALYSIS Andrew J. Kalafut Submitted to the faculty of the Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in Computer Science Indiana University July 2010 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements of the degree of Doctor of Philosophy. Doctoral Minaxi Gupta, Ph.D. Committee (Principal Advisor) Steven Myers, Ph.D. Randall Bramley, Ph.D. July 19, 2010 Raquel Hill, Ph.D. ii Copyright c 2010 Andrew J. Kalafut ALL RIGHTS RESERVED iii To my family iv Acknowledgements I would first like to thank my advisor, Minaxi Gupta. Minaxi’s feedback on my research and writing have invariably resulted in improvements. Minaxi has always been supportive, encouraged me to do the best I possibly could, and has provided me many valuable opportunities to gain experience in areas of academic life beyond simply doing research. I would also like to thank the rest of my committee members, Raquel Hill, Steve Myers, and Randall Bramley, for their comments and advice on my research and writing, especially during my dissertation proposal. Much of the work in this dissertation could not have been done without the help of Rob Henderson and the rest of the systems staff. Rob has provided valuable data, and assisted in several other ways which have ensured my experiments have run as smoothly as possible. Several members of the departmental staff have been very helpful in many ways. Specifically, I would like to thank Debbie Canada, Sherry Kay, Ann Oxby, and Lucy Battersby. -
Secure Domain Name System (DNS) Deployment Guide
NIST Special Publication 800-81-2 Secure Domain Name System (DNS) Deployment Guide Ramaswamy Chandramouli Scott Rose C O M P U T E R S E C U R I T Y NIST Special Publication 800-81-2 Secure Domain Name System (DNS) Deployment Guide Ramaswamy Chandramouli Computer Security Division Information Technology Laboratory Scott Rose Advanced Network Technology Division Information Technology Laboratory September 2013 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director Authority This publication has been developed by NIST to further its statutory responsibilities under the Federal Information Security Management Act (FISMA), Public Law (P.L.) 107-347. NIST is responsible for developing information security standards and guidelines, including minimum requirements for Federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate Federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A-130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A-130, Appendix III, Security of Federal Automated Information Resources. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other Federal official. -
Domain Name System - Wikipedia, the Free Encyclopedia
Domain Name System - Wikipedia, the free encyclopedia Create account Log in Article Talk Read Edit View history Domain Name System From Wikipedia, the free encyclopedia Main page The ( ) is a hierarchical Domain Name System DNS Internet protocol suite Contents distributed naming system for computers, services, or Application layer Featured content any resource connected to the Internet or a private DHCP · DHCPv6 · DNS · FTP · HTTP · Current events network. It associates various information with domain IMAP · IRC · LDAP · MGCP · NNTP · BGP · Random article names assigned to each of the participating entities. NTP · POP · RPC · RTP · RTSP · RIP · SIP · Donate to Wikipedia Most prominently, it translates easily memorised domain SMTP · SNMP · SOCKS · SSH · Telnet · TLS/SSL · XMPP · (more) · Interaction names to the numerical IP addresses needed for the Transport layer Help purpose of locating computer services and devices TCP · UDP · DCCP · SCTP · RSVP · (more) · About Wikipedia worldwide. By providing a worldwide, distributed Internet layer Community portal keyword-based redirection service, the Domain Name IP(IPv4 · IPv6 · ·ICMP · ICMPv6 · ECN · System is an essential component of the functionality of Recent changes IGMP · IPsec · (more) · the Internet. Contact Wikipedia Link layer An often-used analogy to explain the Domain Name ARP/InARP · NDP · OSPF · Toolbox System is that it serves as the phone book for the Tunnels(L2TP · ·PPP · Print/export Internet by translating human-friendly computer Media access control(Ethernet · DSL · ISDN · FDDI · ·(more) · hostnames into IP addresses. For example, the domain Languages V T E name www.example.com translates to the addresses · · · Afrikaans 192.0.43.10 (IPv4) and 2001:500:88:200::10 (IPv6). -
SSAC Wildcard Report
Table of Contents Table of Contents ........................................................................................................... i Preface and Acknowledgements .................................................................................. ii Executive Summary..................................................................................................... iv 1.0 Introduction............................................................................................................. 1 2.0 Summary of Events and Issues Raised by the Internet Technical Community 3 2.1 Events of September – October 2003 ................................................................... 3 2.2 VeriSign’s Presentation and Input ........................................................................ 5 2.3 Design Principles and Good Practice in the Internet Technical Community ....... 8 2.4 ICANN, IP Addresses, Domain Names, Wildcards and Error Messages........... 10 2.5 Summary of Technical Issues ............................................................................. 13 2.5.1 Protocol Independence and the Effects on Mail Systems ............................ 14 2.5.2 Site Finder.................................................................................................... 16 2.5.3 Workarounds and Inconsistencies: Implications for End Users.................. 18 2.6 Discussion and Conclusion................................................................................. 20 3.0 Findings and Recommendations......................................................................... -
LIU Udel 0060D 13322.Pdf
UNDERSTANDING AND DETECTING NEWLY EMERGING ATTACK VECTORS IN CYBERCRIMES by Daiping Liu A dissertation defense submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical & Computer Engineering 2018 c 2018 Daiping Liu All Rights Reserved UNDERSTANDING AND DETECTING NEWLY EMERGING ATTACK VECTORS IN CYBERCRIMES by Daiping Liu Approved: Kenneth E. Barner, Ph.D. Chair of the Department of Electrical Engineering Approved: Babatunde A. Ogunnaike, Ph.D. Dean of the College of Engineering Approved: Ann L. Ardis, Ph.D. Senior Vice Provost for Graduate and Professional Education I certify that I have read this dissertation defense and that in my opinion it meets the academic and professional standard required by the University as a dissertation defense for the degree of Doctor of Philosophy. Signed: Haining Wang, Ph.D. Professor in charge of dissertation defense I certify that I have read this dissertation defense and that in my opinion it meets the academic and professional standard required by the University as a dissertation defense for the degree of Doctor of Philosophy. Signed: Chase Cotton, Ph.D. Member of dissertation defense committee I certify that I have read this dissertation defense and that in my opinion it meets the academic and professional standard required by the University as a dissertation defense for the degree of Doctor of Philosophy. Signed: Xiaoming Li, Ph.D. Member of dissertation defense committee I certify that I have read this dissertation defense and that in my opinion it meets the academic and professional standard required by the University as a dissertation defense for the degree of Doctor of Philosophy. -
Towards Automated Detection of Shadowed Domains
Don’t Let One Rotten Apple Spoil the Whole Barrel: Towards Automated Detection of Shadowed Domains Daiping Liu Zhou Li Kun Du University of Delaware ACM Member Tsinghua University [email protected] [email protected] [email protected] Haining Wang Baojun Liu Haixin Duan University of Delaware Tsinghua University Tsinghua University [email protected] [email protected] [email protected] ABSTRACT scammers set up phishing websites on domains resembling well- Domain names have been exploited for illicit online activities for known legitimate ones [38, 75]. In the past, Internet miscreants decades. In the past, miscreants mostly registered new domains mostly registered new domains to launch attacks. To mitigate the for their attacks. However, the domains registered for malicious threats, tremendous efforts [10, 14, 33, 41, 77] have been devoted purposes can be deterred by existing reputation and blacklisting in the last decade to construct reputation and blacklisting systems systems. In response to the arms race, miscreants have recently that can fend off malicious domains before visited by users. Allof adopted a new strategy, called domain shadowing, to build their these endeavors render it less effective to register new domains attack infrastructures. Specifically, instead of registering new do- for attacks. In response, miscreants have moved forward to more mains, miscreants are beginning to compromise legitimate ones sophisticated and stealthy strategies. and spawn malicious subdomains under them. This has rendered In fact, there is a newly emerging class of attacks adopted by almost all existing countermeasures ineffective and fragile because cybercriminals to build their infrastructure for illicit online activi- subdomains inherit the trust of their apex domains, and attackers ties, domain shadowing, where instead of registering new domains, can virtually spawn an infinite number of shadowed domains. -
Domain Name Service
Domain Name Service User Guide Date 2021-04-20 Domain Name Service User Guide Contents Contents 1 Overview....................................................................................................................................1 1.1 What Is DNS?............................................................................................................................................................................1 1.2 Public Zone................................................................................................................................................................................ 2 1.3 Private Zone.............................................................................................................................................................................. 5 1.4 Reverse Resolution.................................................................................................................................................................. 8 1.5 Related Services....................................................................................................................................................................... 8 1.6 Product Concepts.....................................................................................................................................................................9 1.6.1 Domain Name Format and Structure........................................................................................................................... 9 1.6.2 Record Set...............................................................................................................................................................................9 -
Verisign, Inc.'S Response to Report from the Icann Security and Stability Committee Re “Redirection in The
VERISIGN, INC.’S RESPONSE TO REPORT FROM THE ICANN SECURITY AND STABILITY COMMITTEE RE “REDIRECTION IN THE COM AND NET DOMAINS” August 5, 2004 The following is the response of VeriSign, Inc. (“VeriSign”) to the report submitted to the ICANN Board of Directors by ICANN’s Security and Stability Advisory Committee (“SSAC”) entitled “Redirection in the COM and NET Domains” (the “Report”), dated July 9, 2004. The Report sets forth SSAC’s findings and recommendations regarding VeriSign’s implementation, between September 15, 2003 and October 3, 2003, of “Site Finder,” a wildcard response to user queries that included mistyped domain names or domain names that, for technical purposes, were not present in the .com or .net zones. I. EXECUTIVE SUMMARY SSAC is an advisory committee to ICANN whose only chartered purpose is to advise “the ICANN community and Board on matters relating to the security and integrity of the Internet’s naming and address allocation systems.”1 With respect to Site Finder specifically, SSAC was instructed by ICANN to gather and assess quantitative evidence to support the conclusion in SSAC’s preliminary report,2 issued on September 22, 2003, that Site Finder weakened the stability of the Internet.3 The Report contains no evidence that the introduction of Site Finder destabilized the naming (“Domain Name System” or “DNS”) and address allocation system or the Internet. Rather, the Report acknowledges that Site Finder “did not have network- shattering effects”4 and that “RFC 1034 allows for flexibility in the way that DNS can respond to queries for uninstantiated names,”5 including through use of a wildcard that synthesizes a response to user queries for non-existent domain names.