1 Impact Welding and Impulse Shape Calibration of Nickel and Titanium

Total Page:16

File Type:pdf, Size:1020Kb

1 Impact Welding and Impulse Shape Calibration of Nickel and Titanium Impact Welding and Impulse Shape Calibration of Nickel and Titanium Alloys Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Bhuvi Swarna Lalitha Nirudhoddi Graduate Program in Materials Science and Engineering The Ohio State University 2019 Dissertation Committee Dr. Glenn S. Daehn, Advisor Dr. Xun Liu Dr. Stephen R. Niezgoda 1 Copyrighted by Bhuvi Swarna Lalitha Nirudhoddi 2019 2 Abstract High-temperature metallic materials such as nickel-based and titanium alloys are attractive as skin structures for aerospace vehicles. They can allow significant performance improvement and mass reduction in aircraft. However, there are substantial challenges in welding and forming them affordably for service. This project examines the use of impulse-based methods, as enabled by the vaporizing foil actuator method, for the impact welding and precise shaping of alloys Ni - 718, Ni - 625, Ni - 230, and Ti 6242. The mechanical properties and weld microstructure of four similar and Six dissimilar VFA spot welding combinations are presented and analyzed. Microhardness measurements showed the absence of a heat affected zone (HAZ). The dissimilar Ni - Ni joints and Ni - Ti joints exhibited high loads to failure in lap-shear tests and show great potential for applications involving transition joints, repair welding, medical devices, and more. The VFA method is cheap, safe, fast, durable, and marks the advancement in the solid-state joining of dissimilar nickel and titanium systems. Nickel alloys typically exhibit low springback during quasi-static forming processes. However, the large amounts of strain hardening that occurs during these operations often requires a second annealing stress relief operation. Titanium alloys are commonly known to exhibit high springback levels due to the high strength to stiffness ratios of titanium alloys. Sheet metals components are usually shaped by hot or ii superplastic forming. This process is expensive and has long lead-times. This work examines an athermal process to relax or remove the residual stresses and elastic strains in sheet metals. All the materials explored, especially titanium showed significant improvements in shape conformance when processed through the VFA method. Recent shock-based calibration studies have provided some insight into the previously unconfirmed mechanism of springback relief. The driving hypothesis for this physical phenomenon is that modest shock waves plastically relieve elastic residual stresses and result in target shape conformance. To better understand this mechanism, VFA based shock processing experiments were used to change the curvature of pre- strained materials to a fully flat shape. It is speculated that the change in shape is a consequence of elastic stress relief caused by the propagation of planar shockwaves. A mechanics and shock physics based theory for shockwave interaction with residual stresses in a pre-strained sample is proposed. The possible pressures involved in this process were calculated from shock breakout velocity profiles captured by a photon doppler velocimetry system. The preliminary pressures are estimated to have satisfied the plastic yield criterion for this loading condition. iii Dedication This dissertation is dedicated to Lord Sri Krishna, my beloved grandparents, parents, sister, brother-in-law, and nephew. I am eternally grateful for their boundless love, encouragement, and sacrifice. Sarvam Sri Krishnarpanam Astu iv Acknowledgments I would like to thank my advisor, Dr. Glenn Daehn, for his kindness, guidance, and generosity throughout my graduate career at Ohio State. I am very grateful for his patient explanations of complex phenomena and his undiminishing belief in my capabilities of understanding them. My family and I are forever in debt to his generosity and encouragement. I am thankful for the mentorship of Dr. Anupam Vivek and Geoff Taber through my time at the Impulse Manufacturing Lab (IML). Their knowledge, expertise, and perspective knows no bounds and has been instrumental in pushing me to think beyond the confines of the known. I would also like to thank my committee members Dr. Stephen Niezgoda and Dr. Xun Liu for the support, patience, and expertise offered through this process. I am very grateful to my past and present IML colleagues, particularly Brian Ufferman, Angshuman Kapil, and Yu Mao. They have been crucial to my journey of navigating the world of materials science. I would also like to acknowledge Dr. Steve Hansen for his detailed analysis and meticulous documentation of capturing shockwave breakouts. His efforts provided the groundwork for moving the technique forward. The microscopy and characterization analysis presented in this work would not have been v possible without the help of Jianxiong Li, Taylor Dittrich, Claire Cary, Keely Shorter, Chris Wagner, and Wayne Papageorge. My dreams of pursuing a higher education would not have been possible without the compassion of Dr. Tom Shih from Purdue University, who told me to always look for the opportunity in defeat. In these past ten years, I have been fortunate enough to find great friendship, support, and community, no matter where I lived in the US. I am especially grateful to Dhruv Garg, Vindhya Tumati, Kevin Vuong, Marlina Triesjayanti, Jing-Wei Lee, my fellow WEGC sisters, and the kind devotees of ISKCON Columbus for their encouragement and kinship throughout my time here. Finally, I would like to thank my family. It is impossible to put into words the amount of love and gratitude I feel towards them. No matter how many oceans and continents have parted us, I have always felt their love and support. It has been a blessing and a privilege to have been born to such humble parents and to have grown up with such an amazing sister. Thank you for believing in the little girl who dreamt of voyaging the cosmos. vi Vita 2013 B.Sc., Aeronautical and Purdue University Astronautical Engineering 2018 M.Sc., Materials Science and The Ohio State University Engineering 2015 - present Graduate Research Associate Department of Materials Science and Engineering, The Ohio State University Publications B. P. Thurston, A. Vivek, B. S. L. Nirudhoddi, and G. S. Daehn, “Vaporizing foil actuator welding,” MRS Bulletin, vol. 44, no. 8, pp. 637–642, 2019. P. Stechmann, David & Lim, Dasheng & Rotella, Saverio & Menon, Shankar & Nirudhoddi, Bhuvi. (2014). Design and Analysis of a High-Performance Hydrogen Peroxide Thrust Chamber Assembly. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014. 10.2514/6.2014-3500. Fields of Study Major Field: Materials Science and Engineering vii Table of Contents Abstract ............................................................................................................................... ii Dedication .......................................................................................................................... iv Acknowledgments............................................................................................................... v Vita .................................................................................................................................... vii List of Tables ...................................................................................................................... x List of Figures .................................................................................................................... xi Chapter 1. Introduction ....................................................................................................... 1 Chapter 2. Impact Welding of Nickel and Titanium Alloys .............................................. 5 2.1 Background and Motivation ..................................................................................... 5 2.2 Literature Review...................................................................................................... 7 Similar Welding .......................................................................................................... 7 Dissimilar Welding ................................................................................................... 17 2.3 Materials and Methods ............................................................................................ 22 Materials ................................................................................................................... 22 Experimental Methods .............................................................................................. 24 Mechanical Testing and Characterization ................................................................. 31 2.4 Results and Discussion ........................................................................................... 37 Similar Patch Welds .................................................................................................. 39 Dissimilar Spot Welds: Nickel – Nickel ................................................................... 53 Dissimilar Spot Welds: Nickel – Titanium ............................................................... 62 2.5 Summary and Conclusions ..................................................................................... 77 Chapter 3. Impulse Based Shape Calibration using the Vaporizing Foil Actuator Method ........................................................................................................................................... 83
Recommended publications
  • 2000 December
    m / wont settle rot J because they're They know the WeMcraft rim-he on a TIG Torch means local distributor support no matter where you are2 Sure, you can save a few bucks with something less - but when it counts wouldn't you feel better knowing a Weldcraft distributor is ~ nearby and ready to help? Weldcrafi TIG Torches, because every weld you make counts. Call today for your ! % FREE copy of o Weldcrafi's new d t % Mini-Catalog I~ and find ~2~ ....... J f ~,q~ out how easy it is to get dm~ 1~ k the support the smart J mone,~, counts on in your l~ands. WELDC'RAFr A division of DovaTech, Ltd. 4~9 West Coming Road Beecher, Illinois 60401-0667 800.924.8575 ~wvdovatech.com Circle No. 4 on Reader Info-Card A ~ INDUSTRIESCOMPANY THE BEST FLAW DETECTOR JUST GOT BETTER Using the latest advances in technology, Panametrics has engineered a very powerful digital ultrasonic flaw detector- the fourth generation - EPOCH 4. The EPOCH 4 provides the ultimate combination of unsurpassed ultrasonic performance, simplicity of operation, and scope of documentation capabilities. New key features include customizable narrowband filtering, a tunable square wave pulser, and a high PRF rate up to lkHz. Its light weight of 5.4 Ibs (2.4 Kg)including a high-power NiMH battery, new large high resolution Liquid Crystal Display (LCD) or Electroluminescent Display (ELD), and ease of transducer calibration are unmatched by any other portable flaw detector. • Customizable narrowband filtering • Selectable, tunable square wave pulser or spike excitation pulser • Selectable PRF from 30Hzto optional lkHz • VGA output for large screen viewing • High-power NiMH battery • Large, bright, high resolution ELD or LCD with full/split screens • Easy, automated transducer calibration • Extensive alphanumeric datalogger with editing capability • Extensive memory capacity to 360 wave- forms/12,000 thickness/400,000 B-Scan readings • Expandable memory to 720 waveforms/24,000 thickness readings • Lighter, more ergonomical design (5.4 Ibs/2.4 Kg) • lime-of-flight measurement in microseconds Circle No.
    [Show full text]
  • Jet Composition in Magnetic Pulse Welding: Al-Al and Al-Mg Couples
    Stern Supplement Aug2014112_Layout 1 7/14/15 2:31 PM Page 257 WELDING RESEARCH Jet Composition in Magnetic Pulse Welding: Al-Al and Al-Mg Couples MPW jet phenomena were investigated and jet material composition for similar Al alloys and two samples of dissimilar Al-Mg alloy couples were observed BY A. STERN, O. BECHER, M. NAHMANY, D. ASHKENAZI, AND V. SHRIBMAN the maximum magnetic pressure. The ABSTRACT acceleration of the outer tube through the standoff gap is higher near the open Magnetic pulse welding (MPW) produces a mechanically induced essentially solid end of the tube due to higher magnetic state but partially fusion-type weld, with an extremely small fusion zone and pressure and decreases down to zero at extremely high cooling rates. Composition of material jet emission in MPW was inves- the weld end where there is no move- tigated for similar and dissimilar metal lap joints. The jet residues emitted from Al/Al ment of the outer tube (Refs. 6–8). As a and Al/Mg lap joints were collected and characterized, and their composition was mi- croanalyzed by scanning electron microscopy with energy-dispersive spectometry result, the collision is oblique and the (SEM-EDS). The composition of the jet remains was governed by the degree of rela- initial part of the joint collides at a high tive density difference between the two metal components. The metal jet emitted collision angle and at very high collision during Al/Mg welding was mainly composed of Mg, the metal component with lower velocity; frequently, no bond is formed density.
    [Show full text]
  • Solid State Welding
    EAA Aluminium Automotive Manual – Joining 7. Solid state welding Content: 7. Solid state welding 7.0 Introduction 7.1 Friction welding 7.1.1 Friction welding of components 7.1.1.1 Rotational friction welding 7.1.1.2 Linear friction welding 7.1.1.3 Orbital and multi-orbital friction welding 7.1.2 Linear friction stir welding 7.1.2.1 The linear friction stir welding process 7.1.2.2 Application of linear friction stir welding 7.1.2.3 Variants of the linear friction stir welding technique 7.1.3 Friction stir spot welding 7.1.3.1 The friction stir spot welding technique 7.1.3.2 Further developments of the friction stir spot welding technique 7.1.4 Friction stud welding 7.1.5 Friction element welding 7.2 Pressure welding processes 7.2.1 Contact and cold pressure welding 7.2.2 Diffusion and hot pressure welding 7.2.3 Explosion welding 7.2.4 Electromagnetic pulse welding 7.2.5 Roll bonding 7.2.6 Co-extrusion welding 7.3 Ultrasonic welding Version 2015 ©European Aluminium Association ([email protected]) 1 7.0 Introduction Solid-state welding describes a group of joining techniques which produces coalescence at temperatures below the melting point of the parent materials without the addition of third material. External pressure and relative movement may or may not be used to enhance the joining process. This group of joining techniques includes e.g. friction (stir) welding, cold pressure welding, diffusion welding, explosion welding, electromagnetic pulse welding, , and ultrasonic welding.
    [Show full text]
  • LASER CLBDING by JOHN POWELL BISC. M,Sc1 a Thesis
    LASER CLBDING BY JOHN POWELL BISC. M,Sc1 A ThESIS PRESENTED FOR ThE DEGREE OF DOCTOR OF PHILOSOPHY OF ThE UNIVERSITY OF LONDON. J. PERCY RESEARCH GROuP DEPT. OF £tTALLURGY IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY LONDON SW7. 1983. CONTENTS PAGE ABSTRACT 1 CHTPER 1 AIMS AND O3JDIVES OF ThIS WORK 2 1.1 Introduction 2 1 .2 Methods of laser cladding 2 1.3 Aims and objectives 3 CHAPTER 2 LiTurr.wE suiv 5 2.1 Introduction 5 2.2 Carbon dioxide lasers and their interactions with materials 5 2.2.1± The physics of Co2 lasers 5 2.2.1.1 General 5 2.2.1.2 Stimulated emission and population inversion 6 2.2.1.. The role of N2 and He in a Co2 laser S 2.2.1.4 Laser optics and their effect on the stimulated emission of the arc 10 2.2.1.5 Pulsed Co2 lasers 10 2.2.2 Fundamentals of laser-solid interactions 11 2.2.3 Types of Co2 lasers 13 2.3 Laser applications 15 2.3.1 Laser surface treatments 15 2.3.2 Laser cladding and closely associated techniques 15 2.3.2.1 Laser cladding 15 2.3.2.2 Laser surface alloying 28 2.3.2.3 The consolidation of sprayed coatings by laser re melting 31 2.3.2.3.1 Introduction 31 2.3.2.3.2 Laser consolidation of plasma sprayed coatings 32 2.3.2.3.2.1 General 2 .3.2. 3. 2 .2 The effect of retained gasses 32 2.3.2.3.2.3 Thermal stress effects 33 2.
    [Show full text]
  • Vibration Stress Relief at Its Best- One Patented Technology
    Vibration Stress Relief at Its Best- Meta-Lax® Technology is the "World's Most Successful" Vibration stress relief and weld conditioning process based on Effectiveness AND Consistency One Patented Technology - Three Great Products Save Time, Save Money, Improve Quality Meta-Lax® Technology - A Proven Alternative Stress Relief Process Meta-Lax: 1. A patented process by Bonal peak (hence “sub-harmonic”). When we applied Technologies that relieves thermal stress within sub-harmonic energy we witnessed that the metal metal components by using nondestructive sub- responded extremely well, achieving excellent harmonic vibrations. 2. Metal relaxation. distortion control consistently. The Meta-Lax sub-harmonic vibratory stress relief In developing the Meta-Lax step-by-step process process was developed in a planer-mill machine we also discovered that we could determine when shop owned by Bonal stress relief is complete. This eliminated guessing Technologies, Inc. of and assured consistently effective results. Royal Oak, Michigan, USA. Our planer- The patented Meta-Lax technology is unique in the mills varied in cutting vibratory stress relief industry in that Meta-Lax is the surface up to 36-ft in ONLY vsr process that can produce “consistently” length. This gave us effective results. It also is the only vsr process that firsthand experience uses sub-harmonic energy, certifies when stress Improved Quality Over Thermal dealing with the effects relief is complete, and is used during welding for Stress Relief. of stress on metal and beneficial gain. Northrop -Grumman ability to determine what works and what Patented Meta-Lax Technology is based on does not work for stress relief.
    [Show full text]
  • Vibratory Stress Relief Equipment
    “FORMULA 62” Vibratory Stress Relief Equipment "FORMULA 62" Vibratory Stress Relief Equipment offers a number of advantages RESIDUAL STRESSES DEFINED over the older thermal stress relieving One of the major problems encountered in the metalworking technique: industry is the build up of stresses that cause distortion and loss of dimensional stability. Anyone involved in • metalworking, whether they are a steel fabricator, The equipment is compact and portable, manufacturer of machine tools or mold maker, can experience and can easily be moved to any location problems holding dimensional tolerances in their workpieces. on the production floor for on-the-job stress relieving The technical definition of residual stress is any stress in an elastic body that is free from external force or restraint and • temperature gradients (changes). A common cause of The investment cost is low, as are the residual stress is an incompatibility between adjacent regions operating and maintenance costs of the metal that can distort neighboring regions. • Short process time, ranging from 15 to Stresses cause distortion in metal when they are unequal. 30 minutes per location depending on the Heavy stresses on one side of a piece of metal will cause movement or distortion. If the stresses are the same all weight and configuration of the through the metal, even heavy stresses will not cause component or fabricated structure movement. The higher the imbalance of stresses, the greater the movement. If the imbalance is high enough, the grains • Easy to use with no extensive operator become permanently distorted and the workpiece cannot be instructions required returned to its previous condition by stress relieving.
    [Show full text]
  • FORMULA 62 Resonant Vibration Method for Reducing Residual Stresses in Welded Or Machined Fabrications
    FORMULA 62 Resonant Vibration Method For Reducing Residual Stresses in Welded or Machined Fabrications 1725 Monrovia Avenue, Building A1 • Costa Mesa, Californiawww.stressreliefengr.com 92627 VIBRATION SHAPING THE FUTURE What Are Residual Stresses and Where Do They Come From? For many people involved in the metal- working trades, the subject of stress relief is something they are not well versed in. As a result, stress relief is a subject they would just as soon like to avoid. With a little technical assistance, the average layman can get a basic understanding of residual stresses and how to deal with them. With this knowledge, he will be better prepared to evaluate shop problems and find a |solution that is effective. The following information is designed to answer some of the most frequently asked questions about stress relieving. Residual stresses, by definition, are introduced into the material in one or How Does It Work? those stresses in an elastic body that is free more of the following ways: thermal, from external force or restraint and metallurgical, mechanical and chemical. Low frequency vibrations are used as a carrier temperature gradients. An incompatibility Since these are the processes that make to deliver high amplitude energy to a metal of regions in the metal created by up our metalworking trades, it is only fabrication, or machined part. The non-homogenous plastic deformation is the right to assume that, at some point in heavy vibrations produce a load that is principal cause of these internal stress time, a stress relief treatment may be superimposed on the existing stress patterns systems, whether they are in an required.
    [Show full text]
  • Magnetic Pulse Welding and Spot Welding with Improved Coil Efficiency—Application for Dissimilar Welding of Automotive Metal Alloys
    Journal of Manufacturing and Materials Processing Article Magnetic Pulse Welding and Spot Welding with Improved Coil Efficiency—Application for Dissimilar Welding of Automotive Metal Alloys Chady Khalil, Surendar Marya and Guillaume Racineux * Research Institute in Civil and Mechanical Engineering (GeM, UMR 6183 CNRS), Ecole Centrale de Nantes, 1 rue de la Noë, F-44321 Nantes, France; [email protected] (C.K.); [email protected] (S.M.) * Correspondence: [email protected] Received: 4 June 2020; Accepted: 6 July 2020; Published: 8 July 2020 Abstract: Lightweight structures in the automotive and transportation industry are increasingly researched. Multiple materials with tailored properties are integrated into structures via a large spectrum of joining techniques. Welding is a viable solution in mass scale production in an automotive sector still dominated by steels, although hybrid structures involving other materials like aluminum are becoming increasingly important. The welding of dissimilar metals is difficult if not impossible, due to their differential thermo mechanical properties along with the formation of intermetallic compounds, particularly when fusion welding is envisioned. Solid-state welding, as with magnetic pulse welding, is of particular interest due to its short processing cycles. However, electromagnetic pulse welding is constrained by the selection of processing parameters, particularly the coil design and its life cycle. This paper investigates two inductor designs, a linear (I) and O shape, for the joining of sheet metals involving aluminum and steels. The O shape inductor is found to be more efficient both with magnetic pulse (MPW) and magnetic pulse spot welding (MPSW) and offers a better life cycle.
    [Show full text]
  • Monthly Jurnal 2020 [January]
    IIM METAL NEWS Vol. 23 No. 1 January 2020 C O Obituary 3 N T G D Birla Gold Medal Lecture 2019 Joining of Advanced Materials for E 4 Defence Systems N - G Madhusudhan Reddy T S IIM Chapter Activities 26 Seminars & Conferences 30 Members’ News 30 The IIM Metal News and The Indian Institute of Metals do not accept any responsibility for the statements made and the opinion expressed by the author(s) in the technical articles. Printed and Published by Shri Kushal Saha, Secretary General, on behalf of “The Indian Institute of Metals”, and printed at Print Max, 44, Biplabi Pulindas Street, Kolkata-700009 • Email : [email protected] and published at ‘Metal House’, Plot 13/4, Block AQ, Sector V, Salt Lake, Kolkata-700091, West Bengal, India E-mail: [email protected], [email protected] Phone: 033-2367 9768 / 2367 5004 Website: www.iim-india.net Fax: (033) 2367 5335 Editor : Dr. Santanu Ray Vol.23 No.1 JANUARY 2020 1 IIM METAL NEWS THE INDIAN INSTITUTE OF METALS PATRONS Mr R M Dastur Mr Sajjan Jindal Dr Baba Kalyani Mr Satish Pai ADVISORY COMMITTEE OF FORMER PRESIDENTS Mr R N Parbat Dr Dipankar Banerjee Prof K Chattopadhyay Mr L Pugazhenthy Mr M Narayana Rao Dr R N Patra Dr Sanak Mishra Mr H M Nerurkar Mr S S Mohanty Dr U Kamachi Mudali, Convenor COUNCIL FOR THE YEAR 2019-20 PRESIDENT Dr U Kamachi Mudali VICE PRESIDENT & CHAIRMAN VICE PRESIDENT & CHAIRMAN VICE PRESIDENT & CHAIRMAN Non-Ferrous Division Ferrous Division Metal Science Division Prof Amol A Gokhale Mr T V Narendran Dr Samir V Kamat IMMEDIATE FORMER PRESIDENT Mr Anand Sen SECRETARY GENERAL Mr Kushal Saha HON TREASURER CONTROLLER OF EXAMINATION CHIEF EDITOR, TRANSACTIONS MANAGING EDITOR, IIM METAL NEWS Mr Somnath Guha Prof P K Mitra Prof B S Murty Dr Santanu Ray Jt.
    [Show full text]
  • VOCABULARI DE SOLDADURA Institut Tècnic Català De La Soldadura
    VVOOCCAABBUULLAARRII DDEE SSOOLLDDAADDUURRAA VVOOCCAABBUULLAARRIIOO DDEE SSOOLLDDEEOO WWEELLDDIINNGG VVOOCCAABBUULLAARRYY CCCaaatttaaalllààà CCCaaasssttteeellllllààà AAAnnnggglllèèèsss CCCaaatttaaalllááánnn CCCaaasssttteeellllllaaannnooo IIInnnggglllééésss CCCaaatttaaalllaaannn SSSpppaaannniiissshhh EEEnnngggllliiissshhh 2a Edició VOCABULARI DE SOLDADURA institut tècnic català de la soldadura Rubí, Desembre de 2010 2a Edició www.itcsoldadura.org PRESENTACIÓ L’ITCS, mitjançant aquest recull de més de 3.000 paraules i termes en llengua catalana, castellana* i anglesa* relacionades principalment amb la soldadura i les tecnologies connexes, pretén la difusió del català en el sector del metall i, especialment, entre els professionals de la indústria catalana propers als processos de soldadura. * Els termes recollits tant en llengua castellana com en llengua anglesa responen, majoritàriament, a les equivalències que s’empren a Europa, és a dir, el significat d’aquests termes castellans i anglesos pot ser diferent a Amèrica. 1a Edició: Recull de 2.200 paraules i termes 2a Edició: Recull de 3.500 paraules i termes PRESENTACIÓN El ITCS, a través de esta recopilación de más de 3.000 palabras y términos en lengua catalana, castellana* e inglesa* relacionadas principalmente con la soldadura y las tecnologías conexas, pretende la difusión del catalán en el sector del metal y, especialmente, entre los profesionales de la industria catalana próximos a los procesos de soldadura. * Los términos recogidos tanto en lengua castellana como en lengua inglesa
    [Show full text]
  • Probing Magnetic Pulse Welding of Thin-Walled Tubes
    Journal of Manufacturing and Materials Processing Article Probing Magnetic Pulse Welding of Thin-Walled Tubes Koen Faes 1,* , Rishabh Shotri 2 and Amitava De 2 1 Belgian Welding Institute, Technologiepark Zwijnaarde 935, B-9052 Ghent, Belgium 2 Indian Institute of Technology, Bombay, Mumbai 400076, India; [email protected] (R.S.); [email protected] (A.D.) * Correspondence: [email protected] Received: 29 October 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: Magnetic pulse welding is a solid-state joining technology, based on the use of electromagnetic forces to deform and to weld workpieces. Since no external heat sources are used during the magnetic pulse welding process, it offers important advantages for the joining of dissimilar material combinations. Although magnetic pulse welding has emerged as a novel technique to join metallic tubes, the dimensional consistency of the joint assembly due to the strong impact of the flyer tube onto the target tube and the resulting plastic deformation is a major concern. Often, an internal support inside the target tube is considered as a solution to improve the stiffness of the joint assembly. A detailed investigation of magnetic pulse welding of Cu-DHP flyer tubes and 11SMnPb30 steel target tubes is performed, with and without an internal support inside the target tubes, and using a range of experimental conditions. The influence of the key process conditions on the evolution of the joint between the tubes with progress in time has been determined using experimental investigations and numerical modelling. As the process is extremely fast, real-time monitoring of the process conditions and evolution of important responses such as impact velocity and angle, and collision velocity, which determine the formation of a metallic bond, is impossible.
    [Show full text]
  • Development of Analytical and Experimental Tools for Magnetic Pulse Welding Ethan Hunter Thibaudeau University of New Hampshire, Durham
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2013 Development of analytical and experimental tools for magnetic pulse welding Ethan Hunter Thibaudeau University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Thibaudeau, Ethan Hunter, "Development of analytical and experimental tools for magnetic pulse welding" (2013). Master's Theses and Capstones. 826. https://scholars.unh.edu/thesis/826 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. DEVELOPMENT OF ANALYTICAL AND EXPERIMENTAL TOOLS FOR MAGNETIC PULSE WELDING BY ETHAN HUNTER THIBAUDEAU B.S., University of New Hampshire, 2011 Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Master of Science in Mechanical Engineering September, 2013 UMI Number: 1524460 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Di!ss0?t&iori Piiblist’Mlg UMI 1524460 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC.
    [Show full text]