Handbook of Enumerative Combinatorics 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Graph Algorithms
Graph Algorithms PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Wed, 29 Aug 2012 18:41:05 UTC Contents Articles Introduction 1 Graph theory 1 Glossary of graph theory 8 Undirected graphs 19 Directed graphs 26 Directed acyclic graphs 28 Computer representations of graphs 32 Adjacency list 35 Adjacency matrix 37 Implicit graph 40 Graph exploration and vertex ordering 44 Depth-first search 44 Breadth-first search 49 Lexicographic breadth-first search 52 Iterative deepening depth-first search 54 Topological sorting 57 Application: Dependency graphs 60 Connectivity of undirected graphs 62 Connected components 62 Edge connectivity 64 Vertex connectivity 65 Menger's theorems on edge and vertex connectivity 66 Ear decomposition 67 Algorithms for 2-edge-connected components 70 Algorithms for 2-vertex-connected components 72 Algorithms for 3-vertex-connected components 73 Karger's algorithm for general vertex connectivity 76 Connectivity of directed graphs 82 Strongly connected components 82 Tarjan's strongly connected components algorithm 83 Path-based strong component algorithm 86 Kosaraju's strongly connected components algorithm 87 Application: 2-satisfiability 88 Shortest paths 101 Shortest path problem 101 Dijkstra's algorithm for single-source shortest paths with positive edge lengths 106 Bellman–Ford algorithm for single-source shortest paths allowing negative edge lengths 112 Johnson's algorithm for all-pairs shortest paths in sparse graphs 115 Floyd–Warshall algorithm -
Graph Theory) 15 3.1 Oriented Graphs
Strong orientation From Wikipedia, the free encyclopedia Contents 1 Directed acyclic graph 1 1.1 Mathematical properties ....................................... 2 1.1.1 Reachability, transitive closure, and transitive reduction ................... 2 1.1.2 Topological ordering ..................................... 3 1.1.3 Combinatorial enumeration ................................. 3 1.1.4 Related families of graphs .................................. 3 1.2 Computational problems ....................................... 3 1.2.1 Topological sorting and recognition ............................. 3 1.2.2 Construction from cyclic graphs ............................... 4 1.2.3 Transitive closure and transitive reduction .......................... 4 1.2.4 Closure problem ....................................... 4 1.3 Applications .............................................. 4 1.3.1 Path algorithms ........................................ 4 1.3.2 Scheduling .......................................... 4 1.3.3 Data processing networks .................................. 5 1.3.4 Causal structures ....................................... 5 1.3.5 Genealogy and version history ................................ 5 1.3.6 Data compression ...................................... 6 1.4 References .............................................. 6 1.5 External links ............................................. 8 2 Directed graph 9 2.1 Basic terminology ........................................... 10 2.2 Indegree and outdegree ....................................... -
Polytree from Wikipedia, the Free Encyclopedia Contents
Polytree From Wikipedia, the free encyclopedia Contents 1 Connectivity (graph theory) 1 1.1 Connected graph ............................................ 2 1.2 Definitions of components, cuts and connectivity ........................... 2 1.3 Menger’s theorem ........................................... 3 1.4 Computational aspects ......................................... 4 1.5 Examples ............................................... 4 1.6 Bounds on connectivity ........................................ 4 1.7 Other properties ............................................ 4 1.8 See also ................................................ 5 1.9 References ............................................... 5 2 Cycle (graph theory) 6 2.1 Chordless cycles ............................................ 7 2.2 Cycle space .............................................. 7 2.3 Cycle detection ............................................ 7 2.4 Covering graphs by cycles ....................................... 7 2.5 Graph classes defined by cycles .................................... 8 2.6 References ............................................... 8 3 Directed acyclic graph 9 3.1 Mathematical properties ....................................... 10 3.1.1 Reachability, transitive closure, and transitive reduction ................... 10 3.1.2 Topological ordering ..................................... 11 3.1.3 Combinatorial enumeration ................................. 11 3.1.4 Related families of graphs .................................. 11 3.2 Computational problems -
Introduction to Graph Theory
Introduction to Graph Theory Fourth edition Introduction to Graph Theory Fourth edition Robin J. Wilson Addison Wesley Longman Limited Edinburgh Gate, Harlow, Essex CM20 2JE, England and Associated Companies throughout the world. ©Robin Wilson 1972, 1996 All rights reserved; no part of this publication may be reproduced, stored in any retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without either the prior written permission of the Publishers or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd., 90 Tottenham Court Road, London W1P9HE. First published by Oliver & Boyd, 1972 Second edition published by Longman Group Ltd, 1979 Third edition, 1985 Fourth edition, 1996 Reprinted 1998 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 0-582-24993-7 Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress Set by 8 in 10 on 12pt Times Produced through Longman Malaysia, PP Contents Preface to the fourth edition vii 1 Introduction 1 What is a graph? 1 2 Definitions and examples 2 Definition 8 3 Examples 17 4 Three puzzles 21 3 Paths and cycles 5 Connectivity 26 6 Eulerian graphs 31 7 Hamiltonian graphs 35 8 Some algorithms 38 4 Trees 9 Properties of trees 43 10 Counting trees 47 11 More applications 51 5 Planarity 12 Planar graphs 13 Euler's formula 60 14 Graphs on other surfaces -
Chapter 6 Graph Enumeration
Chapter 6 Graph Enumeration Marc Noy Universitat Politecnica` de Catalunya Barcelona, Spain CONTENTS 6.1 Introduction ::::::::::::::::::::::::::::::::::::::::::::::::::::::: 404 6.2 Graph decompositions ::::::::::::::::::::::::::::::::::::::::::::: 406 6.2.1 Graphs with given connectivity :::::::::::::::::::::::::::: 407 6.2.2 Graphs with given minimum degree :::::::::::::::::::::::: 410 6.2.3 Bipartite graphs ::::::::::::::::::::::::::::::::::::::::::: 411 6.3 Connected graphs with given excess :::::::::::::::::::::::::::::::: 412 6.4 Regular graphs ::::::::::::::::::::::::::::::::::::::::::::::::::::: 415 6.4.1 The pairing model ::::::::::::::::::::::::::::::::::::::::: 415 6.4.2 Differential equations :::::::::::::::::::::::::::::::::::::: 417 6.5 Monotone and hereditary classes ::::::::::::::::::::::::::::::::::: 418 6.5.1 Monotone classes ::::::::::::::::::::::::::::::::::::::::: 418 6.5.2 Hereditary classes ::::::::::::::::::::::::::::::::::::::::: 420 6.6 Planar graphs :::::::::::::::::::::::::::::::::::::::::::::::::::::: 423 6.7 Graphs on surfaces and graph minors ::::::::::::::::::::::::::::::: 426 6.7.1 Graphs on surfaces :::::::::::::::::::::::::::::::::::::::: 426 6.7.2 Graph minors ::::::::::::::::::::::::::::::::::::::::::::: 428 6.7.3 Particular classes :::::::::::::::::::::::::::::::::::::::::: 429 6.8 Digraphs :::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 432 6.8.1 Acyclic digraphs :::::::::::::::::::::::::::::::::::::::::: 433 6.8.2 Strongly connected digraphs ::::::::::::::::::::::::::::::: 434 6.9 Unlabelled