Programme Leaders for the UK Dementia Research Institute Contents

Total Page:16

File Type:pdf, Size:1020Kb

Programme Leaders for the UK Dementia Research Institute Contents Appointment of: Programme leaders for the UK Dementia Research Institute Contents The UK DRI will become a scientific hotbed 3 About the UK Dementia and one of the most exciting places for Research Institute breakthrough innovations, so we need 4 Strategic vision ambitious scientists at all career stages and 6 About the centres a mix of expertise. 8 Programme leader profile - UK DRI Professor Professor Bart De Strooper, UK DRI Director 12 Programme leader profile - UK DRI Fellow 16 How to apply 3 About the UK Dementia Research Institute The UK Dementia Research • accelerate the pace of discovery Council took the reins as leader Institute (UK DRI) is a joint £250 research to identify new targets of the institute in November 2015 million investment into dementia for drug development with a £150 million commitment. research led by the Medical Alzheimer’s Society and Research Council (MRC) alongside • develop new approaches for Alzheimer’s Research UK joined founding charity partners delivering effective clinical trials to as founding partners in early 2016, the Alzheimer’s Society and targeted patient groups contributing an additional £100 Alzheimer’s Research UK. million to the initiative. • attract new partnerships with The UK DRI will deliver a the biopharmaceutical sector step-change in the scientific to develop new therapeutics and Locations understanding of dementia, diagnostics generating new targets for drug With its headquarters at University development, reinvigorating the • develop and promote strategies College, London (UCL), the institute therapeutic pipeline and helping for interventions that prevent the comprised of centres across six to transform care. development or progression of UK universities: the University of dementia Cambridge, Cardiff University, the The new national institute will cover University of Edinburgh, Imperial dementia across the research • provide new insights and College London, King’s College spectrum, spanning Alzheimer’s technology-based approaches to London and UCL. disease, Parkinson’s disease, delivering more effective care and Frontotemporal dementia, vascular support to people with dementia dementia, Huntington’s disease and their carers. From summer 2017, the UK DRI and beyond. is seeking up to 18 programme leaders at the professor and Bringing together over 400 world- Origins fellowship level under a first leading scientists in biomedical, phase of recruitment to develop care and translational dementia The Prime Minister’s Challenge and lead a programme of research, the institute will carry on Dementia 2020 set out a clear research within and out a rich, varied and integrated target for research to deliver the complementing the portfolio of programme of research. The first effective treatments and the UK DRI. The programmes institute will form a vibrant and disease modifying therapies for will need to fit scientifically to the interactive community, centred on dementia by 2025 and called for selected centre, which will be the neuroscience working on around the establishment of a national direct employer 50 five-year research programmes Dementia Research Institute by across the UK in order to: 2020. The Medical Research 4 Strategic vision UK DRI Director Professor Bart UK DRI centres and research the institute, from different fields De Strooper has set an ambitious groups will naturally specialise across biomedical and translational vision for the institute, identifying in certain research areas, but research. Together this diverse the gap in our knowledge of how the institute is designed to be range of expertise will fill and enrich the healthy brain functions and opportunistic and grasp all good knowledge gaps in dementias. what leads to its degeneration. The ideas that could take us further UK DRI will achieve this by focusing in fighting the biggest health At the heart of the UK DRI is on the biological mechanisms challenge of our generation. innovation. A creative ethos will underpinning dementia. run throughout the institute. A Researchers at the UK DRI will significant part of the budget will be embrace novel technologies and Creativity and collaboration used to expand and implement the interdisciplinary approaches in new ideas generated by everyone order to build new knowledge and The UK DRI will help build the working at the UK DRI, taking understanding that will lead to next generation of dementia account of future partnership new treatments. researchers, by attracting new opportunities. researchers into the field and Research will initially focus on providing access to interdisciplinary The institute will also promote developing better models of training and cutting-edge collaborative working, both across disease and translating research resources. The institute will set the institute and also plugging into findings into new diagnostics and a dynamic pace to establish a dementia initiatives across the treatments and, in the longer term, vibrant, ambitious and interactive UK and beyond. The institute is cures. A care research strand will neuroscience community of initially looking to foster strong industry be incorporated as the institute 400 scientists. It will build on the connections so that discoveries develops, as will research seeking strong dementias research base made in the laboratory can lead to develop new approaches that already exists in the UK. to new treatments for people with to prevention. Top talent and rising stars from dementia as swiftly as possible. all over the world will come to Building a strategy for international excellence The director and associate directors are working together to establish the institute’s research priorities. The strategy will be published on Our vision for the institute is to identify the our website later in 2017. gap in our knowledge of how the healthy The first phase of the UK DRI brain functions and what leads to its establishment is focused on basic biomedical research. However, it’s degeneration. important that while the UK DRI looks for new medical treatments Professor Bart De Strooper, UK DRI Director for all dementias, it also ensures that those living with dementias and their carers can lead the fullest lives possible. That’s why research into dementia care will be integrated into the research strategy in 2018. 6 About the UK DRI centres Having centres located across gene expression and biological mechanisms of synapse, the UK allows the UK DRI to bring pathways in single cells related neuron and circuit level researchers together for shared to the progression of Alzheimer’s dysfunction leading to cognitive scientific inspiration, while making disease; new biomarkers to decline; macroglial and microglial the most of local cutting-edge tools monitor disease progression; roles in neuroprotection and and infrastructure. Each centre deficits in axonal transport in early neurodegeneration; the biology of is led by an associate director, neurodegeneration; Wnt signalling cerebrovascular, blood-brain-barrer contributing towards achieving the in synapses to discover new targets and metabolic dysfunction institute’s shared vision. for future dementia therapies. in neurodegenerative disease. The six UK DRI centres are located at: University of Cambridge, Cardiff UK DRI at the University of UK DRI at King’s College University, University of Edinburgh, Edinburgh London Imperial College London, King’s College London and University College, London (UCL), which UK DRI at the University of UK DRI at King’s College London also operates as the Edinburgh will be located on the will be located in the newly built institute’s headquarters. BioQuarter, Edinburgh’s new Maurice Wohl Clinical Neuroscience multidisciplinary research institute Institute on the Denmark Hill and teaching hospital with access Campus which houses the UK DRI at UCL to superb multimodal neuroimaging Nikon Centre of Excellence for and clinical research facilities. Neuroscience Imaging. Research from UK DRI at UCL will cover the journey from the patient The research team lead by Led by Professor Chris Shaw, the to the laboratory and back to the Professor Giles Hardingham will team will focus on the misfolding patient with improved diagnosis, examine the complex interactions and aggregation of the protein TDP- biomarkers and candidate between cells of the brain, immune 43, aiming to uncover fundamental therapies. Led by Professor Bart De system and blood vessels that mechanism common to several Strooper, UK DRI Director, the team make up the ‘neurogliovascular protein misfolding disorders that will address the key unanswered unit’. The team brings together can inform the development of mechanistic questions that link strengths in metabolism, therapies for multiple forms genetic and lifecourse factors to inflammation, blood vessel of dementia. dysfunction in molecular pathways, biology and stem cell medicine in cells and in neural systems to explore how interactions at the Key science areas at UK DRI during the progression of neurogliovascular unit control the at King’s College London dementias. trajectory of neurodegenerative include: Frontotemporal dementia diseases leading to dementia. and amyotrophic lateral sclerosis; UCL is the headquarters of UK DRI. Parkinson’s and Dementia with Key science areas at UK DRI Lewy Bodies; Vascular dementia, Key science areas at UK DRI at the University of Edinburgh including Diabetes and Metabolic Mechanistic at UCL include: include: Cellular interplay Syndrome; mechanisms of understanding of dysfunction maintaining brain
Recommended publications
  • Download PDF Version of Issue 84
    Cambridge Alumni Magazine Issue 84 – Easter 2018 What a snooze fest: why boredom could actually be good for you. Scandi flatpack buildings fit for the Ottoman Emperor. New books, old books, little known books: the summer reading list. Immersive tours of the East; from temples in Varanasi to tea gardens in Kanazawa From India’s Mughal palaces to Japan’s temple gardens, our iti neraries Illustrati on: aquati nt c. 1830 aft er a drawing by Robert Melville Grindlay. across Asia celebrate the cultural achievements of some of the world’s most extraordinary civilisati ons. Explore the Buddhist temples of Varanasi and sail Vietnam’s Perfume River. ‘Every day we got up thinking Interpret the ‘art of the fl oati ng world’ in Kyoto and the exquisite treasures it couldn’t possibly be as good of Ming and Qing Beijing. as the day before, and it was. In all fi ve countries of our Asia programme our expert lecturers enliven Diff erent and wonderful.’ ancient philosophies and dazzling landscapes with their eruditi on and enthusiasm. Expect, equally, high standards of accommodati on and Contact us: privileged access at key sites. +44 (0)20 8742 3355 Our dozen tours in Asia include Sacred India, Kingdoms of the Deccan, Bengal by River, Indian Summer, Ming & Qing Civilisati on, Essenti al China, Japanese marti nrandall.com/asia Gardens, Samarkand & Silk Road Citi es and Vietnam. ATOL 3622 | ABTA Y6050 | AITO 5085 Editor Immersive tours of the East; Mira Katbamna Commissioning editor Steve McGrath from temples in Varanasi to Design and art direction Rob Flanagan University of Cambridge tea gardens in Kanazawa Morven Knowles Cambridge Alumni Magazine Issue 84 Easter 2018 02 INBOX Publisher The University of Cambridge Development & Alumni Relations Campendium 1 Quayside, Bridge Street 30 Cambridge CB5 8AB Tel +44 (0)1223 332288 07 DON’S DIARY Dr Andrew Grant.
    [Show full text]
  • Alzheimers Society Annual Research Review 2017
    Annual 2017/ 2018 Research Review 2 Annual Research Review 2017/2018 Foreword Last year we launched our new strategy – the New Deal on Dementia – with a mission to transform the landscape of dementia forever by boosting research, changing society and offering support to everyone affected by dementia. It’s been brilliant to see our strategy take shape over the last 12 months. The UK Dementia Research Institute, our biggest ever single investment in research, is attracting over 400 world-leading scientists to focus their skills and energy on dementia. A partnership between Alzheimer’s Society, the Medical Research Council and Alzheimer’s Research UK, the institute is bringing new laboratories, equipment and researchers into the fight against dementia at an unprecedented scale. Meanwhile, our Centres of Excellence are transforming research into the best dementia care and support. We’ve also led in the development of a roadmap to make sure that care research is prioritised nationally, alongside finding a cure. We know that investments in research pay off. To give just one example, our research fellows made genetic discoveries this year that fundamentally advance our understanding of dementia, bringing personalised medicine ever closer. There are many individual successes to celebrate, but what excites me most is the unique ability of Alzheimer’s Society to unite people who care about dementia, working across all areas to improve people’s lives. In my new role as Chief Policy and Research Officer, I’m bringing people closer together to campaign for research funding, prepare the health and social care system for advances in treatment and diagnosis, and use research insights to improve dementia services.
    [Show full text]
  • Prion Pathology in the Brainstem: Clinical Target Areas in Prion Disease
    PRION PATHOLOGY IN THE BRAINSTEM: CLINICAL TARGET AREAS IN PRION DISEASE A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy to the University College London by Ilaria Mirabile MRC Prion Unit Institute of Neurology University College London 1 Declaration I, Ilaria Mirabile, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis 2 List of contributions All the procedures described in this thesis were performed by the candidate, with the following exceptions: In vivo procedures Mice breeding, colony maintenance, ear biopsies, prion inoculation, prion symptoms monitoring, mice culling and brain sampling were performed by designated staff at the Prion Unit animal house facility. Prion inocula were prepared by Dr Jonathan Wadsworth. Immunohistochemistry Paraffin embedding and microtome slicing were performed by designated staff in the MRC Prion Unit histology support group. Molecular biology DNA sequencing was performed by Gary Adamson. Cell culture Flow cytometry was performed by Dr Annika Alexopoulou, Dr Sara Monteiro, and Melania Tangari. 3 Acknowledgments I am extremely grateful to all the members of the MRC Prion Unit for their intellectual, practical and moral support. Firstly, I would like to thank my supervisors, Prof. Parmjit Jat, Prof. John Collinge and Prof. Sebastian Brandner for their guidance. I am particularly grateful to Jackie Linehan, Catherine O‘Malley, Caroline Powell and Lorrain Spence in the Histology Core Facility, and to the Prion Unit Animal Facility, for their tremendous hard work. A big thank goes to the members of Prof Parmjit Jat‘s laboratory who welcome me as a second family, to Prof.
    [Show full text]
  • Joern R Steinert, Tatyana Chernova, Ian D Forsythe Hans H
    ISSN 1473-9348 VOLUME 9 ISSUE 5 NOVEMBER/DECEMBER 2009 ACNRwww.acnr.co.uk ADVANCES IN CLINICAL NEUROSCIENCE & REHABILITATION In this issue Joern R Steinert, Tatyana Chernova, Ian D Forsythe Nitric Oxide In Brain Function and Dysfunction Hans H Jung, Adrian Danek, Ruth H Walker Neuroacanthocytosis Heather Angus-Leppan, Charles Warlow Health Records: out of the frying pan? Justin Cross, HK Cheow Nuclear Medicine in Neurology NEWS REVIEW > CONFERENCE REPORTS > BOOK REVIEWS > EVENTS DIARY Azilect® 1mg tablets Prescribing information (Please refer to the Summary of Product in patients with moderate hepatic impairment. Use caution in patients with mild hepatic Characteristics (SmPC) before prescribing) Presentation: Tablets containing 1mg rasagiline (as impairment. Use with caution in pregnancy or lactation. There is an increased risk of skin cancer the mesilate). Indication: Treatment of idiopathic Parkinson’s disease as monotherapy or as in Parkinson’s disease, not associated with any particular drug. Suspicious skin lesions require adjunct to levodopa in patients with end of dose fluctuations. Dosage and administration: specialist evaluation. Undesirable effects in clinical trials: Monotherapy: >1%: headache, flu Oral, 1mg once daily taken with or without food. Elderly: No change in dosage required. syndrome, malaise, neck pain, dyspepsia, arthralgia, depression, conjunctivitis, allergic reaction, Children and adolescents (<18 years): Not recommended. Patients with renal impairment: No fever, angina pectoris, anorexia, leucopenia, arthritis, vertigo, rhinitis, contact dermatitis, change in dosage required. Patients with hepatic impairment: Predominant hepatic metabolism. vesiculobullous rash, skin carcinoma, hallucinations, urinary urgency. <1%: cerebrovascular Do not use in patients with severe impairment. Avoid use in patients with moderate impairment. accident, myocardial infarct.
    [Show full text]
  • Update on the Pathophysiology of Prion Diseases
    ACNRSO14_Layout 1 04/09/2014 22:13 Page 6 REVIEW ARTICLE Update on the Pathophysiology of Prion Diseases extensive neuronal cell loss. Whilst PrP Sc is asso - Summary ciated with infectivity (prion diseases are trans - • Prion diseases are characterised by the missible), there is extensive evidence that it is not accumulation of misfolded prion protein in itself neurotoxic. Sub-clinical states of prion (PrP) and widespread neuronal loss disease have been identified in which extensive throughout the brain. Recent work has accumulation of PrP Sc is dissociated from neuro - elucidated a major mechanism by which toxicity. 3 PrP Sc is harmless to cells devoid of PrP C, misfolded PrP induces neurodegeneration and therapeutic agents targeting PrP Sc have very in prion disease. limited efficacy and do not prevent neuronal • Rising levels of misfolded PrP lead to C Giovanna Mallucci loss. PrP is absolutely required for susceptibility sustained dysregulation of an endogenous to prion neurotoxicity: PrP-null mice are resistant is Professor of Neuroscience and cellular pathway, the unfolded protein Programme Leader at the MRC to prion disease 4 and depleting PrP C in neurons response (UPR), which regulates protein Toxicology Unit and Honorary of prion infected mice cures disease, as conver - Consultant Neurologist at synthesis at the level of translation sion can no longer occur. 5 Thus, the process of Addenbrooke's Hospital, with a initiation. prion protein misfolding is central to neurotoxi - specialist interest in dementia. She • This results in the sustained reduction in city. Recent work has shown that neuronal death gained her PhD in 2001 from Imperial global protein synthesis rates in neurons, College, London, developing a new leading to loss of critical proteins, results from dysregulation of the cellular transgenic model of 'reversible’ prion response to unfolded proteins triggered by the disease, after which she combined resulting in synaptic failure and neuronal 6 scientific and clinical careers focused death.
    [Show full text]
  • CTAD 2017 Theme 1. Clinical Trials
    10th edition of Clinical Trials on Alzheimer's Disease Final Scientific Program Boston, November 1-4, 2017 www.ctad-alzheimer.com Alzheimer’s Therapeutic Research Institute CTAD 2017 BOSTON, USA Welcome ................................................................ p. 3 Keynote Speakers .................................. p. 4 Lifetime Achievement Award ................................ p. 5 Program ................................................................. p. 6 - Program at Glance . ............................. p. 6 - Wednesday, November 1 ..................... p. 8 - Thursday, November 2 ....................... p. 9 - Friday, November 3 ........................ p. 12 - Saturday, November 4 ............................. p. 15 Poster sessions ........................................................... p. 19 Gold Partners ........................................................... p. 43 General Information . ....................................... p. 44 Conference Mobile App .............................. p. 47 Design by actcom group - Photo credit : adobestock - ©maglara ©rabbit75_fot - © ferart88 - iStock - simon-cpx design by actcom group - photo credit : istock photo - adobe stock Dear Colleague, Scientific Commitee Susan ABUSHAKRA (San Francisco) The development of the next generation of Alzheimer’s disease Paul AISEN (San Diego) treatments is among the most important health needs Kaj BLENNOW (Molndal) worldwide, but presents huge challenges. Merce BOADA (Barcelona) The goal of the meeting is to bring together today’s worldwide
    [Show full text]
  • MRC Changes Lives May 2017 Final.Indd
    www.mrc.ac.uk Who are we? The Medical Research Council (MRC) improves the health of people in the UK - and around the world - by supporting excellent science, and training the very best scientists. We are a non-departmental public body funded through the government’s science and research budget. We invest in research on behalf of the UK tax payer. What do we do? For over a hundred years, MRC-funded scientists have been making life-changing discoveries, including the structure of DNA, the lethal link between smoking and cancer and the development of a group of antibodies used in making some of the most successful drugs ever developed. Today our scientists tackle some of the greatest problems facing humanity in the 21st century, from chronic disease to drug-resistant microorganisms. Our mission is to: • Encourage and support research to improve human health • Produce skilled researchers • Advance and disseminate knowledge and technology to improve the quality of life and economic competitiveness of the UK • Promote dialogue with the public about medical research How do we choose what to fund? Scientists apply to the MRC for funding for their research and applications are reviewed by panels of independent experts and awarded based on the very best science. What science do we fund and where? Our work ranges from laboratory research, for example on genes and molecules, right through to research involving people, such as clinical trials and population studies. Our science is split into six broad areas: infections and immunity; molecular and cellular medicine; neurosciences and mental health; population and systems medicine; global health; and translational research.
    [Show full text]
  • The Genetics Basis of Neurological Disorders
    In-depth courses from HSTalks The Biomedical & Life Sciences THE GENETIC BASIS Collection OF NEUROLOGICAL DISORDERS THE GENETIC BASIS OF NEUROLOGICAL DISORDERS A complete advanced undergraduate/graduate course with: 22 online lectures by leading authorities Resources for workshops, tutorials, journal clubs, projects and seminars Suggested exam questions and model answers Multiple choice questions and answers Recommended reading: original papers and review articles View the content of the course on our website: View our in-depth HSTalks: www.hstalks.com/GeneticBasisOfNeurologicalDisordershstalks.com/GeneticBasisOfNeurologicalDisorderswww.hstalks.com/Vaccines www.hstalks.com/CoursesBrochure Course module with video lectures, material for tutorials (case studies, projects, workshops and recommended reading), multiple choice questions and suggested exam questions with model answers. A comprehensive course on a subject of major importance. The material is especially designed to support research and teaching staff when presenting a comprehensive course at graduate or advanced undergraduate level with seminars, journal clubs, laboratory exercises, data workshops, online tests and end of course examinations. The course is also suitable for continuing professional development/education programmes. This brochure provides brief details of the complete module, including the lectures, lecturers and additional learning material. Who is the course The comprehensive material is especially suitable for teachers and researchers who wish to offer courses on specialist for? subjects to small groups of students (or even a single student) when it is not possible to justify the time and expense of preparing, internally, a course or there is not the range of expertiseavailable locally to do so. All the lecturers are highly regarded experts in their fields and few institutions are likely to have a comprehensive group of faculty members with a similar range of experience and knowledge of the subject matter.
    [Show full text]
  • People Behind Discovery Annual Review the Medical Research Council Is the UK’S Leading Publicly Funded Biomedical Research Organisation
    06/07 People behind discovery Annual Review The Medical Research Council is the UK’s leading publicly funded biomedical research organisation. Our mission is to: • Encourage and support high-quality research with the aim of improving human health. • Produce skilled researchers, and to advance and disseminate knowledge and technology to improve the quality of life and economic competitiveness in the UK. • Promote dialogue with the public about medical research. 01 Vision & hearing page 4 02 Neurobiology & neurodegeneration page 6 03 Mental illness & behavioural disorders page 10 04 Genetic diseases page 14 05 Cancer page 18 06 Heart disease & stroke page 22 07 Obesity & diabetes page 26 08 Infections & the immune system page 30 09 Public health page 34 10 Turning research into healthcare page 38 Supporting careers in medical research For almost a century, the Medical Research Council (MRC) has employed and funded people who’ve made pioneering discoveries and improved the health of millions. Together these scientists, clinicians, support staff, technicians, nurses, business managers, administrators, engineers and countless other people have created an unsurpassed catalogue of achievement. Today, we employ more than 4,000 staff in our own research institutions and support about another 3,300 researchers and students on grants. The MRC is an employer as well as a research funder. Some of our researchers start their careers on studentships or fellowships with the MRC. Others are supported on grants or in our units for a time before moving on. Many spend their whole career with the MRC. Our scientists work in many different research environments. These include hospitals, universities, medical schools, the biotechnology, diagnostics and pharmaceutical industries and MRC units, institutes and centres.
    [Show full text]
  • Cellular and Molecular Neuroscience: from Generation to Degeneration April 5-6, 2017 Mishkenot Sha’Ananim, Jerusalem
    Cellular and Molecular Neuroscience: From Generation to Degeneration April 5-6, 2017 Mishkenot Sha’ananim, Jerusalem Organizing Committee: Chaya Kalcheim, Eran Meshorer and Hermona Soreq Wednesday, April 5, 2017 8:45-9:00 – Opening remarks – Organizing Committee Keynote lecture Chair: Sami Sagol 9:00-9:45 – Heller lecture: Eric Kandel, Columbia University, USA The biology of memory and age related memory loss Session 1: Neural Development Chair: Chaya Kalcheim, Hadassah Hebrew University Medical Center, Israel 9:45-10:20 – Johan Ericson, Karolinska Institute, Sweden Composition of a timer regulating temporal identity and fate of neural stem cells 10:20-10:45 – Orly Reiner, Weizmann Institute of Science, Israel Human brain organoids on a chip to model normal development and disease 10:45-11:15 – Coffee break 11:15-11:40 – Avihu Klar, Hadassah Hebrew University Medical Center, Israel Characterization of neuronal circuits for coordinated limb movements in avians 11:40-12:15 – Joanna Wysocka, Stanford School of Medicine, USA Gene regulatory principles in human development, disease and evolution 12:15-12:40 – Oren Schuldiner, Weizmann Institute of Science, Israel From genetics to system, and back: A systematic exploration of neuronal remodeling reveals a transcription factor hierarchy 12:40-14:00 – Lunch break Session 2: From Gene to Synaptic Function Chair: Hermona Soreq, Hebrew University of Jerusalem, Israel 14:00-14:35 – Li-Huei Tsai, Massachusetts Institute of Technology, USA Bringing gamma back — using noninvasive sensory stimulation
    [Show full text]
  • Rational Targeting for Prion Therapeutics
    REVIEWS RATIONAL TARGETING FOR PRION THERAPEUTICS Giovanna Mallucci and John Collinge Abstract | Prions — pathogens that are lethal to humans and other animals — are thought to be conformational isomers of the cellular prion protein. Their unique biology, and the potential for a wider pathobiological significance of prion-like mechanisms, has motivated much research into understanding prion neurodegeneration. Moreover, concerns that extensive dietary exposure to bovine spongiform encephalopathy (BSE) prions might have infected many individuals — who might eventually develop its human counterpart, variant Creutzfeldt–Jakob disease (vCJD) — has focused much interest on therapeutics. The challenge of interrupting this aggressive, diffuse and uniformly fatal neurodegenerative process is daunting. However, the recent finding that the onset of clinical disease in established neuroinvasive prion infection in a mouse model can be halted and early pathology reversed is a source for considerable optimism. A therapeutic focus on the cellular prion protein, rather than prions themselves, which might not be directly neurotoxic, is suggested. PRION diseases, or TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES, The recognition in 1996 of a novel human prion are fatal neurodegenerative conditions that affect disease, variant CJD (vCJD)3, and the experimental humans and other animals, and are transmissible confirmation that it is caused by BSE-like prions4–6, has within or between mammalian species by inoculation led to fears that a human epidemic will result, as the or ingestion. The human prion diseases, traditionally majority of the UK population was potentially exposed. classified into Creutzfeldt–Jakob disease (CJD), Fortunately, the number of recognized cases of vCJD Gerstmann–Sträussler–Scheinker disease and kuru, has been relatively small (~150) so far, but the number have three distinct aetiologies: they might be auto- of infected individuals is unknown.
    [Show full text]
  • Thrill of the Chill Cold Water Swimming the Cream of the Crops You Either Love It, Or Hate It… Eating Well While Working at Ho
    The monthly magazine dedicated to help everyone overNews 50 get the best out of life! NOVEMBER 2020 Inside this issue… Thrill of the chill The best outdoor winter swimming spots in Britain Cold water swimming Why an icy dip is good for your mental and physical health The cream of the crops Autumn sowing in the veggie patch You either love it, or hate it… Marmite: A potted history of the British-born spread Eating well while working at home Step away from the biscuits and never dine at your desk PLUS… What’s on • Health & Beauty • Money & Work • Leisure & Travel Food & Drink • Arts, Crafts & Hobbies • Home & Garden Welcome What’s On To protect others, do not go to places like a GP surgery, Letter from the Editor CONTENTS pharmacy or hospital. Stay at home. CORONAVIRUS Use the 111 online coronavirus service to find out what to do. Welcome to Our Place - The monthly magazine What’s On .................................................................. 3 dedicated to help everyone over 50 get the Health & Beauty News ........................................... 4-5 Advice for people at high risk best out of life! Coronavirus (COVID-19): what you need to do Health & Beauty Feature Stay at home Who's at high risk from coronavirus Why cold water swimming is good for you ............ 6-7 Every month, we bring you news and features • Only go outside for food, health reasons or work (where this Coronavirus can make anyone seriously ill, but there are some on; Health & Beauty, Money & Work, Leisure Money & Work News .............................................. 8-9 absolutely cannot be done from home) people who are at a higher risk.
    [Show full text]