Insights Into the Nature of the Transition Zone from Physically Constrained

Total Page:16

File Type:pdf, Size:1020Kb

Insights Into the Nature of the Transition Zone from Physically Constrained Insights into the nature of the transition zone from SPECIAL FEATURE physically constrained inversion of long-period seismic data Fabio Cammarano* and Barbara Romanowicz Berkeley Seismological Laboratory, University of California, 215 McCone Hall, Berkeley, CA 94720 Edited by Ho-kwang Mao, Carnegie Institution of Washington, Washington, DC, and approved February 7, 2007 (received for review January 4, 2007) Imposing a thermal and compositional significance to the outcome of that a seismic model is not required to have a meaning in terms the inversion of seismic data facilitates their interpretation. Using of these physical parameters. long-period seismic waveforms and an inversion approach that in- Typically, the interpretation of a given seismic data set is cludes constraints from mineral physics, we find that lateral variations performed in two steps. First, a seismic model is constructed that of temperature can explain a large part of the data in the upper fits the data satisfactorily. Second, the model is interpreted in mantle. The additional compositional signature of cratons emerges in terms of temperature and composition based on the knowledge the global model as well. Above 300 km, we obtain seismic geotherms of the elastic and anelastic properties of mantle minerals plus that span the range of expected temperatures in various tectonic constraints on plausible composition and temperature ranges regions. Absolute velocities and gradients with depth are well con- from geochemistry [i.e., the signature of outcropping rocks strained by the seismic data throughout the upper mantle, except (orogenic peridotites) and mantle inclusions (xenoliths and near discontinuities. The seismic data are consistent with a slower xenocrysts)], heat flow measurements at the surface, and con- transition zone and an overall faster shallow upper mantle, which is ditions for melting mantle materials. The second part of the not compatible with a homogenous dry pyrolite composition. A process is commonly regarded as critical for interpretation. gradual enrichment with depth in a garnet-rich component helps to Together with the trade-off between temperature and compo- reduce the observed discrepancies. A hydrated transition zone would sition, other factors should be considered. Temperature- help to lower the velocities in the transition zone, but it does not dependent anelasticity implies nonlinearity of the partial deriv- explain the seismic structure above it. atives with temperature in the upper mantle (1). Consequently, absolute velocities are required for a correct interpretation. The mantle composition ͉ seismology ͉ mineral physics presence of mineralogical phase transitions further complicates the interpretation of the transition zone structure (14, 16). Finally, the large uncertainties that still characterize the elastic he thermal state and composition of Earth’s upper mantle and, even more, anelastic parameters derived by mineral physics and transition zone dictate its dynamics from microscale GEOPHYSICS T (see refs. 14, 17, and 18) hamper a precise interpretation. (e.g., creep mechanisms and earthquakes) to macroscale (e.g., Instead, it is often forgotten that the seismic models are already modality of mantle convection and plate tectonics). The knowl- an interpretation of the data. The seismic models are not unique, edge of these fundamental physical parameters and their 3D and they depend on the parametrization, distribution, quality, variations in Earth’s deep interior is indirect and relies entirely and type of data used. More importantly, a given best-fit seismic on the interpretation of geophysical data, based on insights from model does not necessarily correspond to a physical model. For theoretical and experimental mineral physics. Among these data, example, the previous work of Cammarano et al. (14) has pointed seismological observations constitute a main source of informa- out the difficulties of interpreting seismic reference models tion. Seismic waves record information about the elastic (and [Preliminary Reference Earth Model (PREM) (19) and AK135 anelastic) structure of Earth. Long-period seismic data provide (20)] in terms of temperature and composition. The same the most comprehensive global constraints on upper mantle problems are propagated to 3D tomography models that are shear velocity structure. Fundamental-mode surface waves are obtained by perturbing a starting average model. mostly sensitive to the uppermost mantle structure, and includ- To overcome this problem, it is indeed important to test a ing overtones provides resolution in the transition zone. physical hypothesis directly against the seismic data (as in refs. 21 Lateral temperature variations in the Earth have been inferred and 22). The general idea is to use the mineral physics information since the first tomographic studies began to reconstruct 3D already at an early stage of the seismic data processing, hence seismic velocity structure (1, 2). However, despite the ever- imposing a physical significance to the seismic tomography model. improving resolution of seismic velocity models and a general Here we invert long-period seismic waveforms, which are mainly agreement of different models on at least the large-scale struc- sensitive to shear velocity, with respect to a physical reference ture (e.g., refs. 3–6), interpretation is still challenging. The few model instead of a standard 1D seismic reference model (e.g., quantitative interpretation efforts made to date have shown that PREM). Velocity variations will thus correspond to thermal (or much of the seismic heterogeneity in the uppermost mantle is compositional) variations and a consistent 3D density and VP probably thermal in origin (7, 8), but it is likely that there is a compositional contribution under cratons (9, 10) and that fluids influence the very low velocities in the mantle wedge above Author contributions: F.C. and B.R. designed research; F.C. and B.R. performed research; subduction zones (8). By adding constraints from gravity or F.C. and B.R. analyzed data; and F.C. and B.R. wrote the paper. geoid data, joint inversions for seismic velocity and density have The authors declare no conflict of interest. been performed because of the better chance to isolate thermal This article is a PNAS Direct Submission. and compositional effects (11–13). Whereas temperature sensi- Abbreviations: PREM, Preliminary Reference Earth Model; PREF, Physical Reference. tivity dominates for seismic velocities, especially at shallow *To whom correspondence should be addressed. E-mail: [email protected]. depths (7, 14, 15), density also strongly varies with composition. This article contains supporting information online at www.pnas.org/cgi/content/full/ Besides the trade-off between temperature and composition, 0608075104/DC1. an important issue for seismic interpretation concerns the fact © 2007 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0608075104 PNAS ͉ May 29, 2007 ͉ vol. 104 ͉ no. 22 ͉ 9139–9144 Downloaded by guest on September 27, 2021 structure may be determined. We start by assuming purely thermal Events with moment magnitude larger than six and stations at variations because, in the upper mantle, composition plays a epicentral distance between 15° and 165° were selected. The secondary role. We compare the thermal features constrained by original seismograms have been deconvolved for the instrument the seismic data against expected thermal variations and estimated response and filtered between 60 s and a variable maximum geotherms in various tectonic regions. The average velocity model period, typically between 220 s and 1 h, which was chosen extracted from the physically constrained tomography provides according to the event magnitude. Wave-packets for both fun- insights into the nature of the transition zone. To assess the damental and overtones were then extracted from the seismo- uncertainties in the thermal model and estimate how well average grams based on the comparison of the observed trace with the velocity and velocity gradient with depth are constrained by long- PREM synthetics (5). The PREM represents very well the period seismic data in the upper mantle, we perform a series of average seismic structure of Earth. The bounds of the selection inversions starting with various models. criteria are large enough to make the procedure appropriate also for the alternative average upper mantle structure based on a Seismic Procedure physical model. Minor and major arc paths were selected for our The Starting Physical Model. Because seismic inversion is based on inversion. In total, the data set amounts to 39,829 fundamental perturbation theory, to be used as a reference model, the starting waveforms and 59,831 overtones. The windowing scheme not physical model must have an overall good fit to seismic data, only reduced the computation time of the inversion, but it comparable to the fit of radially symmetric seismic models (e.g., allowed the application of appropriate weights to different PREM). We tested our inversion by using some of the Physical phases. In our case, we assigned a double weight to the overtones Reference (PREF) models from Cammarano et al. (22). These are compared with the dominant fundamental modes. Noise and isotropic models with the same thermal and compositional struc- path redundancy were also considered in the weighting scheme ture, respectively 60-million-year-old oceanic geotherm in the litho- as described by Li and Romanowicz
Recommended publications
  • Effects of Water on Seismic Wave Velocities in the Upper Mantle Terior. Therefore, If One Understands the Relation Between Water
    No. 2] Proc. Japan Acad., 71, Ser. B (1995) 61 Effects of Water on Seismic Wave Velocities in the Upper Mantle By Shun-ichiro KARATO Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455 (Communicated by Yoshibumi ToMODA,M. J. A., Feb. 13, 1995) Abstract : Possible roles of water to affect seismic wave velocities in the upper mantle of the Earth are examined based on mineral physics observations. Three mechanisms are considered: (i) direct effects through the change in bond strength due to the presence of water, (ii) effects due to the enhanced anelastic relaxation and (iii) effects due to the change in preferred orientation of minerals. It is concluded that the first direct mechanism yields negligibly small effects for a reasonable range of water content in the upper mantle, but the latter two indirect effects involving the motion of crystalline defects can be significant. The enhanced anelastic relaxation will significantly (several %) reduce the seismic wave velocities. Based on the laboratory observations on dislocation mobility in olivine, a possible change in the dominant slip direction in olivine from [100] to [001] and a resultant change in seismic anisotropy is suggested at high water fugacities. Changes in seismic wave velocities due to water will be important, particularly in the wedge mantle above subducting oceanic lithosphere where water content is likely to be large. Key words : Water; seismic wave velocity; upper mantle; anelasticity; seismic anisotropy. Introduction. Water plays important roles in the terior. Therefore, if one understands the relation melting processes and hence resultant chemical evolu- between water content and seismic wave velocities, tion of the solid Earth.
    [Show full text]
  • Geomagnetism and Paleomagnetism Membership Survey
    Membership Survey: Geomagnetism and Paleomagnetism (GP) Section What is your primary section or focus group affiliation? Response Answer Options Response Count Percent Geomagnetism and Paleomagnetism (GP) Section 71.0% 363 Study of Earths Deep Interior (SEDI) Focus Group 4.5% 23 Planetary Sciences (P) Section 2.0% 10 Tectonophysics (T) Section 7.0% 36 Near-Surface Geophysics (NS) Focus Group 5.1% 26 Other (please specify) 10.4% 53 answered question 511 skipped question 0 What is your primary section or focus group affiliation? Geomagnetism and Paleomagnetism (GP) Section Study of Earths Deep Interior (SEDI) Focus Group Planetary Sciences (P) Section Tectonophysics (T) Section Near-Surface Geophysics (NS) Focus Group Other (please specify) Membership Survey: Geomagnetism and Paleomagnetism (GP) Section What (if any) is your secondary affiliation? Response Answer Options Response Count Percent Geomagnetism and Paleomagntism Section 24.0% 121 Study of Earth's Deep Interior Focus Group 15.0% 76 Planetary Sciences Section 13.7% 69 Tetonophysics Section 22.8% 115 Near-Surface Geophysics Focus Group 10.7% 54 None 24.2% 122 answered question 505 skipped question 6 What (if any) is your secondary affiliation? 30.0% 25.0% 20.0% 15.0% 10.0% 5.0% 0.0% None and Section Section Geophysics FocusGroup Near-Surface Planetary Focus Group DeepInterior Tetonophysics Geomagnetism Paleomagntism Study of Earth's Study of SciencesSection Membership Survey: Geomagnetism and Paleomagnetism (GP) Section List additional secondary affiliations (if any): Answer Options
    [Show full text]
  • Earth, Environmental and Planetary Sciences 1
    Earth, Environmental and Planetary Sciences 1 MATH 0090 Introductory Calculus, Part I (or higher) Earth, Environmental PHYS 0050 Foundations of Mechanics (or higher) Nine Concentration courses and Planetary Sciences EEPS 0220 Earth Processes 1 EEPS 0230 Geochemistry: Earth and Planetary 1 Materials and Processes Chair EEPS 0240 Earth: Evolution of a Habitable Planet 1 Greg Hirth Select three of the following: 3 Students in Earth, Environmental, and Planetary Sciences develop a EEPS 1240 Stratigraphy and Sedimentation comprehensive grasp of principles as well as an ability to think critically EEPS 1410 Mineralogy and creatively. Formal instruction places an emphasis on fundamental EEPS 1420 Petrology principles, processes, and recent developments, using lecture, seminar, EEPS 1450 Structural Geology laboratory, colloquium, and field trip formats. Undergraduates as well as graduate students have opportunities to carry out research in current fields Two additional upper level EEPS courses or an approved 2 of interest. substitute such as a field course One additional upper level science or math course with approval 1 The principal research fields of the department are geochemistry, from the concentration advisor. mineral physics, igneous petrology; geophysics, structural geology, tectonophysics; environmental science, hydrology; paleoceanography, Total Credits 13 paleoclimatology, sedimentology; and planetary geosciences. Emphasis in these different areas varies, but includes experimental, theoretical, and Standard program for the Sc.B. degree observational approaches as well as applications to field problems. Field This program is recommended for students interested in graduate study studies of specific problems are encouraged rather than field mapping for and careers in the geosciences and related fields. its own sake. Interdisciplinary study with other departments and divisions is encouraged.
    [Show full text]
  • The Eyes Have It
    news and views flow of heat and matter in the interior2. This Irifune and Isshiki1 have shown such transition to higher pressures (as can be seen flow, in turn, drives the tectonic evolution artificial separation to be misleading by in Irifune and Isshiki’s Fig. 3 on page 704), so of the surface, including the occurrence of experimentally demonstrating Mg–Fe ex- the onset of the transition in pyrolite is post- volcanism and seismicity. change between a, b, garnet and clino- poned to greater depths relative to that in Olivine, a solid solution of forsterite pyroxene. We have known5 for some time Fo89. On the other side of the phase change, b (Mg2SiO4) and fayalite (Fe2SiO4), has the that the proportions of these minerals vary does not partition Fe into garnet as strong- a b approximate composition (Mg0.89 Fe0.11)2SiO4 with depth, as shown by the bold white lines ly as does , so is not initially Mg-enriched, (called forsterite-89 or Fo89) in samples from in Fig. 1, but Irifune and Isshiki have now and the completion of the a–b transition the shallow mantle. It transforms from the measured the accompanying variations in is not postponed relative to Fo89. The net olivine (a) phase to wadsleyite (b), changing the compositions of coexisting minerals, effect of postponing onset but not co8m- again to ringwoodite (g) at greater depths shown by the colours. In isolated Fo89 pletion is to concentrate the transition into and eventually breaking down to a mixture of olivine, mineral compositions must remain a narrower range of depths, decreasing the silicate perovskite and magnesiowüstite.
    [Show full text]
  • The Upper Mantle and Transition Zone
    The Upper Mantle and Transition Zone Daniel J. Frost* DOI: 10.2113/GSELEMENTS.4.3.171 he upper mantle is the source of almost all magmas. It contains major body wave velocity structure, such as PREM (preliminary reference transitions in rheological and thermal behaviour that control the character Earth model) (e.g. Dziewonski and Tof plate tectonics and the style of mantle dynamics. Essential parameters Anderson 1981). in any model to describe these phenomena are the mantle’s compositional The transition zone, between 410 and thermal structure. Most samples of the mantle come from the lithosphere. and 660 km, is an excellent region Although the composition of the underlying asthenospheric mantle can be to perform such a comparison estimated, this is made difficult by the fact that this part of the mantle partially because it is free of the complex thermal and chemical structure melts and differentiates before samples ever reach the surface. The composition imparted on the shallow mantle by and conditions in the mantle at depths significantly below the lithosphere must the lithosphere and melting be interpreted from geophysical observations combined with experimental processes. It contains a number of seismic discontinuities—sharp jumps data on mineral and rock properties. Fortunately, the transition zone, which in seismic velocity, that are gener- extends from approximately 410 to 660 km, has a number of characteristic ally accepted to arise from mineral globally observed seismic properties that should ultimately place essential phase transformations (Agee 1998). These discontinuities have certain constraints on the compositional and thermal state of the mantle. features that correlate directly with characteristics of the mineral trans- KEYWORDS: seismic discontinuity, phase transformation, pyrolite, wadsleyite, ringwoodite formations, such as the proportions of the transforming minerals and the temperature at the discontinu- INTRODUCTION ity.
    [Show full text]
  • Joint Mineral Physics and Seismic Wave Traveltime Analysis of Upper Mantle Temperature
    Joint mineral physics and seismic wave traveltime analysis of upper mantle temperature Jeroen Ritsema1, Paul Cupillard2, Benoit Tauzin3, Wenbo Xu1, Lars Stixrude4, Carolina Lithgow-Bertelloni4 1Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA 2Seismological Laboratory, University of California–Berkeley, Berkeley, California 94720, USA 3Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg, 67084 Strasbourg, France 4Department of Earth Sciences, University College London, London WC1E 6BT, UK ABSTRACT CONVERTED WAVE TRAVELTIMES We employ a new thermodynamic method for self-consistent Teleseismic P wave conversions, denoted as Pds, propagate as com- computation of compositional and thermal effects on phase transition pressional (P) waves through the deep mantle and convert to shear (S) depths, density, and seismic velocities. Using these profi les, we compare waves at an upper mantle discontinuity at depth d beneath the seismom- theoretical and observed differential traveltimes between P410s and eter. The phases P410s and P660s, for example, are waves that have P (T410) and between P600s and P410s (T660–410) that are affected only by converted from P to S at the 410 km and the 660 km transitions, respec- seismic structure in the upper mantle. The anticorrelation between T410 tively (Fig. 1). and T660–410 suggests that variations in T410 and T660–410 of ~8 s are due to Our data are recorded traveltime differences between the phases lateral temperature variations in the upper mantle transition zone of P410s and P (T410) and between P660s and P410s (T660–410). T410 and ~400 K. If the mantle is a mechanical mixture of basaltic and harzbur- T660–410 are unaffected by imprecise earthquake locations and lower mantle gitic components, our traveltime data suggest that the mantle has an hetero geneity.
    [Show full text]
  • Phase Transitions in Earth's Mantle and Mantle Mineralogy
    Phase transitions in Earth’s Mantle and Mantle Mineralogy Upper Mantle Minerals: Olivine, Orthopyroxene, Clinopyroxene and Garnet ~13.5 GPa: Olivine Æ Wadsrlyite (DE) transition (ONSET TRANSITION ZONE) ~15.5 GPa: Pyroxene component gradually dissolve into garnet structure, resulting in the completion of pyroxene-majorite transformation >20 GPa: High CaO content in majorite is unfavorable at high pressure, leading to the formation of CaSiO3 perovskite ~24 GPa: Division of transition zone and lower mantle. Sharp transition silicate spinel to ferromagnesium silicate perovskite and magnesiowustite >24 GPa: Most of Al2O3 resides in majorite at transition zone pressures, a transformation from Majorite to Al-bearing orthorhombic perovskite completes at pressure higher than that of post-spinel transformation Lower Mantle Minerals: Orthorhobic perovskite, Magnesiowustite, CaSiO3 perovskite ~27 GPa: Transformation of Al and Si rich basalt to perovskite lithology with assemblage of Al-bearing perovskite, CaSiO3, stishovite and Al-phases Upper Mantle: olivine, garnet and pyroxene Transition zone: olivine (a-phase) transforms to wadsleyite (b-phase) then to spinel structure (g-phase) and finally to perovskite + magnesio-wüstite. Transformations occur at P and T conditions similar to 410, 520 and 660 km seismic discontinuities Xenoliths: (mantle fragments brought to surface in lavas) 60% Olivine + 40 % Pyroxene + some garnet Images removed due to copyright considerations. Garnet: A3B2(SiO4)3 Majorite FeSiO4, (Mg,Fe)2 SiO4 Germanates (Co-, Ni- and Fe-
    [Show full text]
  • Magnetic Properties of Single and Multi-Domain Magnetite Under Pressures from 0 to 6
    GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L10612, doi:10.1029/2004GL019844, 2004 Magnetic properties of single and multi--domain magnetite under pressures from 0 to 6 GPa Stuart A. Gilder,1 Maxime LeGoff,1 Jean-Claude Chervin,2 and Jean Peyronneau1 Received 1 April 2004; revised 13 April 2004; accepted 21 April 2004; published 26 May 2004. [1] Using novel experimental methods, we measured the [3] How stress influences magnetic remanence also acquisition of isothermal remanent magnetization, direct depends on the size and shape of the substance. The field demagnetization, and alternating field demagnetization magnetizations of single domain (SD) and multi-domain of multi-domain (MD) and single domain (SD) magnetite (MD) magnetite grains react differently to imposed stresses. under hydrostatic pressures to 6 GPa. We find that Stress may cause the net spontaneous moment in a SD grain the saturation remanence of MD magnetite increases to reorient to a new position depending on the angle 2.8 times over initial, non-compressed values by 6 GPa, between the stress and magnetic easy axis direction, the while its remanent coercivity remains relatively constant. grain’s shape, etc. [Hodych, 1977]. The individual domains For SD magnetite, remanent coercivity and saturation in a multi-domain grain grow or shrink to compensate for remanence vary little from 0 to 1 GPa, increase markedly the stress, which modify the grain’s magnetic intensity and from 1 to 3 GPa, then plateau above 3 GPa. These new direction [Bogdanov and Vlasov, 1966]. In sum, two pro-
    [Show full text]
  • Time-Varying Subduction and Rollback Velocities in Slab Stagnation
    Phase transformation of harzburgite and stagnant slab in the mantle transition zone Y. Zh ang 1,2, Y. Wu1, Y. Wang2, Z. Jin1, C. R. Bina3 1State Key Laboratory of Geological Processes and Mineral Resources (GPMR), China University of Geosciences, Wuhan, China 2Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, USA 3Dept. of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA Subducted materials play an important role in affecting chemical composition and structure of the mantle transition zone. Harzburgite is generally accepted as an important part of subducting slabs, overlain by a layer of basalt. Seismic tomography studies have detected widespread fast anomalies in the mantle transition zone (MTZ) and lower mantle around the circum-Pacific and the Mediterranean region. These anomalies have been interpreted as stagnant oceanic lithosphere materials as these regions are closely associated with subduction zones, where the oceanic lithosphere plunges deeply into the MTZ. However, experimental studies on the phase transformations of harzburgite have been very limited, and no experimental studies have been conducted on the physical properties of harzburgite under MTZ conditions. In this study, we conducted high-temperature and high-pressure experiments, using a 1000-ton Kawai-type multi-anvil apparatus at GPMR, on a natural harzburgite at 14.1-24.2 GPa and 1473-1673 K. At 1673 K, harzburgite transformed to wadsleyite + garnet + clinopyroxene below 19 GPa and further decomposed into an assemblage of ringwoodite + garnet + stishovite above 20 GPa. Some amounts of akimotoite were produced at still higher pressures (22-23 GPa), and finally perovskite and magnesiowustite were found to coexist with garnet at 24.2 GPa.
    [Show full text]
  • Geochemistry
    GEOCHEMISTRY “Structure & Composition of the Earth” (M.Sc. Sem IV) Shekhar Assistant Professor Department of Geology Patna Science College Patna University E-mail: [email protected] Mob: +91-7004784271 Structure of the Earth • Earth structure and it’s composition is the essential component of Geochemistry. • Seismology is the main tool for the determination of the Earth’s interior. • Interpretation of the property is based on the behaviour of two body waves travelling within the interior. Structure of the Earth Variation in seismic body-wave paths, which in turn represents the variation in properties of the earth’s interior. Structure of the Earth Based on seismic data, Earth is broadly divided into- i. The Crust ii. The Mantle iii. The Core *Figure courtesy Geologycafe.com Density, Pressure & Temperature variation with Depth *From Bullen, An introduction to the theory of seismology. Courtesy of Cambridge Cambridge University Press *Figure courtesy Brian Mason: Principle of Geochemistry The crust • The crust is the outermost layer of the earth. • It consist 0.5-1.0 per cent of the earth’s volume and less than 1 per cent of Earth’s mass. • The average density is about “2.7 g/cm3” (average density of the earth is 5.51 g/cm³). • The crust is differentiated into- i) Oceanic crust ii) Continental crust The Oceanic crust • Covers approx. ~ 70% of the Earth’s surface area. • Average thickness ~ 6km (~4km at MOR : ~10km at volcanic plateau) • Mostly mafic in nature. • Relatively younger in age. The Oceanic crust Seismic study shows layered structural arrangement. - Seawater - Sediments - Basaltic layer - Gabbroic layer *Figure courtesy W.M.White: Geochemistry The Continental crust • Heterogeneous in nature.
    [Show full text]
  • The Time-Averaged Geomagnetic Field: Global and Regional Biases for 0-5 Ma
    Geophys. J. Int. (1997) 131, 643--666 The time-averaged geomagnetic field: global and regional biases for 0-5 Ma Catherine L. Johnson’ and Catherine G. Constable2 Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, N.W. Washington, DC 20015, USA Institute,forGeophysics and Planetary Physics, Scripps Institution of Oceanography, La Jollu, CA 92093-0225, USA Accepted 1997 June 27. Received 1997 June 12; in original form 1997 January 21 SUMMARY Palaeodirectional data from lava flows and marine sediments provide information about the long-term structure and variability in the geomagnetic field. We present a detailed analysis of the internal consistency and reliability of global compilations of sediment and lava-flow data. Time-averaged field models are constructed for normal and reverse polarity periods for the past 5 Ma, using the combined data sets. Non- zonal models are required to satisfy the lava-flow data, but not those from sediments alone. This is in part because the sediment data are much noisier than those from lavas, but is also a consequence of the site distributions and the way that inclination data sample the geomagnetic field generated in the Earth’s core. Different average field configurations for normal and reverse polarity periods are consistent with the palaeo- magnetic directions; however, the differences are insignificant relative to the uncertainty in the average field models. Thus previous inferences of non-antipodal normal and reverse polarity field geometries will need to be re-examined using recently collected high-quality palaeomagnetic data. Our new models indicate that current global sediment and lava-flow data sets combined do not permit the unambiguous detection of northern hemisphere flux lobes in the 0-5 Ma time-averaged field, highlighting the need for the collection of additional high-latitude palaeomagnetic data.
    [Show full text]
  • Crystal Structures of Minerals in the Lower Mantle
    6 Crystal Structures of Minerals in the Lower Mantle June K. Wicks and Thomas S. Duffy ABSTRACT The crystal structures of lower mantle minerals are vital components for interpreting geophysical observations of Earth’s deep interior and in understanding the history and composition of this complex and remote region. The expected minerals in the lower mantle have been inferred from high pressure‐temperature experiments on mantle‐relevant compositions augmented by theoretical studies and observations of inclusions in natural diamonds of deep origin. While bridgmanite, ferropericlase, and CaSiO3 perovskite are expected to make up the bulk of the mineralogy in most of the lower mantle, other phases such as SiO2 polymorphs or hydrous silicates and oxides may play an important subsidiary role or may be regionally important. Here we describe the crystal structure of the key minerals expected to be found in the deep mantle and discuss some examples of the relationship between structure and chemical and physical properties of these phases. 6.1. IntrODUCTION properties of lower mantle minerals [Duffy, 2005; Mao and Mao, 2007; Shen and Wang, 2014; Ito, 2015]. Earth’s lower mantle, which spans from 660 km depth The crystal structure is the most fundamental property to the core‐mantle boundary (CMB), encompasses nearly of a mineral and is intimately related to its major physical three quarters of the mass of the bulk silicate Earth (crust and chemical characteristics, including compressibility, and mantle). Our understanding of the mineralogy and density,
    [Show full text]