TurkishJournalofEarthSciences (TurkishJ.EarthSci.),Vol.12, 2003,pp.215-239. Copyright©TÜB‹TAK

MineralogyandGeochemistryofLeucitites, Balç›khisar,Afyon(Turkey)

CÜNEYTAKAL

DokuzEylülÜniversitesi,MühendislikFakültesi,JeolojiMühendisli¤iBölümü,TR-35100Bornova,‹zmir-Turkey (e-mail:[email protected])

Abstract: TheMiddleMioceneAfyonvolcaniccomplexcropsoutinwest-centralAnatoliaandcomprises productsofextensivepotassic-ultrapotassicvolcanicactivitythatintrudeand/orcoverthesedimentaryformations ofthewesternTaurides.Basedontheirstratigraphicsetting,threestagesofpotassicandultrapotassicvolcanism aredistinguishable.Melilite-leucititearetheproductsofthefirststageandfollowedbythat representthesecondstageofvolcanism.Theleucititeblock-andfragment-richBalç›khisarvolcaniclasticsuccession overliestheproductsofthefirstandsecondstagevolcanism.Lacustrinesedimentaryrockscovertheproductsof firstandsecondstagevolcanism.LacustrinesedimentaryrocksaregradationallyoverlainbytheTokluk- sedimentarysuccession.Phonotephriticdomes,dykes,andflowsrepresentthethirdstageofvolcanicactivity. MeliliteleucititesfromtwooccurrencesintheAfyonvolcanicprovincewerestudied.Themeliliteleucititescrop outassmalllavadomesandspatiallylimitedlavaflows.Themelilite-leucititelavastypicallyhaveporphyritictexture andarecomposedofleucite,,barium,melilite,,melanite,,apatite,andopaque .Melilitecrystalsarerelatively-toakermanite-rich.Thediopsidicclinopyroxenephenocrystsare partiallyand/orcompletelytransformedtomeliliteaggregates. Geochemically,theSiO2 contentofthemeliliteleucititesvariesfrom44%to47%andtheyareultrapotassic withK2Ocontentsof9.5to11.8%andaverageNa 2O/K2Oofabout2.TheAl 2O3 andCaOcontentsarerather high(18%),whereasTiO 2 contentsarelow(1.22%).MeliliteleucititeshavehighlyfractionatedREEand incompatibleelementcompositions.TheBa(8745ppm),Rb(670ppm)andSr(4802ppm)contentsareenriched relativetoprimitivemantleand.Themeliliteleucititesweregeneratedbypartialmeltingofaprimitive mantlesourceoranenrichedsourcenearasubductionzoneandcollisionprocessesrelatedtoanactiveplate margin.

KeyWords: leucite,melilite,leucicite,ultrapotassic,Afyonvolcanicregion,west-centralAnatolia

MelilitLösititlerinMineralojisiveJeokimyas›,Balç›khisar,Afyon(Türkiye)

Özet: Bat›-OrtaAnadolu’dayüzlekverenveBat›Toroslar’aaitsedimanterformasyonlar›kesenve/veyaörtenOrta Miyosenyafll›Afyonvolkanikkompleksigeniflyay›l›msunanpotasik-ultrapotasikaktiviteninürünlerinden oluflmaktad›r.Stratigrafikkonumlar›nadayal›olarakpotasikveultrapotasikvolkanizman›nüçevresigörülebilir. Melilit-lösititlavlar›ilkevrevolkanikfaaliyetinürünleridir.Lamproitleriseikincievrevolkanikfaaliyetitemsil etmektedirler.Lösititblokveparçalar›ncazenginolanBalç›khisarvolkaniklasitikserisibirincievrevolkanik aktiviteninürünleriniörtmektedir.Birinciveikincievrevolkanizman›nürünlerigölselsedimanterkayalarile örtülmektedir.BugölselsedimanterkayalardereceliolarakToklukvolkano-sedimanterserisitaraf›ndan üstlenmektedir.Fonotefritiklavdomlar›,dayklar›velavakmalar›çal›flmaalan›ndakiüçünçüevrevolkanik faaliyetlerioluflturmaktad›r. Afyonvolkanikkompleksindeyeralanvehacimselolarakküçüklavdomlar›velavakmalar›fleklindeyüzlek verenikimelilitlösetitoluflumuçal›fl›lm›flt›r.Tipikolarakporfiritikdokusunanmelilit-lösititlavlar›lösit,nefelin, baryumfeldspat,melilit,diyopsid,melanit,kalsit,apatitveopakminerallerdenoluflmaktad›r.Melilitkristallerinde genelliklegehlenit-akermanitbileflimibask›nd›r.Diopsidbileflimindekiklinopiroksenfenokristallerik›smenve/veya tamamenmelilittanelerinedönüflmüfltür.Jeokimyasalolarak%9.5–11.8aras›ndakiK 2OveNa 2O/K2Ooran›n›n ortalama2de¤erleriileultrapotasikkarakterdekimelilit-lösititlerinSiO 2 bilefleni%44ile%47aras›ndad›r.Al 2O3 veCaObileflenleri%18de¤erineulafl›rkenortalamaTiO 2 bileflenleri%1.22de¤erindedir.Melilitlösititleryüksek ayr›mlaflmagösterennadirtoprakvedurays›zelementbileflimlerinesahiptirler.Ba(8745ppm),Rb(670ppm)ve Sr(4802ppm)bileflenleriilkselmantovekondritleregörezenginleflmifltir.Melilitlösititler,dalma–batmave çarp›flmasüreçleriningeliflti¤iaktifk›takenar›nayak›nortamdakismiergimeilemeydanagelmiflilkselbireri¤iyin üstkabuktank›smenkirlenmesiileoluflanbirmagman›nürünleridir.

AnahtarSözcükler:lösit,melilit,lösitit,ultrapotasik,Afyonvolkanikbölgesi,bat›-ortaAnadolu

215 MELILITELEUCITITESFROM AFYON

Introduction (2000)assumedthattheultrapotassicvolcanicrocks Potassiclavashavetraditionallyattractedscientific werederivedfromamantleenrichedincompatible attentionthatisinverselyproportionaltotheir elementsthroughmantlemetasomatism. abundances.Prevalentinterestinpotassicrocksfocuses Keller(1983)suggestedthattheAfyonvolcanicarea ontheirunusualmineralogy,spectacularchemistry, isapartofaNeogenevolcanicbelt,whichfollowsthe mantlesourcecompositions,andtectonicevolutionofthe Tauridefoldchains,relatedtoLateTertiarycollisionand lithospherebeneathpotassiclavafields.Potassium-rich subductionprocessesalongtheCypriot-Taurusarc.Keller volcanicrocksarelimitedvolumetricallybutare &Villari(1972)suggestedthatthemainvolcanicactivity widespreadinseveraltectonicenvironments,suchas intheAfyonprovincedevelopedattheMiocene–Pliocene intraplateriftzonesinupliftareasorbehindconvergent boundary.Inadditiontothesegeodynamic platemarginsand,toalesserextentinoceanicintraplate interpretations,Besang etal. (1977)reported10K/Ar settings.IntheMediterraneanregion,ultrapotassicrocks agesfromhighlypotassicvolcanicrocksofthesouthern formedalongtheAlpinechainduringtheNeogeneto partofAfyonregionthatrangesbetween8.6Maand Quaternaryperiod.Themostwell-known 14.75Ma.TheproductsofthisMiddleMiocenepotassic- potassic–ultrapotassicvolcanicrocksaredistributednear ultrapotassicvolcanicactivityoverlieandintrudethe continentalandconvergentplatemarginsalongtheAlpine sedimentaryformationsinthenortheasternpartof chain,andtheseincludetheCalatravavolcanicprovinceof westernTaurides,includingtheGeyikDa¤Unitandthe centralSpain(Cebria&Lopez-Ruiz1995),theRhönarea Bozk›rUnit(Özgül1984).GeyikDa¤Unitisthe ofGermany(Jung1995),theRomanco-magmaticregion autochthonousunitofthecentralTauridesandconsistsof (Beccaluvaetal. 1991;Peccerillo1992),andtheAeolian platform-typesedimentsstartingwithaLowerPalaeozoic Islands(Clift&Blusztajn1999)inItaly. (CambrianandOrdovician)basementrocks,followedby InTurkey,potassictoultrapotassicvolcanicrocksare Mesozoic–LowerTertiaryrocks,madeuplargelyof locatedintheAfyonvolcanicprovince,theIspartaarea carbonates.TheBozk›rUnitwhich,correspondstothe (Francalancietal. 2000),andtheSivrihisararea(Özgenç Beyflehir-Hoyran-HadimNappesofPoissonetal. (1984), 1993)(Figure1).Therocksuitesfromtheseareasshare comprisesamélangeofpelagicsediment,spilite,diabase manycharacteristicsand,ingeneral,showthat andultramaficblocksofvarioussizesandages;theage petrogenesisofpotassicisnotasingularevent spanoftheblocksisbetweenLateTriassicandLate butmustberelatedtoanoverallorgeneralprocessor Cretaceous.TheBozk›rUnittectonicallyoverliesthe processes.Theoccurrenceofpotassium-richvolcanic LutetianflyschoftheGeyikDa¤Unitasaresultoflater rocksintheAfyonvolcanicprovince(Turkey)hasbeen Eocenemovements(Özgül1984).Detailedinvestigation knownsincetheearly1970s(Keller&Villari1972),but andmappingofthesedimentarybasementrocks,ranging inspiteofextensivestudiesbyseveralresearchers,there inagefromTriassictoTertiary,wassetforthbyÖztürk havebeennorecentmineralogicalandstratigraphic &Öztürk(1989).Thatstudyshowedthatthe examinationsoftheseparticularrocks. northeasternmostpartofthewesternTauridesconsists ofanumberoftectonostratigraphicrockgroupswith Basedongeochemicaldatafromdifferentlocalitiesin distinctivestratigraphicalandstructuralfeatures.Asseen theK›rka-Afyon-Ispartavolcanicareas,Francalanci etal. fromthegeologicalmap,theBalç›khisarGroupandthe (1990,2000)andSavaflç›n etal. (1995)indicatedthat Çölovas›allochthonousunits,whichrepresentthe therocksfromtheK›rka-Afyonareahaveanorogenic basementrocksofthestudyarea,weremappedandthen affinity,whereasthosefromtheIspartaareaexhibit comparedandcorrelatedwiththeclassificationofÖztürk orogenicandwithin-plateaffinities.Theultrapotassic &Öztürk(1989).Eachgroupwassimplifiedcomparedto suiteisaproductofaresidual,lithosphericmantle thoseofÖztürk&Öztürk(1989). probablymetasomatisedbyfluidsand/ormeltsof differentorigin(subduction-relatedforK›rka-Afyon Thepurposeofthispaperistopresentwhole-rock rocks;deepasthenosphericoriginforIspartarocks).A major,traceandrare-earthelementchemistryofthe morefertileandprobablydeepermantle,enrichedby potassicsuiteandthechemistriesofthemelilite subduction-relatedcomponents,wasthesourceofthe leucitites,todeterminatetheirgeochemicalaffinities potassicrocks.Aydar etal. (1996)andÇoban etal. relativetoprobablesourcesandtectonicsetting.

216 C.AKAL

GeologicalSetting linebetweenAfyontoIsparta,namedtheAntalyafault RegionalTectonics zone.Alongthefaultzone,silica-saturatedtostrongly silica-undersaturatedK-richvolcanicrocksand ThenorthwardsubductionoftheAfricanPlateunder ultrapotassicrockserupted(Savaflç›n etal. 1995; EurasiaPlateresultedinanimportantcontinental Francalancietal. 2000). collisionthatoccurredduringtheMiddle–LateMiocene (Fytikasetal. 1984).Thiscollisionalphasewasfollowed byanextensionaltectonicregime(Koçyi¤it1984; FieldDescription Savaflç›n1990;Savaflç›n&Güleç1990).Thearealocated Thestudyareaislocatedinthesouthernmostpartofthe betweentheeasternpartofwesternAnatoliaandthe Afyonvolcanicprovince(Figure2),~6-kmsouthwestof westernpartofcentralAnatoliaisdominatedbycomplex thetownofBalç›khisar.Thestratigraphicframeworkof structuralelements(Figure2).Koçyi¤it(1984)indicated thestudyisrepresentedby(1)melilite-leucititelavas: thatseveralNE–SW-andNW–SE-trendingcross-graben theyarethefirstproductsofthefirstvolcanicactivity; andhorststructuresboundedbyactivenormalfaults theyintrudeandcovertheoftheTauridebelt; dominatetheareabetweenAfyonandtheIspartaAngle. (2)leucititeblocksandaclast-richvolcaniclastic AccordingtoKoçyi¤it(1984),theextensionaltectonics successionnamelytheBalç›khisarvolcaniclastic commencedduringtheMiocene–LatePleistocene;this succession:theycoverthefirstvolcanicproductsand periodisinterpretedasthebeginningofintra-plate lamproiticrocks,whichareoneofthefirstproductsofa rifting.Y›lmaz(1989)notedthatthecompressional secondmagmaticphase;(3)lacustrinesedimentaryrocks: regimeinwesternAnatoliawasreplacedbyan theyshowgradationalconformablyboundary extensionalregimeandthenbyalkalinevolcanismin relationshipswiththeunderlyingvolcaniclasticsuccession Pliocenetime.Francalanci etal. (2000)arguedthatthe andinterfingerwiththeToklukvolcano-sedimentary alkalinemagmatismwasassociatedwithanextensional succession;(4)phonotephriticlavadomes,dykes,and tectonicphaseandoccurredalongN–S-trendingtectonic

Alpine - Himalayan Belt (after Neubauer & Raumer 1993) Compressional front of the Alpine Chain (after Beccaluva et al. 1991) Neogene compressional front of the Apennine- Maghrebian Chain (after Beccaluva et al. 1991) 3

Caspian Sea

2 Black Sea

4

1 8

Aegean Sea c 5 r 7 - Zagro A s lis Su n 6 it t

Atlantic Ocean Atlantic a u i B r 9 Calabr e

H rc 1 Calatava region (Spain) ellenic A 6 Isparta area (Turkey) 2 Massif Central (France) Mediterranean Sea 7 Afyon volcanic province (Turkey) 3 Rhön region (Germany) 8 Sivrihisar area (Turkey) 500 km 4 Roman province (Italy) 9 Skikda area (Algeria) 5 Aeolian region (Italy)

Figure1. StructuralsketchmapoftheMediterraneanregionandthelocationsofpotassium-richvolcanicrocks.

217 MELILITELEUCITITESFROM AFYON l conglomerateswhichare cementedbysilicaand/or. continuousupwardwith sandstone/siltstone/mudstone alternation alternationandreefal limestone nodularlimestoneand radiolite-bearingchert clasticsedimentsandcarbonates platformcarbonates terrace/Alluvium phonotephritic Toklukvolcano-sedimentary succession lacustrinesedimentary rocks Balç›khisarvolcaniclastic succession meliliteleucitite leucite-crystalrich epiclasticsandstone&conglomerate limestoneclast-richpebblestone -chertylimestone, - massive,whitecolor *mudstone/türbiditicsandstone **limestonewithchertbands limestone-cherty limestoneandpillowlavas * diabaseandserpentiniteblocks, ** sandstone/siltstone/claystone/ *** poorlysortedandgraded Formation KOCAÇAL Formation Formation Formation Formation Formation Formation Formation ***‹LYASLI BAKIRDA• *BELCE⁄‹Z KOYUNTEPE **SARIDERE **KOCADERE *HÜSEY•NL•ÇESME Lias Upper Jurassic Cretaceous Cretaceous LowerEocene- UpperLutetian UpperJurrasic- UpperTriassic-

UpperTriassic- LowerJurassic/ MiddleJurassic

UpperCretaceous

SAZAKGROUP BALÇIKH‹SARGROUP

1988).

ÇÖLOVASIALLOCHTHONOUSGROUPS

30’15.7” ° E30

etal. BabaDere 12 22’48.1” 1654m ° 73 Eminarkas›Tepe N38

32

10 KocaDere 9 41 55 1706m Meflebafl›Tepe 52 82 30 82 MEfiEBAfiILOCATION 1664m ÇobankayaTepe 1768m KarabelTepe 1982;Kaya1981,1982;Koçyi¤it1984;Pasquare

1973m Göktepe GürlekDere etal. 35 53 simplifiedmapshowingthemajorstructuralelementsandMiocenevolcanicsofwesternandcentralAnatolia(modifiedfromBingö 1686m KaraTepe (b) 8 1 GÖKTEPELOCATION 1776m 51 1803m 1983;Innocenti 25’26.6” observedboundary strikeanddipofbedding dere(stream) K›rcalTepe ° Mezargedi¤iTepe 35

N38

a

etal. 27’25.3” ° E30 m km 100 0 Erzurum ° Sivrihisar Pliocene UpperMiocene MiddleMiocene LowerMiocene 500 250 Afyon Isparta ° Balç›khisar ° Yozgat °Ni¤de K›rflehir Sea 0 1000 Ankara ° Mediterranean Sivrihisar Detailedgeologicalmapofthestudyarea; ° ° km °Afyon °Isparta 1989;Ercan1979,1986;Ercan BlackSea ‹stanbul ° Denizli Sea

°‹zmir

Sea Mediterranean Aegean Denizli b 0 100 Figure2. (a)

218 C.AKAL

flowsthatcharacterisethethirdphaseofvolcanicactivity fineleucitecrystalsandcrystalfragments.Throughout inthearea. thesequence,acalcitematrixiscommon. Meliliteleucitites,originallyemplacedasdomesand spatiallylimitedlavaflows,cropoutintwosmallcreeks PetrographyandMineralogyofMeliliteLeucitite aroundMeflebafl›TepeandGöktepe(Figure2).Melilite- leucititelavasatbothlocationsaretypicallydarktolight Themelilite-leucititelavasshowtypicallyhypocrystalline greyandhavemassivetexture;euhedraland/orpartially texturethatischaracterisedbythepresenceoflarge roundedleucitephenocrystswithadiameterranging euhedralleuciteandeuhedral/subhedralclinopyroxene from5mmto4cmarecharacteristic(Figure3). phenocrysts(Figure5).Meliliteleucititesatbothlocations arecomposedofleucite,nepheline,melilite,diopside, melanite,calcite,apatite,andopaqueminerals. Microphenocrystsaremainlyleucite,nepheline,melilite, ,andrarelymelanite,Ba-feldspar,andapatite. Therestofthematrixconsistscompletelyofleucite, melanite,apatite,clinopyroxene,andopaquemicrocrysts. The<0.1mmequantleucitecrystalsthatcomprisethe majorityofthegroundmassshowmorphologies consistentwithdodecahedralforms.Thenephelineand leucitecrystalsasobservedinthethinsectionaremantled bysecondarycalcite.

Leucites Figure3. Grey-darkgreymassiveleucititelavasandeuhedralleucite Leuciteoccursastwinned,weaklyanisotropiceuhedral phenocrysts(whitecolour)inthemelilite-leucititelavas.The hammeris33-cmlong. crystalsfreeoffluidinclusions;however,acicularapatite inclusionsarecommon.Althoughcoarselycrystalline,no AttheMeflebafl›location,themeliliteleucititesarewell chemicaloropticalzoninghasbeendetectedinthe exposed.TheBalç›khisarvolcaniclasticdepositsoverliea leucites.Representativeanalysesoftheseleucitesare leucititedomeandrelatedlavaflows(Figure4a,b).An giveninTable1.Thecompositionalrangeisnarrowand unconformitybetweenpyroclasticsequenceandthe veryclosetoidealleucitestoichiometry.Theseleucites meliliteleucititescanberecognisedfromitslightgrey havehighFeandverylowNaandCacontentsrelativeto weatheringsurfaces.Thethicknessoftheweathering theanalysesofleucitetabulatedbyDeer etal. (1993). zoneisabout50cm.Thecomponentsoftheweathering Notably,significantBa(upto0.5wt%)ispresent.The zone,whichcausethedevelopmentofthepalaeosol, recalculatedanalysesshowthatthecompositionalrange includefracturedindividualleucitecrystalsandmelilite- oftheleucitesisnarrowandveryclosetoidealleucitein leucititeclasts.Thegrainsofthepalaeosolarecemented theSiO2–NaAlSiO4–KAlSiO4 ternarydiagram(Figure6). byacarbonatematrix. Themelilite-leucititelavasareunderlainbyeuhedral leucitephenocryst-bearingepiclasticsandstoneand Ba-Feldspar conglomerate(Figure4a,b).Thesequenceiscomposed Barium,whichhaveonlybeenobservedinthe ofsand-sizedcrystalfragmentsofleucite,clinopyroxene, Meflebafl›meliliteleucitite,arecolourlessanhedralcrystals phlogopiteandmelilite-leucititelithicclasts.Crystal thatareusuallyassociatedwithleucite(Figure7). fragmentsconstitutemorethan50modalpercent. Symplectiteintergrowthtexturescharacterisedthe Thesizesofeuhedralleucitephenocrystsreach4cm bariumfeldspars.Leucitecrystalsareprobablyreplaced (Figure4c).Theothercomponentsofthesequence byBa-feldspar.Thecolourlessmineralscontainupto23 consistoflimestone,quartzite,andvolcanic-rock wt%BaO(Table1).Thesumsofthemicroprobeanalyses fragments.Theuppermostpartofthesequenceisrichin arecloseto100wt%,indicatingthatthisisnothydrated.

219 MELILITELEUCITITESFROM AFYON euhedralleucitephenocrystsinepiclasticsandstone (c) melilite-leucititelavaflows; (b) Melilite-leucititelavasoverlieeuhedralleucite-bearingepiclasticsandstoneandconglomerate; (a) andconglomerate.Penis14-cmlong. Figure4.

220 C.AKAL

Figure5. Photomicrographofmeliliteleucititeshypocrystallinetexture,comprisingmainlyleucitephenocrystsandscarceclinopyroxene phenocrysts(diopsideincomposition).Thelongsideofthephotographsare4mminlength,crossed-nicols.

TheBa-feldsparanalysesarerecalculatedbyusing typicallymantledbycalcite.Someofnephelinecrystals feldsparend-members,andtheresultswereplottedonto haveskeletal-likestructuresinthecalcitematrix(Figure Or-Ab-Anternarydiagrams.Allanalysesplotinthe 5).NephelinecrystalsintheMeflebafl›leucititehave -sanidinefield(Figure8a). compositionsclosetoidealnepheline(Table1).Inthe Bariumfeldsparthatcoexistswithleucitecrystalwas SiO2 (Q)–NaAlSiO4 (Ne)–KAlSiO4 (Ks)diagram,our analysed.Themicroprobetraversesfrombariumfeldspar nephelineanalysesaresimilartothoseofDeer etal. (1993)(Figure6). toleuciteshowthatK 2OandSiO 2 contentssignificantly increaseandBaOsignificantlydecreaseintheleucite. However,theAl 2O3 contentsoftheleuciteareonly Clinopyroxenes slightlyhigherthanthoseoftheBa-feldspar(Table1; Figure8b). Oscillatory-andsector-zonedclinopyroxenephenocrysts areelongateprismatic,subhedraland/oranhedral crystals,withpleochroismfrompalegreentopale Nepheline brownish-greeninthemelilite-leucititelavas.Darkgreen Nephelineisrecognisedbyitssquaretohexagonal diopsidicmicrocrystshavebeenclassifiedintotwo crystals.Intheserocks,thenephelinecrystalsare subgroups;asgroundmass(darkgreen,needle-andlath-

221 MELILITELEUCITITESFROM AFYON

SiO2

silica nephelinefromMeflebafl›location nephelinefromDeeretal.(1993) leucitefromGöktepe leucitefromMeflebafl› alkalifeldspar

NaAlSi3O8 KAlSi3O8

leucite KAlSi2O6

nepheline kalsilite

NaAlSiO4 KAlSiO4

Figure6. RecalculatedanalysesofleuciteandnephelineareplottedintermsofSiO 2 (Q)-NaAlSiO4 (Ne)-KAlSiO4 (Ks).Forcomparison,some nephelinedataaretakenfromDeer etal. 1993. shapedtiny,crystals),andasmicrocryststhatare scatteredinthegroundmass.Representativeanalysesand Melilitesarethemainmineralogicalcomponentofthe calculatedfull-rangecompositionsoftheclinopyroxenes Meflebafl›melilite-leucititeandaredistinguishedbytheir arepresentedinTable2.Ferricironcontentswere pegstructurepatternsandclearlyidentifiedbytheir calculatedbyassumingthattheare orangeyellow–paleblueinterferencecoloursandhoney stoichiometric,withthesumofthecationsequaltofour yellow–goldenyellowpleochroism(Figure10).The onthebasisofsix. microcrysticmelilitesarethemaincomponentsofthe Clinopyroxenephenocrystsarescarceinthemelilite matrix. leucitite,andtheanalysedmineralsgenerallyplotonthe Theanalysedmelilitecompositionsarerather Di-Hdjoin.AsseeninFigure9(Marimoto1989),the restricted,butonestrontium-rich(upto1.38wt%).In clinopyroxenephenocrystsintheMeflebafl›leucititeare termsofend-members,variationsincompositioncanbe diopsidic,andmicrocrystsaresaliticincomposition.In representedbysoda-melilite27–31,gehlenite25–38and theGöktepeleucitite,theanalysedmicrophenocrystshave akermanite31–46asshowninTable3andFigure11.All diopside-salite/salitecompositions. arerelativelygehlenite-akermaniterich,soda-melilite proportionsarelow(Figure11a)

222 C.AKAL

Thecompositionsofthemelilitesareclosetothose reportedbySahama&Meyer(1958),Velde&Yoder (1977),andToscani etal. (1990)fromtheNyirogongo volcanoandbyDunworth&Wilson(1998)fromSW Germany(Figure11b). AttheMeflebafl›location,theclinopyroxene phenocrystsareanhedralandcompletelyorpartially transformedtomelilite.Goodexamplesarepresentedin Figure12.Theupperleftphotograph(Figure12a)shows apartiallyroundedalargediopside.Theupperright photograph(Figure12b)showsaclinopyroxenethatis partiallytransformedtomelilite.Thelowerleft photograph(Figure12c)showsclinopyroxenerelictsthat areenclosedinanaggregateofmelilite.Theuniform opticalorientationsoftheclinopyroxenearepreserved.In thelastpicture(Figure12d)clinopyroxenehasbeen completelytransformedtomelilite.Sahama(1968) suggestedthatdecreasingtemperature,clinopyroxene crystalsreactwiththemeltproducingamarginof melilite.Thistransformationisexplainedasmelilitisation ofpyroxenebyBorodin&Pavlenko(1974)andisa productofametasomaticprocessintheformationof alkalinerocks.Theclinopyroxenesarediopsidic.The melilitederivedfromclinopyroxenehasthesame compositionassinglemelilitemicrophenocrysts. Figure7. Bariumfeldspar,distinguishedinthinsectionsbyits symplectite-likeintergrowthtexturesbetweenleuciteand bariumfeldspar.Thelongsideofthephotographis0.6 mminlength,crossed-nicols.

KAlSi O 3 8 60 leucite phenocrystal Ba-silicate Ba-silicate / leucite SiO2 50

orthoclase 40

30 sanidine Al2O3 20 K2O

10

BaO 0 Na2O anorthoclase a b -10 albite oligoclase andesine bytownite anorthite 1.32 1.34 1.36 4.107 4.109 1.33 1.35 1.37 4.108 4.110 NaAlSi3O8 CaAl2Si2O8

Figure8. (a) CompositionsofBa-feldsparmineralsontheOr–Ab–Anternarydiagram;(b) compositionalchangefromtheBa-feldsparmineralthat coexistswithleucite.

223 MELILITELEUCITITESFROM AFYON Ba-FELDSPAR ucitecrystals. cationsper32oxygens 98.81 97.50 99.14 98.27 99.30 98.86 101.0 99.5 100.6 101.5 LEUCITITE NEPHELINE Ba-FELDSPAR LEUCITE ------0.02 0.01 - 0.01 0.00 - 0.00 - 0.09 0.00 - 0.02 2.05 - - - - 21.07 20.40 21.49 0.47 0.47 0.51 0.74 0.12 0.51 0.82 ------0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.12 ------0.45 0.44 0.46 0.01 0.01 0.01 0.01 0.00 0.01 0.01 Representativemicroprobeanalysesofleucite,nepheline,Ba-feldsparcrystalsandamicroprobetraversefromBa-feldspartole 2.10 2.51 3.11 2.88 2.75 2.51 2.61 2.21 2.10 2.51 2.35 1.74 1.65 1.46 0.33 0.55 0.63 0.33 0.34 0.52 0.66 0.04 0.05 0.12 0.00 0.03 0.02 0.00 0.03 0.00 0.01 0.01 0.59 0.58 0.50 0.5315.23 15.27 0.57 15.18 15.02 0.55 15.58 0.55 15.21 15.38 0.49 0.49 15.13 15.08 15.53 15.41 0.59 0.58 0.50 0.02 0.01 0.01 0.02 0.03 0.02 0.05 22.29 22.21 22.41 22.44 22.83 22.79 23.07 22.86 23.20 23.02 22.93 21.29 21.02 21.48 21.43 21.35 21.34 21.51 21.52 20.07 32.03 32.40 31.96 31.92 32.23 32.67 32.33 32.49 32.20 31.76 31.43 21.29 21.02 21.48 23.01 23.12 23.20 23.16 22.83 22.79 23.33 0.260.00 0.28 0.00 0.25 0.00 0.24 0.00 0.34 0.00 0.52 0.02 0.27 0.00 0.58 0.00 0.55 0.00 0.46 0.01 0.64 0.00 1.74 0.04 1.65 0.04 1.46 0.06 2.03 0.070.09 1.820.05 0.09 0.06 0.03 1.68 0.07 0.04 0.00 1.92 0.09 0.04 0.02 1.61 0.08 0.04 1.46 0.02 0.04 0.14 0.03 0.07 0.08 0.13 0.02 0.05 0.02 0.06 0.08 0.08 0.11 0.04 0.02 0.04 0.01 0.06 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.12 0.51 0.08 0.16 0.16 0.55 0.00 21.07 20.40 21.49 21.05 22.11 21.22 22.01 22.05 17.93 0.00 0.01 0.00 0.00 0.06 0.08 0.03 0.06 0.110.01 0.100.00 0.01 0.01 0.000.00 0.010.00 0.00 0.001.02 0.01 0.00 0.04 0.00 0.00 1.03 0.01 0.01 0.11 0.00 0.00 1.01 0.02 0.00 0.05 0.00 0.00 1.01 0.01 0.00 0.090.01 0.00 0.01 0.99 0.02 0.00 0.05 0.00 0.00 0.00 0.99 0.02 0.00 0.04 0.00 0.04 0.00 1.00 0.01 0.00 0.02 0.00 0.00 0.98 0.00 0.02 0.07 0.00 0.00 0.10 0.01 0.97 0.00 0.03 0.06 0.00 0.96 0.08 0.00 0.00 0.00 0.97 0.08 0.04 0.00 0.45 0.07 0.06 0.00 0.01 0.44 0.46 0.06 0.09 0.06 0.01 0.46 0.06 0.47 0.08 0.05 0.44 0.00 0.50 0.06 0.08 0.04 0.48 0.47 0.00 0.09 0.06 0.11 0.00 0.46 0.44 0.07 0.05 0.06 0.00 0.07 0.46 0.49 0.09 0.01 0.06 0.45 0.47 0.06 0.05 0.38 0.49 0.05 0.11 0.53 0.06 0.06 0.08 0.05 2.000.00 2.000.97 0.00 2.02 0.95 0.00 2.03 0.96 0.00 2.01 0.96 0.00 2.01 0.99 0.00 2.00 0.98 0.00 2.02 0.99 0.00 0.98 2.02 0.00 2.03 0.99 0.00 2.03 0.99 0.00 0.99 2.57 0.00 2.56 1.36 0.00 2.54 1.36 0.00 2.53 1.38 0.00 1.34 2.52 0.00 1.36 2.54 0.00 2.50 1.34 0.00 2.51 1.34 0.00 2.53 1.33 0.00 1.28 98.8 99.8 100.4 100.5 99.5 100.6 100.0 100.7 100.9 100.8 99.9 98.81 97.50 99.14 100.22 99.30 100.14 100.34 101.28 96.57 7.01 6.98 7.542.110.00 7.561.88 2.120.09 0.00 7.11 2.070.01 1.87 0.000.00 7.37 0.10 2.09 1.86 0.01 0.00 0.131.47 0.00 7.11 2.07 1.86 0.010.44 0.00 0.12 0.00 1.45 7.13 2.08 1.87 0.01 0.44 0.00 0.11 0.00 1.46 6.78 1.89 2.07 0.01 0.48 0.10 0.00 7.37 0.00 1.44 0.00 1.89 2.10 0.48 7.03 0.00 0.11 0.00 1.49 2.14 0.01 1.89 0.45 1.45 0.00 0.00 0.09 2.10 0.46 6.58 1.88 0.01 0.00 2.13 0.09 1.48 0.00 1.84 0.00 6.74 0.00 0.45 0.10 1.83 0.00 1.45 0.00 7.25 0.10 0.45 2.57 0.00 20.34 0.01 1.45 0.00 0.01 0.43 2.56 1.36 20.27 1.48 0.00 0.08 0.46 19.91 1.48 2.54 1.36 0.00 21.11 0.44 0.00 0.08 0.00 1.98 21.16 1.38 0.00 0.00 21.35 0.07 0.00 0.06 1.98 1.00 20.87 0.01 0.46 0.00 0.01 0.00 0.06 1.98 0.99 0.00 0.47 0.00 0.02 0.00 2.01 0.05 1.00 0.00 0.00 0.50 0.02 0.00 2.01 0.00 0.99 0.00 0.00 0.95 0.01 2.01 0.00 0.00 0.99 0.00 0.00 0.94 0.01 2.01 0.00 0.98 0.00 0.00 0.00 0.02 0.92 0.00 0.99 0.00 0.00 0.02 0.98 0.00 0.00 0.00 0.99 0.00 0.00 0.99 0.00 0.96 21.77 22.25 21.84 21.76 21.16 21.35 21.51 21.30 21.00 20.62 20.78 6.58 6.74 7.25 7.13 6.64 7.23 7.02 7.38 7.67 54.40 55.00 55.75 56.00 54.88 55.25 55.00 55.66 55.76 55.95 55.55 47.37 46.82 46.78 47.81 46.63 47.87 47.20 47.9842.41 46.62 43.20 41.87 42.09 41.93 42.23 41.79 42.48 43.12 42.68 43.07 47.37 46.82 46.78 53.82 54.68 54.47 55.48 54.88 55.25 55.58 99.00 100.65 99.78 99.67 99.91 100.23 99.53 99.90 99.47 100.16 99.71 3 3 O O 2 2 2 2 O O 2 2 O O +2 2 2 2 2 cation=4onthebasisof6oxygens Sample NoSiO 62 63 64 66 4.108 4.109 5.114 5.115 6.125 6.126 6.127 1.32 1.33 1.34 2.62 2.63 2.64 3.98 3.99 3.100 FeO MgO CaO FeO* MgO CaO BaO BaO Na Sample NoSiO 1.17 1.18 2.24Na 2.25 3.5 4.59 4.6 5.72 5.73 9.118 9.119 1.32 1.33 1.34 1.35 1.36 1.37 4.107 4.108 4.109 4.110 Table1. TiO TiO Al Mg Ca Ba Na K Al K K Si Ti Al Fe Total Σ Total cationsper32oxygens Si Ti Al Fe Mg Ca Ba Na K

224 C.AKAL

Table2. Representativemicroprobeanalysesofclinopyroxenephenocrystsandmicrocrystsofthemeliliteleucitites.

c-rc rmmmmmc rmc

SampleNo 27 3.26 3.28 3.40 3.39 122 123 19/a-1 19/a-2 19/a-3 19/a-4 19/a-5 19/a-6 19/a-7

SiO2 51.71 54.05 51.35 52.41 52.49 51.33 49.56 50.67 50.01 50.33 51.24 51.21 52.54 52.66 ZrO2 0.03 0.02 0.05 0.04 0.01 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 TiO2 0.56 0.34 0.52 0.49 0.41 0.92 1.40 1.77 1.10 1.08 0.85 0.87 0.63 0.59 Al2O3 2.32 0.99 2.44 2.06 1.20 0.99 1.63 3.33 4.09 4.08 3.50 3.33 2.29 2.11 Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.16 0.08 0.07 0.02 0.01 FeO* 5.08 2.99 5.39 4.45 4.00 12.98 12.09 10.82 6.78 6.81 6.48 6.30 6.20 5.95 MnO 0.07 0.04 0.00 0.18 0.07 0.42 0.40 0.31 0.09 0.17 0.14 0.10 0.16 0.15 MgO 14.69 17.04 14.47 15.21 16.18 9.94 11.07 10.54 12.96 12.89 13.34 13.51 13.74 14.01 CaO 24.74 25.15 24.74 24.64 25.07 21.15 22.28 21.07 23.95 23.80 23.99 23.93 24.14 23.96 SrO 0.05 0.00 0.01 0.08 0.09 0.08 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na2O 0.20 0.15 0.23 0.19 0.27 1.71 1.25 1.86 0.38 0.34 0.32 0.31 0.29 0.34 K2O 0.00 0.02 0.00 0.00 0.00 0.01 0.02 0.15 0.01 0.02 0.01 0.00 0.04 0.03

Total 99.44 100.83 99.18 99.95 99.88 99.52 99.83 100.52 99.42 99.67 99.95 99.63 100.50 99.82 CalculatedvaluesassumingScation=4onthebasisof6atoms Si 1.92 1.95 1.91 1.93 1.92 1.95 1.87 1.89 1.87 1.88 1.90 1.90 1.94 1.95 Al 0.10 0.04 0.11 0.09 0.05 0.04 0.07 0.15 0.18 0.18 0.15 0.15 0.10 0.09 Ti 0.02 0.01 0.01 0.01 0.01 0.03 0.04 0.05 0.03 0.03 0.02 0.02 0.02 0.02 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe2+** 0.10 0.05 0.10 0.10 0.03 0.28 0.19 0.22 0.16 0.18 0.18 0.18 0.19 0.19 Fe3+** 0.05 0.04 0.06 0.04 0.09 0.13 0.19 0.12 0.05 0.03 0.02 0.02 0.00 0.00 Mn 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 Mg 0.81 0.92 0.80 0.83 0.88 0.56 0.62 0.59 0.72 0.72 0.74 0.75 0.76 0.77 Ca 0.98 0.97 0.98 0.97 0.98 0.86 0.90 0.84 0.96 0.95 0.95 0.95 0.96 0.95 Na 0.01 0.01 0.02 0.01 0.02 0.13 0.09 0.13 0.03 0.02 0.02 0.02 0.02 0.02 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Wo 50.29 49.09 50.41 49.87 49.38 46.55 46.96 47.43 50.58 50.44 50.27 50.14 50.06 49.69 En 41.54 46.28 41.02 42.82 44.37 30.42 32.48 33.02 38.09 38.01 38.90 39.39 39.65 40.43 Fs 8.16 4.63 8.57 7.31 6.25 23.02 20.56 19.56 11.33 11.55 10.83 10.47 10.30 9.88

c-1....m-10: Microprobetraversesforeachphenocryst,fromthecentralpartstothemarginsofthecrystals FeO*: TotalironasFeO,intheatomicratios Fe2+** &Fe3+** Fe2+ andFe3+ havebeenrecalculatedafterMarimoto(1989) c: core r: rim m: groundmassmicrocrysts

Wollastonite Melanite Ca2Si2O6 Melanitecrystalsarethemaincomponentsofthemelilite 3.26 3.28 phenocryst 1 3.39 3.41 phenocryst 2 leucitites(Figure13a).Thedataarepresentedin 122 123 microcryst Table4.AnotablefeatureisthatthemelanitesareCa- 1 microphenocryst Fasaite (+Al) andTi-richgarnet(upto33wt%CaOandupto17.88

2 5 3.40 3.27 3.28 6 4 3 wt%TiO 2).inthemelanitesistypicallylow 3.39 3.26 3.41 (0.3–1.7wt%Al 2O3).WhileSiO 2,FeO,Na 2O,andK 2O 1 123 122 Ferrosalite Diopside Salite decreasefromthecoretothemarginsofthecrystals, TiO andCaOincrease. En-diopsite Ferroaugite 2

Enstatite Ferrosilite Mg2Si2O6 Fe2Si2O6 Apatite

Figure9. Thecompositionoftheclinopyroxenephenocrystsand Apatitecrystalsareobservedassubhedral/anhedral microphenocrystsinthemelilite-leucititelavas. crystalsandasacicular,euhedralcrystals.

225 MELILITELEUCITITESFROM AFYON

Figure10. Melilitemicrophenocrystsandthepegstructurepatternofthemelilitecrystals(samplefromtheMeflebafl›location).The longsidesofthephotographsare1.1mminlength,crossed-nicolsandplane-polarisedlight.

SodaMelilite SM+Fe-SM CaNaAlSi2O7 Sahama&Meyer(1958),Nyirogongo Toscanietal.(1990),Nyirogongo Dunworth&Wilson(1998),SWGermany 3/C-MelilitesintheMeflebafl›Leucitite Velde&Yoder(1977),igneousmelilites Melilite+Nepheline+ Wollastonite

Melilite a b Gehlenite Akermanite Fe-Ak Ak Ca2Al2SiO7 Ca2MgSi2O7

Figure11. (a) Meflebafl›melilitecompositionsintermsofend-members; (b) comparisonofthemelilitesfromtheMeflebafl›leucitite withvolcanicmelilitesinthesystemsoda-melilite-ferro-akermanite–akermanite.

226 C.AKAL

Figure12. Melilitephenocryststransformedfromclinopyroxene. (a) Partlyroundedlargediopsidicclinopyroxene; (b) clinopyroxene,partly transformedtomelilite; (c) clinopyroxeneremnantsenclosedinaggregatesofmelilite; (d) clinopyroxeneiscompletelytransformedto meliliteaggregates.Thelongsidesofthephotographsare1.5mminlength,andcrossed-nicols.

Subhedral/anhedralcrystals,distinguishedbytheirhigh Geochemistry reliefandnumeroushighlyrefringentinclusions,are Themajor-andtrace-elementcompositionsoften locatedinthegroundmass(Figure13b).Generally,the representativemelilite-leucititiclavasamples,including acicularapatitecrystalsarefoundasinclusionsinleucite lavaflowsandlavadomes,weredeterminedbyX-ray crystals.Chemicalanalysesformajorelements(Table5) fluorescencespectrometry(XRF)onanARL8420 showthattheseapatitesarerelativelyhomogeneousin instrumentintheGeoscienceAnalyticalServices composition(P2O5 rangesfrom39to41wt%,andCaO laboratoriesofKeeleUniversity(England),calibrated from54to56wt%).Allofthecrystalsarefluor-apatite, againstbothinternationalandinternalstandards.REE withFrangingfrom2.50to3.86wt%. weredeterminedbyICP/MSatXRALLaboratories(a divisionofSGSCanadaInc.).

227 MELILITELEUCITITESFROM AFYON

Table3. RepresentativemicroprobeanalysesofmelilitemicrophenocrystsfromtheMeflebafl›leucitite.

SampleNo 1.4 1.6 2.13 2.15 4.43 4.44 5.53 7.68 7.71 8.84 8.85 9.88 9.90 10.94 10.95

SiO2 42.00 42.65 42.05 42.39 42.13 42.49 42.79 43.28 42.47 42.70 42.33 43.20 43.15 42.77 42.19 TiO2 0.10 0.03 0.00 0.05 0.00 0.05 0.06 0.00 0.03 0.10 0.07 0.09 0.01 0.04 0.03 Al2O3 6.80 6.73 6.64 4.99 6.44 6.61 6.17 6.61 6.01 6.45 6.52 6.63 6.70 6.79 6.62 FeO 6.38 6.78 6.53 7.26 6.84 6.68 6.31 6.78 7.40 6.21 6.34 6.01 6.27 6.78 6.66 MnO 0.26 0.23 0.30 0.16 0.18 0.20 0.16 0.23 0.28 0.17 0.25 0.17 0.23 0.15 0.20 MgO 5.44 5.15 5.26 5.91 5.47 5.29 5.80 5.34 5.42 5.29 5.44 5.31 5.53 5.24 5.08 CaO 31.60 30.75 31.11 31.60 30.84 30.60 31.43 30.67 31.31 31.14 30.91 31.33 30.95 30.31 30.31 SrO 1.26 1.35 1.24 1.38 1.38 1.26 1.17 1.34 1.36 1.22 1.23 1.31 1.05 1.25 1.24 BaO 0.04 0.58 0.58 0.16 0.58 0.23 0.04 0.12 0.12 0.43 0.00 0.51 0.47 0.58 0.00

Na2O 4.94 4.71 4.60 3.86 4.49 4.62 4.16 4.34 4.42 4.62 4.50 4.70 4.58 4.84 4.65 K2O 0.08 0.19 0.12 0.12 0.09 0.09 0.09 0.15 0.15 0.11 0.13 0.10 0.11 0.16 0.09

Total 98.93 99.15 98.48 97.89 98.43 98.13 98.20 98.91 98.97 98.44 97.72 99.37 99.10 98.94 97.13

Si 3.89 3.97 3.94 4.01 3.95 3.99 4.01 4.04 3.96 3.99 3.98 4.00 4.01 3.98 3.99 Ti 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 Al 0.74 0.74 0.73 0.56 0.71 0.73 0.68 0.73 0.66 0.71 0.72 0.72 0.73 0.75 0.74 Fe3+ 0.36 0.19 0.23 0.13 0.21 0.14 0.06 0.01 0.23 0.14 0.15 0.12 0.09 0.18 0.13 Fe2+ 0.14 0.34 0.28 0.44 0.32 0.38 0.44 0.52 0.34 0.35 0.35 0.35 0.40 0.35 0.40 Mn 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 Mg 0.75 0.71 0.73 0.83 0.76 0.74 0.81 0.74 0.75 0.74 0.76 0.73 0.77 0.73 0.72 Ca 3.13 3.07 3.12 3.20 3.10 3.08 3.16 3.06 3.13 3.12 3.11 3.11 3.08 3.02 3.07 Sr 0.07 0.07 0.07 0.08 0.08 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.06 0.07 0.07 Ba 0.00 0.02 0.02 0.01 0.02 0.01 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.02 0.00 Na 0.89 0.85 0.84 0.71 0.82 0.84 0.76 0.79 0.80 0.84 0.82 0.84 0.82 0.87 0.85 K 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.01

SM-Fe.SM 55 47 48 35 46 43 37 36 44 44 43 43 41 46 44 Fe-AK 81815231720232718181919211821 AK 37 36 37 42 38 37 41 37 37 38 38 38 38 36 36

SM 31 30 30 27 29 30 28 28 29 30 29 31 29 31 30 GEH 38 32 34 25 32 30 27 26 32 30 31 30 29 32 30 AK 31 37 36 48 39 40 46 46 40 39 40 39 41 37 39

CalculatedvaluesassumingScation=10onthebasisof14Oxygenatoms FeO*: TotalironasFeO,intheatomicratios Fe2+** &Fe3+**: Fe2+ andFe3+ havebeenrecalculatedafterMarimoto(1989)

Quantitativeanalysesofmineralcompositionswere Bulkrockmajor-andtrace-elementanalysesand obtainedattheUniversitePierreetMarieCurie CIPWnormsoftherepresentativemelilite-leucitite (LaboratoiredePetrologie-Mineralogique),Parisusing samplesarepresentedinTable6.Themelilite-leucitite MS-46CAMECAelectronmicroprobeandCAMEBAX lavasarehighlyBa,ZrandK-richandstronglyalkaline, automatedelectronmicroprobe.Naturalandsynthetic andplotintheleucitefieldinthetotalalkali-silica mineralswereusedasstandardsforclinopyroxenes, classificationofLeBasetal. (1986)(Figure14a,b). amphiboles,micas,melilites,leucites,feldspars,and Theselectedrepresentativesamplesareplottedonthe apatites.Countingtimewas30s;acceleratingvoltagewas Ce/ZrversusZrbinarydiagramofFloydetal. (1996)for 15kV;beamcurrentwas20–30nA;beamdiameterwas5 partialmeltingandfractionalcrystallisationprocessesfor µm. themeliliteleucitite.Thediagramusespossiblecrustal

228 C.AKAL

Table4. RepresentativemicroprobeanalysesofTi-richmelanitecrystalsfromtheGöktepeandMeflebafl›leucitites.

inner-1 2 3 4 5 6 edge7 inner-1 2 edge-3

SampleNo 19/A 3/C

AnalyseNo 56 57 58 59 60 61 1.7 4.61 4.76 4.77

SiO2 51.94 35.26 29.18 28.71 28.06 28.33 26.37 53.87 22.67 24.52

TiO2 0.62 2.26 13.56 14.71 15.13 14.97 17.01 0.10 16.32 17.49

Al2O3 0.53 0.50 0.32 0.35 0.38 0.39 0.67 23.21 1.70 1.07 FeO* 15.46 27.66 22.47 21.89 22.07 21.56 19.98 0.61 18.53 19.04 MnO 0.58 0.27 0.37 0.42 0.36 0.39 0.35 0.06 0.18 0.26 MgO 8.76 0.24 0.60 0.66 0.69 0.75 0.96 0.00 0.92 1.14 CaO 19.55 33.13 31.46 31.92 31.48 31.31 31.61 0.05 30.69 31.22

Na2O 2.61 0.08 0.44 0.43 0.51 0.44 0.36 0.00 0.04 0.16

K2O 0.12 0.02 0.00 0.01 0.00 0.00 0.00 19.97 0.00 0.00

Total 100.23 99.48 98.40 99.13 98.71 98.15 97.47 98.86 95.50 96.62 CalculatedvaluesassumingScation=8onthebasisof12Oxygenatoms Si 3.93 2.91 2.48 2.42 2.38 2.41 2.27 4.00 2.04 2.15 Ti 0.04 0.14 0.87 0.93 0.96 0.96 1.10 0.01 1.10 1.15 Al 0.05 0.05 0.03 0.03 0.04 0.04 0.07 2.03 0.18 0.11 Fe+3 0.41 1.87 1.36 1.33 1.36 1.29 1.24 -0.15 1.17 1.18 Fe+2 0.56 0.04 0.23 0.21 0.20 0.25 0.20 0.19 0.22 0.21 Mn 0.04 0.02 0.03 0.03 0.03 0.03 0.03 0.00 0.01 0.02 Mg 0.99 0.03 0.08 0.08 0.09 0.10 0.12 0.00 0.12 0.15 Ca 1.58 2.93 2.86 2.88 2.86 2.86 2.91 0.00 2.95 2.93 Na 0.38 0.01 0.07 0.07 0.08 0.07 0.06 0.00 0.01 0.03 K 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.89 0.00 0.00

FeO*: TotalironasFeO.intheatomicratios Fe2+** &Fe3+**: Fe2+ andFe3+ havebeenrecalculatedafterMarimoto(1989)

Table5. Representativemicroprobeanalysesofapatitecrystalsinmelilite-leucitite.

SampleNo 23 24 25 26 27 28 29 30 32 33 34

SiO2 1.34 1.32 2.04 1.16 1.31 2.12 1.85 1.51 1.86 1.98 1.83 MnO 0.00 0.00 0.05 0.06 0.00 0.00 0.00 0.04 0.04 0.09 0.00 CaO 56.39 56.50 55.37 55.91 55.99 54.39 54.91 55.84 56.37 55.90 55.81 SrO 0.59 0.85 1.46 0.30 0.76 0.65 0.67 0.73 0.84 1.06 0.42

Na2O 0.05 0.03 0.04 0.05 0.06 0.04 0.07 0.05 0.05 0.06 0.05 P2O5 40.93 41.09 38.37 40.40 40.24 37.46 39.32 40.07 39.60 39.36 39.16 La2O3 0.13 0.16 0.42 0.11 0.06 0.54 0.20 0.14 0.20 0.22 0.09 Ce2O3 0.14 0.25 0.73 0.06 0.21 0.76 0.66 0.16 0.27 0.35 0.37 Nd2O3 0.00 0.11 0.28 0.15 0.27 0.35 0.13 0.29 0.07 0.29 0.06 F 2.77 2.50 2.80 3.68 3.55 3.33 3.86 3.56 3.18 3.36 3.13 Cl 0.02 0.01 0.01 0.06 0.00 0.01 0.00 0.00 0.01 0.00 0.03

Total 102.36 102.81 101.57 101.95 102.44 99.64 101.67 102.40 102.53 102.66 101.05

229 MELILITELEUCITITESFROM AFYON

Table6. Major-(wt%),trace-(ppm)andrare-earthelementcompositionsofselectedsamplesofmeliliteleucititeswithC.I.P.W.norms.

MEfiEBAfiILOCATION GÖKTEPELOCATION REEcompositionsofsamples

SampleNo 1a 1c 1d 2g 3b 3c 3d 18 19a 19b 19c 19a 1a Göktepe Meflebafl›

SiO2 46.16 45.60 46.89 46.14 45.64 46.05 46.04 48.92 45.62 44.02 45.28 Au (ppb) 5 <5 TiO2 1.04 1.00 1.06 1.04 1.01 0.98 1.02 1.44 1.27 1.22 1.25 Na (ppm) >10000 >10000 Al2O3 17.96 17.52 18.05 17.74 17.44 17.57 17.55 16.80 16.45 15.80 16.13 Ca (%) 7.4 6.6 Fe2O3T 6.52 6.36 6.59 6.50 6.44 6.40 6.46 8.38 7.06 6.87 7.11 Sc (ppm) 5.4 2.7 MnO 0.12 0.11 0.12 0.12 0.11 0.12 0.12 0.17 0.13 0.13 0.14 Cr (ppm) 20 14 MgO 1.61 1.69 2.37 1.83 2.14 1.79 1.87 1.99 2.88 3.57 2.57 Fe (%) 4.45 3.7 CaO 9.76 9.61 7.48 8.07 9.07 9.91 8.84 6.41 9.36 9.17 10.59 Co (ppm) 16 12

Na2O 2.00 1.65 2.27 1.98 1.29 1.96 2.04 2.60 1.83 2.44 3.00 Ni (ppm) <100 <100 K2O 11.24 11.25 12.02 11.81 11.19 10.09 11.67 9.69 9.46 9.76 8.48 Zn (ppm) 100 60 P2O5 0.28 0.26 0.27 0.27 0.31 0.30 0.31 0.28 0.50 0.48 0.49 As (ppm) 8 5 LOI 2.56 3.47 2.41 2.48 3.47 4.62 2.27 1.88 3.98 4.28 3.14 Se (ppm) <3 <3

Total 98.97 98.53 99.55 97.98 98.13 99.78 98.17 98.56 98.53 97.74 98.17 Br (ppm) 4 4 Rb (ppm) 470 350 Cl 620 557 1048 1299 433 210 1038 827 241 1479 1403 Sr (ppm) 2200 2600 S 386 233 239 294 196 109 519 61 162 233 148 Mo (ppm) <5 <5 Cr 24 35 27 24 29 25 23 49 25 28 33 Ag (ppm) <5 <5 Cu 83 82 77 84 90 77 86 131 109 100 121 Sb (ppm) 1.2 2 Ga 22 24 24 22 22 23 24 26 24 25 27 Cs (ppm) 12 15 Nb 41 41 44 44 41 40 42 52 47 45 47 Ba (ppm) 7500 4300 Ni 10 8 11 9 9 9 11 13 16 17 21 La (ppm) 138 96 Pb 99 94 77 97 97 85 103 86 121 121 122 Ce (ppm) 243 169 Rb 433 486 656 670 505 373 506 513 480 498 518 Nd (ppm) 93 68 Sr 3227 3702 2490 3234 4802 3010 3419 3031 2222 2811 3984 Sm (ppm) 15.4 10.8 Th 54 50 58 52 55 61 51 54 72 61 61 Eu (ppm) 3.7 2.7 V 140 142 142 130 122 114 124 214 168 165 172 Tb (ppm) 1.3 0.8 Y 28 27 28 30 26 22 28 36 36 34 34 Yb (ppm) 2.4 1.6 Zn 97 96 99 95 98 97 99 110 110 109 110 Lu (ppm) 0.33 0.26 Zr 568 530 587 601 542 425 565 857 769 761 772 Hf (ppm) 15 11 Ba 4951 4976 6055 5402 5064 4701 5177 6882 8745 6618 6510 Ta (ppm) 2 2 La 77 71 80 67 71 74 64 97 116 93 103 W (ppm) 3 3 Ce 122 111 119 114 128 120 101 155 184 185 163 Ir (ppb) <20 <20 Nd 43 36 40 40 42 40 34 40 57 53 51 Hg (ppm) <1 <1 Th (ppm) 58 43 or(KAS6) 29.10 28.12 15.37 22.55 22.31 36.26 24.32 55.40 28.36 69.89 39.89 U (ppm) 19.1 18 an(CAS2) 7.50 8.01 3.84 5.12 9.85 10.46 4.68 6.22 9.94 - 6.21 Ce/Yb (ppm) 101.25 105.63 lc(KAS4) 35.18 36.95 49.71 43.98 41.56 24.47 41.65 7.62 28.19 - 13.70 Ba/Rb (ppm) 16 12 ne(NAS2) 10.19 8.55 11.52 10.21 6.72 10.15 10.48 13.53 9.63 - 15.72 Rb/Cs (ppm) 39 23 ns(NS) ------9.05 - La/Yb (ppm) 58 60 Diwo(CS) 5.42 5.75 7.83 6.39 7.27 6.09 6.31 6.88 9.85 0.35 8.79 Rb/Sr (ppm) 0.21 0.13 Dien(MS) 4.48 4.78 6.56 5.15 6.09 5.06 5.24 5.65 8.28 0.29 7.35 Difs(FS) 0.25 0.24 0.25 0.47 0.23 0.26 0.25 0.36 0.28 0.01 0.30 Hyen(MS) ------10.53 - Hyfs(FS) ------0.29 - Olfo(M2S) ------0.47 - Olfa(F2S) ------0.01 -

Total 92.11 92.39 95.10 93.86 94.02 92.74 92.93 95.66 94.54 90.89 91.96

230 C.AKAL

Figure13. (a) Euhedralmelanitemicrophenocrysts(micro-sizedmelanitecrystals),distinguishedbytheirdarkbrowncolourinthegroundmass;(b) apatitemicrophenocrystsaredeterminedonthebasisoftheirhighreliefandnumeroushighrefringentinclusions.Thelongsid esofthe photographsare0.7mminlength,plane-polarisedlight.

15 20

High K-Series Leucitite

Trachyte (Q < 20%) Tephriphonolite ALKALINE SERIES

Owt% Trachydacite 8 2 10 (Q > 20%) SUBALKALINE SERIES Phonotephrite O wt% K-Series 2 Tephrite K O + K Basaltic- 2 Ol < 10% trachyandesite Basanite Na Ol > 10% Na-Series

Picro- BasaltBasaltic- a b andesite 0 0 12345678910 4050 60 70 SiO2 wt% Na2O wt%

Figure14. (a) VariationdiagramoftheK2O/Na2OvsSiO2 formeliliteleucitite;(b) Na2O+K2OvsSiO2 diagramfromLeBasetal. (1986)formelilite leucitite.ThedashedlineapproximatesthetransitionbetweenthealkalineandsubalkalineseriesafterMacDonald&Katsura(1 964).

231 MELILITELEUCITITESFROM AFYON

1 primitive mantle AFC (pelagic sed) r=0.8 composition 0.1% 0.2 0.8 0.4 0.1 1% 0.1 0.2 AFC (pelagic sed) r=0.4 0.4 5% 0.2 0.1 0.8 0.4 10% 0.8 partial melting trend of 0.1 AFC (UpCC) r=0.8 garnet lherzolite20% 30% 0.8 0.4 0.2 Ce / Zr (ppm) Ce / Zr FC r=0 assumed parental basalt composition 0.1 10 100 1000 10000 Zr (ppm)

Figure15. ModelledpartialmeltingandassimilationwithfractionalcrystallisationdiagramofFloydetal. (1996).Themelilite-leucititesamplesplot onthefractional-crystallisationtrendofparentalbasaltcomposition.FC–fractionalcrystallisation,AFC–assimilationwith fractional crystallisation,Up.CC–uppercontinentalcrust,r–ratio. contaminationvaluesofthehigh-potassicseriesandnon- normalisedpatternsofbothlocationsaresimilar,andare modalmeltingvaluesforgarnetlherzolite.Asseenfrom characterisedbystrongrelativelightrare-earthelement Figure15,lowCe/Zrratio-bearingleucititecanbe (LREE)enrichment(Table6).Strongenrichmentsofthe generatedfromaprimitivesourcebyapartial-melting LREEarefoundinmanypotassicvolcanicrocks,from process(c.10%),whichisfollowedbyfractional bothconvergentmarginsandcontinentalriftzones crystallisation. (Bachinski&Scott1979;Foley etal. 1987).This enrichmentpatternsuggeststhatlavascomefromsource Theincompatibleelementcharacteristicsofmelilite regions,whichareenrichedintheLREE(Frey etal. leucititesamplesasillustratedinFigure16indicatethat 1978;Roden1981).Thepatternsoftwosamplesare meliliteleucititesarecharacterisedbyhighlyfractionated almostparallel,implyingthattheycouldberelatedbythe patternsandstronglyenrichmentswithrespecttothe fractionalofaphasethatdoesn’tchangetheREE. normalisedvaluesofprimitivemantle(Figure16a,b). MeliliteleucititesaredepletedinBaandNbandrelatively Therare-earthelementcompositionsofsomepotassic enrichedinRb,ThandSrin-normalised volcanicrocksfromItaly(AlbanHills-RomanComagmatic Region)aregivenforcomparisoninTable7.Alkaline diagramsofThompson(1982)(Figure16b).Thesimilar potassium-richvolcanicactivityinItalyoccurredduring traceelementpatternsofbothsamplegroupssuggest theMiocene–Pleistocene(Perini etal. 2000)inan thatmeliliteleucititesmaybederivedfromsamesource. extensionaltectonicregime.Thesesubduction-related Rogersetal. (1985)indicatethatenrichmentprocesses post-orogenicalkalineultrapotassicrocksinItalywere ofBa,NbandTioccurinthemantlewedgeabovea productsofalowdegreeofpartialmeltingofamantle subductionzone. peridotiteenrichedinincompatibleelements(Peccerilloet HighlyfractionatedREEcompositionsofselected al. 1984).AccordingtoBeccaluva etal. (1991),alkaline representativesamplesofthemeliliteleucititeare potassicrocksgeneratedfrommantlesourceswere presentedinTable6.InFigures17and18, modifiedbymetasomatizingcomponents,whichwere representativeanalysesofmeliliteleucititeareplottedon derivedfromsubductedcrustalmaterialsatadestructive, theC1chondrite-normaliseddiagramsofSun& post-collisionalplatemargin.AsseenfromFigure18,the McDonough(1989)andthechondrite-normalised REEpatternsofpotassicvolcanicrocksfromItalyhave diagramofNakamura(1974).TheREEchondrite- REEpatternssimilartooursamples.Thesecomparable

232 C.AKAL (b) chondrite-normalised (c) GöktepeLocation Meflebafl›Location (1981);

etal. Nd Zr Y Sr esarefromSun&McDonough(1989); Ce La refromWood Th Nb Ba GöktepeLocation Meflebafl›Location Rb b Zr Y 4 10 100

2000 1000 Sample/PrimodialMantle Nd Sr Ce Y Th Nb La Rb c GöktepeLocation Meflebafl›Location Ba 10

100

2000 1000 Sample/Chondrite(exceptRb,KandP) Nd Zr Sr Pb Ce Nb La Th Ba a Rb Primitivemantle-normalisedabundancesofincompatibleandcompatibletraceelementsofthemeliliteleucitite.Normalisedvalu traceelementvariationdiagramsofmeliliteleucitites.NormalisedvaluesarefromThompson(1982). primodialmantle-normalisedabundancesofincompatibleandcompatibletraceelementsofmeliliteleucitite.Normalisedvaluesa 4 10

100

2000 1000 Sample/PrimitiveMantle Figure16. (a)

233 MELILITELEUCITITESFROM AFYON

700 Table7. Rare-earthelementcontentsofselectedalkalinevolcanic GöktepeLocation rocksfromItaly. Meflebafl›Location ITALY

AlbanHills-Roman AlbanHills-Roman 100 Co-magmaticRegion Co-magmaticRegion (Peccerillo1992) (Peccerilloetal. 1984)

REE HKS-MA3 Alb-2

La (ppm) 66 111 Ce (ppm) 133 271 10 Nd (ppm) 62 - Sm (ppm) 125.5 21 Sample / C1 Chondrite (Sun & McDonough 1989) La Ce Nd Sm Eu Tb Yb Lu Eu (ppm) 2.1 4 Tb (ppm) 0.77 2 Figure17. C1Chondrite-normalisedREEpatternsforselected Yb (ppm) 2.13 2.4 melilite-leucititesamplefromthestudyarea.Normalised valuesarefromSun&McDonough(1989). Lu (ppm) 0.33 0.45 patternssuggestthattheultrapotassicvolcanicrocksof GroupI : lamproites theAfyonregionmayhavebeenderivedfromasimilar GroupII : ultrapotassicrocksofcontinentalriftzones source. GroupIII : ultrapotassicrocksofactiveorogeniczones Foleyetal. (1987)havesubdividedtheultrapotassic AsseeninFigure19,themeliliteleucititesplotinthe (K2O>3wt%)rocksintothreesubgroupsbasedontheir major-elementchemistry,asfollows: GroupIIIfieldsoftheCaOvsAl 2O3 diagram.IntheCaO

500 GöktepeLocation Meflebafl›Location AlbanHillsItaly VicoVolcanoItaly 100

10 Sample/Chondrite(Nakamura1974)

La Ce Nd Sm Eu Yb Lu

Figure18. Chondrite-normalisedREEpatternsforselectedmelilite-leucititesamplesfromthestudyareaandselectedpotassicvolcanicro cksfrom Italy.NormalisedvaluesarefromNakamura(1974).

234 C.AKAL

16

14 group II group II 12 12 group III 10 group III 10 wt% 8

wt% 8 CaO 6

CaO 6 4 group I group I 4 2 a 2 b 0 0 2 4 6 8 10 12 14 16 18 20 22 0 24 28 32 36 40 44 48 52 56 58 60 Al O wt% 2 3 SiO2 wt%

Figure19. ClassificationoftheAfyonvolcanicrocksintheCaOversusAl 2O3 andCaOversusSiO 2 diagramsofFoley etal. (1987).GroupI– lamproites,GroupII–ultrapotassicrocksofcontinentalriftzonesandGroupIII–ultrapotassicrocksofactiveorogeniczones .

400 continentalarc–postcollisional-arcfield(Figure21a).On theternarydiagram,3Zr–50Nb–Ce/P 2O5,thesamples aregroupedinthepostcollisionalarcfield(Figure21b). 300

200 DiscussionandConclusion Nb locations remote from Overthelast20years,ultrapotassiclamproiteshavebeen subduction in space and time 100 investigatedwidelyfortheirunusualmineralogicaland geochemicalcharacteristics.Foley etal. (1987)have subduction and post-collision suggestedthatpotassium-richigneousrocksshouldbe 0 0 200 400 600 800 1000 1200 termed“ultrapotassic”iftheyhavehighK2Ocontents(>3 Zr wt%),MgO(>3wt%)andK 2O/Na2O(>2wt%)ratios. Threemajorchemicalend-membergroupswere Figure20. VariationdiagramofNbversusZrfordistinguishtectonic recognisedbyFoley etal. (1987)basedontheirmajor- environmentsofpotassicrocks(afterThompson&Fowler 1986).TheAfyonsamplesgroupinthesubduction/post- elementgeochemicalstudies: collisionfields.

GroupI:Lamproites vsSiO2 diagrams,samplesplotintheGroupIIIfieldand, intwocases,intheGroupIfield.TheNbvsZrvariation LowCaO,Al 2O3 andNa 2O,andhighK 2O/Al2O3 andMg- diagram,supportedbyThompson&Fowler(1986),is numbercharacteriselamproites.Incompatibleelements usedfordistinguishingpotassicandultrapotassicrocks areenriched.Mantle-derivednodulesaredominatedby relatedtointra-plateactivity,andthoseauthorsindicated depletedtypesofharzburgiteanddunite. thatlowNbisacharacteristicfeatureofallsubduction- relatedvolcanicrocks.IntheNbvsZrdiagram(Figure 20),thesamplesplotinthesubductionandpost-collision GroupII:UltrapotassicRocksofContinentalRift fieldsduetotheirlowNbcontents. Zones

Mülleretal. (1992)proposedtectonicdiscrimination TherocksinthisgrouphavelowSiO2 andAl2O3 andhigh diagramsforpotassicvolcanicrocks,basedonimmobile CaO.Incompatibleelementsaremoredepletedthanin elements.OntheZr/Al 2O3 vsTiO 2/Al2O3 andYvsZr groupIandthereisapositiveSrspike. binarydiagrams,thesamplesarescatteredonthe

235 MELILITELEUCITITESFROM AFYON

100 3xZr

Within-Plate 3

O Continental Arc + Post-collisional Arc 2 Postcollisional Arc Zr / Al / Zr

Continental Arc Initial Oceanic Arc + Late Oceanic Arc a 1 b 0.02 0.1 0.8 50xNb Ce / P2O5 TiO2 / Al2O3

Figure21. (a) TectonicdiscriminationdiagramsofMüller etal. (1992)forpotassicvolcanicrocks,basedonsimpleratiosofimmobileelements; (b) tectonicdiscriminationofthesamplesbasedonmoreexotictraceelements.

GroupIII:UltrapotassicRocksofActiveOrogenic etal. 1984;DeMulder etal. 1986;Rogersetal. 1985, Zones 1987).Basedonexperimentalstudies,Wendlandt& Eggler(1980a,b)indicatethattheparentalof TherocksofGroupIIIaredistinguishedbyhighAl2O3 and CaO.Mg-numberisoftenlowduetofractional ultrapotassicrocksweregeneratedatdifferentdepths crystallisation.Theincompatibleelementpatternsare fromaK-richphlogopite-bearingmantlesource. characteristicwithnegativespikesforBa,Nb,andTi. AccordingtoBeccaluva etal. (1991),thepotassic- ultrapotassicmagmasweregeneratedfrommantle AccordingtoFoley etal. (1987),GroupIrocks sourcesmodifiedbymantlemetasomatismcomponents originatefromadepletedmantleunderH 2O-andF-rich, derivedfromsubductedcrustalmaterialsatadestructive, CO2-poorandCH4-richconditions.ThelowSiO2 andhigh post-collisionalplatemargin. CaOandSrofGroupIIrockssuggestsmeltinginaCO 2- richvolcanicgas.ThelowTi,NbandBacontentsof Thepresenceofultrapotassicleucite-bearinglavasisa GroupIIIrocksareexplainedbythepresencestable typicalfeatureofNeogenetoQuaternaryvolcanic titanatephasesintheresidueduringpartialmelting,or provincesintheMediterraneanregion,forexample,the reactionsinthesubductedslab.Foley etal. (1987) RomanProvinceofcentralItaly.Thepost-orogenic, subduction-relatedpotassic-ultrapotassicmagmatismof suggestedthatthehighK 2Ooriginatesfromsubducted crustalmaterialorfrommantlemetasomatism.Thehigh theRomanProvincewasgeneratedfromanenriched mantlesourcewithsubordinateamountsofcrustal CaOandAl 2O3 areobtainedviameltingafertilemantle source. contamination.Similarexamplesofleucite-bearinglavas alsooccurintheAfyonvolcanicprovinceandtheIsparta Thedebateaboutpotassicsuiteshasbeenfocusedon regionofwesternTurkey. therelativeimportanceofenrichmentofthe subcontinentalmantleandcrustalcontamination.Most Savaflç›netal. (1995)andFrancalanci etal. (2000) authorsagreethattheultrapotassic–potassicmagmas indicatethatultrapotassicrocksfromAfyonhave mustbederivedfromametasomatisedorenriched primitivecompositions.Thelithosphericmantlesource mantlesource(e.g.,Wass&Rogers1980;Hawkesworth fortheultrapotassicrockswasdepletedbeforebeing

236 C.AKAL

metasomatisedbysubduction-relatedfluidsormelts. Acknowledgements ThoseauthorssuggestedthatthehighSrratios SpecialthankstoDr.PeterA.Floydforhiscollaboration, oftheultrapotassicrocksindicatethatmantle kindhelp,andvitaldiscussionsthroughoutthestudiesin metasomatismwasolderthanthemetasomatism DepartmentofGeology,KeeleUniversity.Thanksalsoto affectingthemorefertilemantleorthedepletedmantle, RichardBurgessforhisexcellentphotographicwork,to whichwasmetasomatisedbymoreradiogenicsubducted PeterGreatbatchandtoDavidWildeforthinsections, material. andDavidEmleyandMargaretAitkinforprovidingXRF Theobservedgeochemicalpropertiesofultrapotassic data.SpecialthanksareduetoPhilippeD’Arcofor meliliteleucititesofthestudyareaaresimilartoother productivediscussionsandhissuggestionthat potassic–ultrapotassicrocksfromRomanProvince,Italy microprobeanalysesbecarriedoutintheUniversite (Peccerilloetal. 1984;Beccaluvaetal. 1991;DiGirolamo PierreetMarieCurie(LaboratoiredePetrologie- etal. 1991;Peccerillo1992;Perini etal. 2000).Based Mineralogique),Paris.ThanksalsotoHubertRemyfor ongeochemicaldata,thegeodynamicsettingandsource organisingandprovidingtheelectron-microprobe ofthealkalineparentalmagmaisthoughttoberelatedto analyses.Thefieldworkwassupportedfinanciallybythe widespreadsubductionandpost-collisionalprocessesof DokuzEylülUniversityResearchFoundation(ProjectNo. theEurasianandAfricanplates. 0922.95.01.05),TurkishPetroleumCorporation Theundersaturatedmelilite-leucititiclavasofthe (TPAO),theBritishCouncil,andFranchGovernment.I AfyonvolcanicprovincearehighlyK-richandstrongly amgratefultoCahitHelvac›forhisvaluablesuggestions andconstructivecomments.StevenK.Mittwedehelped alkaline.Na2O/K2Oratiosarehighinthemelilite-leucitite samples.Meliliteleucititecanbegeneratedfroma withtheEnglish. primitivesourcebylowdegreesofpartialmeltingor fromalithosphericsourcepreviouslyenrichedby subductiongeneratedfluids.

References

AYDAR,E.,B AYHAN,H.&Z IMITO⁄LU,O.1996.Investigationof CLIFT,P.&B LUSZTAJN, J.1999.Thetrace-elementcharacteristicsof volcanologicalandpetrologicalevolutionofAfyon. AegeanandAeolianvolcanicarcmarinetephra. Journalof Yerbilimleri(BulletinofEarthScienceApplicationandResearch VolcanologyandGeothermalResearch 92,321–347.

CentreofHacettepeUniversity) 18,87–107. ÇOBAN,H.,Y›LMAZ,K.,BOZCU,M.&CARAN,fi.2000.Balç›khisar(Afyon), BACHINSKI,S.W.&S COTT, R.B.1979.Rare-earthandtrace-element Senirkent(Isparta)veBucak(Burdur)civar›ndayüzeyleyenlösit contentsandtheoriginofminettes(mica-). içerenultrapotasikvolkanitlerinmineralojisi-petrografisive GeochimicaetCosmochimicaActa 40,93–100. petrokimyas›[Mineralogy-petrographyandpetrochemistryof leucitebearingultrapotassicvolcanicsoutcroppingaround BECCALUVA,L.,D I GIROLAMO,P.&S ERRI, G.1991.Petrogenesisand Balç›khisar(Afyon),Senirkent(Isparta)andBucak(Burdur)]. tectonicsettingoftheRomanvolcanicprovince,Italy. Lithos 26, 53thGeologicalCongressofTurkey2000,Ankara,Abstracts, 191–221. 300–301.

BESANG,C.,ECKHARDT,F.-J.,HARRE,W.,KREUZER,H.,&MÜLLER,P.1977. DEER,W.A.,H OWIE,R.A.&Z USSMAN,J.1993. AnIntroductiontothe Radiometrischealtersbestimmungenanneogenen Rock-FormingMinerals.Longman,HongKong. eruptivgesteinenderTürkei. GeologischesJahrbuchReihe B25, DE MULDER,M.HERTOGEN,J.,DEUTSCH,S.&ANDRE,L.1986.Theroleof 3–36. crustalcontaminationinthepotassicsuiteoftheKarisimbi B‹NGÖL,E.1989. GeologicalMapofTurkeyat1:2,000,000Scale . Volcano(Virunga,AfricaRiftVallaey). ChemicalGeology 57, GeneralDirectorateofMineralResearchandExploration(MTA) 117–136. Publications. DI GIROLAMO,P.,M ELLUSO,L.,&M ORRA, V.1991.Magmaticactivity BORODIN,L.S.&PAVLENKO, A.S.1974.Theroleofmetasomaticprocesses northeastofRoccamonfinavolcano(southernItaly):petrology, intheformationofalkalinerocks. In:S ORENSEN,H.(ed), The geochemistryandrelationshipswithCampanianvolcanics. Neues AlkalineRocks. JohnWileyandSons,NewYork,515 –534. JahrbuchfürMineralogieAbhandlungen 163,271–289.

CEBRIA,J.M.&L OPEZ-RUIZ, J.1995.Alkaliandleucititesinan DUNWORTH,E.A.&WILSON, M.1998.melilitesoftheSWGerman extensionalintracontinentalplatesetting:TheLateCenozoic TertiaryVolcanicProvince:mineralogyandpetrogenesis. Journal CalatravaVolcanicProvince(CentralSpain). Lithos 35,27–46. ofPetrology 39,1905–1836.

237 MELILITELEUCITITESFROM AFYON

ERCAN,T.1979.Bat›Anadolu,TrakyaveEgeadalar›ndakiSenozoyik KELLER,J.1983.Potassiclavasintheorogenicvolcanismofthe volkanizmas›[CenozoicvolcanisminwesternAnatolia,Thrace, Mediterraneanarea. JournalofVolcanologyandGeothermal andAegeanislands].BulletinofGeologicalEngineering 9,23–46 Research 18,321–335. [inTurkishwithEnglishabstract]. KELLER,J.&V ILLARI, L.1972.Rhyoliticignimbritesintheregionof ERCAN, T.1986.OrtaAnadolu’dakiSenozoyikvolkanizmas›[Cenozoic Afyon(centralAnatolia).BulletinVolcanologique 36,342–358. volcanismincentralAnatolia]. GeneralDirectorateofMineral KOÇY‹⁄‹T, A.1984.Güneybat›Türkiyeveyak›ndolay›ndalevhaiçiyeni ResearchandExploration(MTA)Bulletin 107,119 –140[in tektonikgeliflim[Intra-plateneotectonicdevelopmentin TurkishwithEnglishabstract]. southwesternTurkeyandadjacentareas]. GeologicalSocietyof ERCAN,T.,G ÜNAY,E.&B Afl,H.1983.Denizlivolkanitlerininpetrolojisi TurkeyBulletin 27,1–16[inTurkishwithEnglishabstract]. veplakatektoni¤iaç›s›ndanbölgeselyorumu[Petrologyandplate LE BAS,M.J.,L E MAITRE,R.W.,S TRECKEISEN,A.&Z ANETTIN,B.1986.A tectonicimplicationsofDenizlivolcanics]. GeologicalSocietyof chemicalclassificationofvolcanicrocksbasedonthetotalalkali- TurkeyBulletin 26,153–159[inTurkishwithEnglishabstract]. silicadiagram.JournalofPetrology 27,745–750. FLOYD,P.A.,W INCHESTER,J.A.,C IESIELCZUK,J.,L EWANDOWSKA,A., MACDONALD,G.A.&K ATSURA,T.1964.Chemicalcompositionof SZCZEPANSKI,J.&T URNIAK, K.1996.GeochemistryofEarly Hawaiianlavas.JournalofPetrology 5,82–133. PalaeozoicamphibolitesfromtheOrlica-Snieznikdome,Bohemian Massif:petrogenesisandpalaeotectonicaspects. Geologische MARIMOTO,N.1989.Nomenclatureofpyroxenes.CanadianMineralogist Rundschau 85,225–238. 27,143–156.

FOLEY,S.F.,V ENTURELLI,G.,G REEN,D.H.&T OSCANI, L.1987.The MÜLLER,D.,R OCK,N.M.S.&G ROVES,D.I.1992.Geochemical ultrapotassicrocks:characteristics,classification,andconstraints discriminationbetweenshoshoniticandpotassicvolcanicrocksin forpetrogeneticmodels.Earth-ScienceReviews 24,81–134. differenttectonicsettings:apilotstudy.MineralogyandPetrology 46,259–289. FRANCALANCI,L.,C IVETTA,L.,I NNOCENTI,F.&M ANETTI, P.1990. Tertiary–QuaternaryalkalinemagmatismoftheAegean-western NAKAMURA, N.1974.DeterminationofREE,Ba,Fe,Mg,Na,andKin Anatolianarea:apetrologicalstudyinthelightofnew carbonaceousandordinarychondrites. Geochimicaet geochemicalandisotopicdata. In:SAVAflC›N,M.Y.&E RONAT,A.H. CosmochimicaActa 38,757–773. (eds), InternationalEarthScienceColloquiumontheAegean NEUBAUER,F.&R AUMER,J.V.1993.TheAlpinebasement-linkage Region(IESCA)Proceedings II,385–396. betweenVariscidesandeast-Mediterraneanmountainbelt. In:

FRANCALANCI,L.,INNOCENTI,F.,MANETTI,P.&SAVAflC›N,Y.2000.Neogene RAUMER,J.F.&N EUBAUER,F.(eds), PreMesozoicGeologyinthe alkalinevolcanismoftheAfyon-Ispartaarea,Turkey:petrogenesis Alps.Springer-Verlag,641–664. andgeodynamicimplications. MineralogyandPetrology 70, ÖZGENÇ, ‹.1993.K›z›lcaören(Sivrihisar-Eskiflehir)karbotermal 285–312. bastneazit-fluorit-barityata¤›n›njeolojisivenadirtoprakelement

FREY,F.A.,G REEN,D.H.&R OY, S.1978.Integratedmodelsofbasalt jeokimyas›[Geologyandrare-earthelementgeochemistryof petrogenesis:astudyoftholeiitestoolivinemelilititesfrom carbothermalbastnaesite-fluorite-baritedepositofK›z›lcaören SEAustraliautilizinggeochemicalandexperimentalpetrological (Sivrihisar–Eskiflehir)].GeologicalSocietyofTurkeyBullet›n 36, data.JournalofPetrology 19,463–579. 1–11[inTurkishwithEnglishabstract].

FYTIKAS,M.,I NNOCENTI,F.,M ANETTI,P.,M AZZUOLI,R.,P ECCERILLO,A.,& ÖZGÜL, N.1984.Stratigraphyandtectonicevolutionofthecentral VILLARI, L.1984.TertiarytoQuaternaryevolutionofvolcanismin Taurides.In:TEKEL‹,O.&G ÖNCÜO⁄LU,M.C.(eds), Geologyofthe theAegeanregion.In:DIXON,J.E.&ROBERTSON,A.H.F.(eds),The TaurusBelt. ProceedingsoftheInternationalTaurideSymposium. GeologicalEvolutionoftheEasternMediterranean .Geological GeneralDirectorateofMineralResearchandExplorationInstitute Society,London,SpecialPublications17,687–699. (MTA)Publications,77–90.

HAWKESWORTH,C.J.,R OGERS,N.W.,V AN CALSTEREN,P.W.C.&M ENZIES, ÖZTÜRK,E.M.&ÖZTÜRK, Z.1989.Balç›khisar–Karadilli(Afyon)–Dereköy M.A.1984.Mantleenrichmentprocesses.Nature 311,331–335. (Isparta)Dolay›n›nJeolojisi:GöllerBölgesiProjesi[TheGeology AroundBalç›khisar–Karadilli(Afyon)–Dereköy(Isparta) : The INNOCENTI,F.,K OLIOS,N.,M ANETTI,P.,R ITE,F.&V ILLARI,L.1982.Acid LakesDistrictProject] .GeneralDirectorateofMineralResearch andbasicLateNeogenevolcanismincentralAegeanSea:itsnature andExploration(MTA),Reportno:IV/01.0.01.08.14,[in andgeotectonicsignificance.BulletinofVolcanology 45,87–97. Turkish,unpublished]. JUNG,S.1995.Geochemistryandpetrogenesisofrift-relatedTertiary PASQUARE,S.,P OLI,S.,V EZZOLI,L.&Z ANCHI, A.1988.Continentalarc alkalinerocksfromtheRhönarea(centralGermany). Neues volcanismandtectonicsettingincentralAnatolia,Turkey. JahrbuchfürMineralogieAbhandlungen 169,193–226. Tectonophyics 146,217–230. KAYA,O.1981.Miocenereferencesectionforthecoastalpartsof PECCERILLO, A.1992.Potassicandultrapotassicrock:compositional westernAnatolia.NewsletterforStratigraphy 10,164–191. characteristics,petrogenesis,andgeologicalsignificance.Episodes KAYA,O.1982.PetrologicsignificanceoftheMiocenevolcanicrocksin 15,243–251. Menemen,westernAnatolia.AegeanEarthScience 1,45–58.

238 C.AKAL

PECCERILLO,A.,P OLI,G.&T OLOMEO,L.1984.Genesis,evolutionand SUN,S.S.&M CDONOUGH, W.F.1989.Chemicalandisotopesystematics tectonicsignificanceofK-richvolcanicsfromtheAlbanHills ofoceanbasalts:implicationsformantlecompositionand (Romancomagmaticregion)asinferredfromtrace-element processes.In:SAUNDERS,A.D.&N ORRY, M.J.(eds),Magmatismin geochemistry. ContributionstoMineralogyPetrology 86, theOceanBasins.GeologicalSociety,London,SpecialPublications 230–240. 42,313–345.

PERINI,G.,C ONTICELLI,S.,F RANCALANCI,L.&D AVIDSON,J.P.2000.The THOMPSON,R.N.1982.MagmatismoftheBritishTertiaryVolcanic relationshipbetweenpotassicandcalc-alkalinepost-orogenic Province.ScottishJournalofGeology 18,49–107. magmatismatVicovolcano,centralItaly. JournalofVolcanology THOMPSON,R.N.&F OWLER,M.B.1986.Subduction-relatedshoshonitic andGeothermalResearch 95,247–272. andultrapotassicmagmatism:astudyofSiluro-Ordovician POISSON,A.,AKAY.E.,DUMONT,J.F.&UYSAL,fi.1984.TheIspartaAngle: fromtheScottishCaledonides. Contributionsto aMesozoicpaleoriftinthewesternTaurides. In:T EKEL‹ O.& MineralogyPetrology 94,507–522. GÖNCÜO⁄LU,M.C.(eds),GeologyoftheTaurusBelt.Proceedingsof TOSCANI,L.,C APEDRI,S.&O DDONE,M.1990.Newchemicaland theInternationalTaurideSymposium.GeneralDirectorateof petrographicdataofsomeundersaturatedlavasfromNyiragongo MineralResearchandExplorationInstitute(MTA)Publications, andMikeno(Virunga-WesternAfricaRift-Zaire). NeuesJahrbuch 11–26. fürMineralogieAbhandlungen 161,287–302. ROGERS,N.W.,P ARKER,R.J.,H AWKESWORTH,R.J.&M ARSH, J.S.1985. VELDE,D.&Y ODER,H.S.JR,1977.Melilliteandmelilite-bearingigneous ThegeochemistryofpotassiclavasfromVulsini,CentralItaly,and rocks. CarnegieInstitutionofWashington,YearBook 76, implicationsformantleenrichmentprocessbeneaththeRoman 478–485. region.ContributionstoMineralogyPetrology 90,244–257. WASS,S.Y.&R OGERS, N.W.1980.Mantlemetasomatism-precursorto ROGERS,N.W.,HAWKESWORTH,C.J.,MATTEY,D.P.&H ARMON,R.S.1987. continentalalkalinevolcanism. GeochimicaetCosmochimicaActa Sedimentsubductionandthesourceofpotassiuminorogenic 44,1811–1823. leucitites.Geology 15,451–453. WENDLANDT,R.F.&EGGLER,D.H.1980a.Theoriginofpotassicmagmas: RODEN,M.F.1981.Originofcoexistingminetteandultramaficbreccia, 1.meltingrelationsinthesystemsKAlSiO 4-Mg2SiO4-SiO2 and NavajoVolcanicField. ContributionstoMineralogyPetrology 11, KalSiO4-MgO-SiO2-CO2 to30kilobars. AmericanJournalof 195–206. Science 280,385–420. SAHAMA,T H.G.1968.MineralogicalcompositionoftheNyiragongo WENDLANDT,R.F.&EGGLER, D.H.1980b.Theoriginofpotassicmagmas: rocks.GeologischeRundschau 57,904–914. 2.Stabilityofphlogopiteinnaturalspinellherzoliteandinthe

SAHAMA,TH.G.&M EYER,A.1958. StudyoftheVolcanoNyiragongo. A systemKalSiO4-MgO-SiO2-H2O-CO2.AmericanJournalofScience ProgressReport.ExplorationduparenationalAlbert,mission 208,421–458. d’Etudesvulcanologiques,number2. WOOD,D.A.,T ARNEY,J.&W EAVER, B.L.1981.Traceelementvariations SAVAflÇ›N,M.Y.1990.MagmaticactivitiesofCenozoiccompressionaland inAtlanticOceanbasaltsandProterozoicdykesfromnorthwest extensionaltectonicregimeinwesternAnatolia. In:S AVASÇ›N, Scotland:theirbearinguponthenatureandgeochemicalevolution M.Y.,&E RONAT,A.H.(eds), InternationalEarthScience oftheuppermantle.Tectonophysics 75,91–112. ColloquiumontheAegeanRegion(IESCA)Proceedings II, Y›LMAZ,Y.1989.Anapproachtotheoriginofyoungvolcanicrocksof 420–434. westernTurkey. In:fi ENGÖR,A.M.C.(ed), TectonicEvolutionof SAVAflÇ›N,M.Y.&G ÜLEÇ,N.1990.Relationsbetweenmagmaticand theTethyanRegion .Dordrecht-Netherlands-KluwerAcademic tectonicactivitiesinwesternTurkey.Geologicalandgeochemical Publishers,159–189. featureswithexamplesfromthecoastalsection. In:S AVAflÇ›N, M.Y.&ERONAT, A.H.(eds),InternationalEarthScienceColloquium ontheAegeanRegion(IESCA)Proceedings II,300–313.

SAVASÇ›N,M.Y.,F RANCALANCI,L.,I NNOCENTI,F.,M ANETTI,P.,B ‹RSOY,R.& DA⁄, N.1995.Miocene-Pliocenepotassicultrapotassicvolcanism oftheAfyon-Ispartaregion(central-westernAnatolia-Turkey): petrogenesisandgeodynamicimplication. In:P ‹flK‹N,Ö.,E RGÜN, M.,SAVASÇ›N,M.Y.&TARCAN,G.(eds),InternationalEarthScience ColloquiumontheAegeanRegion(IESCA)Proceedings II, 487–502.

Received24July2002;revisedtypescriptaccepted23October2003

239