Studies Toward the Total Synthesis of Artocarpol A, D, E and Structurally Related Analogues

Total Page:16

File Type:pdf, Size:1020Kb

Studies Toward the Total Synthesis of Artocarpol A, D, E and Structurally Related Analogues STUDIES TOWARD THE TOTAL SYNTHESIS OF ARTOCARPOL A, D, E AND STRUCTURALLY RELATED ANALOGUES Peggy Paduraru BSc, Polytechnic University of Bucharest, 1999 MSc, Polytechnic University of Bucharest, 2000 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY In the Department of Chemistry O Peggy Paduraru 2006 SIMON FRASER UNIVERSITY Summer 2006 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPROVAL Name: Peggy Paduraru Degree: Doctor of Philosophy Title of Thesis: Studies Toward the Total Synthesis of Artocarpol A, D, E and Structurally Related Analogues Examining Committee: Chair: Dr. M.H. Eikerling (Assistant Professor) Dr. P.D. Wilson (Associate Professor) Senior Supervisor Dr. B.M. Pinto (Professor) Committee Member Dr. E. Plettner (Associate Professor) Committee Member Dr. R.A. Britton (Assistant Professor) Internal Examiner Dr. T.G. Back (Professor) External Examiner Chemistry Department University of Calgary Date Approved: June 2,2006 .. 11 SIMON FRASER ' UNWERSIIV~I brary DECLARATION OF PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection, and, without changing the content, to translate the thesislproject or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work. The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission. Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence. The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive. Simon Fraser University Library Burnaby, BC, Canada ABSTRACT The work described in this thesis concerns studies toward the total synthesis of artocarpol A, D and E as well as the synthesis of structurally related analogues. The artocarpol family of natural products was isolated from the root bark of a breadfruit tree, Artocarpus rigida (Moraceae). Notably, artocarpol A has a particularly interesting molecular structure as well as potent anti-inflammatory activity and so it represents an important target for total synthesis. Artocarpol A, C, D, E, F, G and I share a common structural feature, a functionalized dibenz[b,floxepin ring system. Moreover, in the case of artocarpol A the dibenz[b,floxepin moiety is fused to a tricyclic system (a condensed 4,5,6- polycyclic system that features four contiguous stereogenic centres at the ring- junctions). Based on retrosynthetic analysis of this target compound, a novel synthetic route was devised and model studies were undertaken. The known 11 H-di benzo[b, floxepin-1 0-one was efficiently synthesized in five steps in order to test the validity of the two key steps in the proposed route. The first key step involved a cross-aldol condensation reaction between the unsubstituted oxepinone and citral that was coupled to a subsequent electrocyclization reaction. The second key step, involved an intramolecular [2+2] photocycloaddition reaction that resulted in the construction of the complete polycyclic ring system of artocarpol A and installed the four stereogenic centres in the correct relative sense. The structure of this complex polycyclic artocarpol iii A analogue was elucidated by detailed NMR studies and by X-ray crystallography. A series of related 2H-chromenes and pyrans were also prepared by modification of a known synthetic procedure and were employed as additional substrates for this photocycloaddition reaction. An analogue of artocarpol D was also prepared from senecialdehyde. An alternative strategy was also developed for the synthesis of analogues of artocarpol A, D and E that employed alkylation reactions of the parent oxepinone with geranyl and prenyl bromide as key steps. The synthesis of a dimethoxy-substituted dibenzo[b,floxepinone was also completed. However, this appropriately functionalized substrate proved to be unsuitable for the proposed total syntheses. Thus, the corresponding dinitro-substituted oxepinone was identified as an alternative substrate for synthesis and preliminary investigations were undertaken. To my daughter Jasmine, my husband Dragos, and my parents Janetta and Nicolae Moga. Fiicei mele Jasmine, sotului meu Dragos, si parintilor mei Janetta si Nicolae Moga. My senior supervisor, Dr. Peter Wilson, is thanked for his advice, guidance and mentoring over the course of my doctoral studies. I am grateful to Dr. Wilson for the training in the technical and philosophical aspects of organic synthesis which I received during my time in his research group. Dr. Wilson is also thanked for his proofreading of this thesis. The other members of my supervisory committee, Dr. Mario Pinto and Dr. Erika Plettner, are thanked for their suggestions and encouragement throughout my studies. Mr. Neil Draper and Mr. Michael Katz (Simon Fraser University) are thanked for obtaining data and solving the X-ray crystal structures that are presented in this thesis. My past and present lab colleagues (Jay Cadieux, Arun Narine, Hongjuan Hu, Michael Lyle, Jeremy Pettigrew, Darren McMurtrie, Patrick Chen, Jason Lamontagne and Brendan Whelan) are thanked for their friendship and numerous helpful discussions over the years. The technical assistance of Mrs. Marcy Tracey (NMR), Mr. Greg Owen (MS), Mr. Philip Ferreira (MS), Mr. Simon Wong (MS) and Mr. M.K. Yang (CHN microanalysis) is gratefully acknowledged. Finally, Simon Fraser University is thanked for financial support. TABLE OF CONTENTS APPROVAL .......................................................................................................... ii ... ABSTRACT.. .. .. ...................... .... ........................... ..................... .. .. III DEDICATION .......................................................................................................v ACKNOWLEDGEMENT ..................................................................................... vi TABLE OF CONTENTS ..................................................................................... vii ... LlST OF FIGURES ............................................................................................ XIII LlST OF SCHEMES ......................................................................................... xvii .. LlST OF TABLES ............................................................................................ XXII LlST OF ABBREVIATIONS ............................................................................ xxiv Chapter 1 : ISOLATION, CHARACTERIZATION AND PROPOSED BIOSYNTHESIS OF ARTOCARPOL A, D AND E ....................................... 1 1 .I Thesis Introduction ............................................................................. 1 1.2 Overview of the Artocarpol Family of Natural Products ...................... 1 1.3 Isolation and Characterization of Artocarpol A (I), D (4) and E (5) .......................................................................................................5 1.4 Proposed Biosynthesis Route to the Artocarpols ...............................9 Chapter 2: PROPOSED SYNTHESES OF ARTOCARPOL A, D AND E ...... 13 2.1 Introduction ...................................................................................... 13 2.2 The Cross-Aldol Condensation Reaction of the Oxepinone (33) with Citral (17) .................................................................................. 18 2.3 The Electrocyclization Reaction .......................................................22 2.3.1 lntroduction ................................................................................... 22 2.3.2 Studies of the Dienonel2H-Pyran Equilibrium ............................... 24 2.3.3 Synthesis of Natural Products via Electrocyclization Reactions ......................................................................................27 2.4 The [2+2] Photocycloaddition Reaction ............................................ 31 2.5 Synthesis and Reactions of the Dibenzo[b,fJoxepineSystem ..........35 2.5.1 lntroduction ................................................................................... 35 2.5.2 Synthesis of the Functionalized Dibenzo[b,floxepine Ring System ..........................................................................................37 2.5.3 Reactions of the Dibenzo[b,floxepine System .............................. 43 Chapter 3: SYNTHESIS OF ARTOCARPOL A, D AND E ANALOGUES .............................................................................................
Recommended publications
  • Enantioselective Synthesis of Natural Epoxyquinoids
    Send Orders of Reprints at [email protected] 2 Current Organic Synthesis, 2013, 10, 2-42 Enantioselective Synthesis of Natural Epoxyquinoids Enrique Pandolfi,* Valeria Schapiro,* Viviana Heguaburu and Maitia Labora Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, C. P. 11800, Monte- video, Uruguay Abstract: Natural products play an important role as a source not only of potential therapeutic drugs but also of starting materials for semisynthetic new medicines. The epoxyquinoid family, composed by cyclohexane epoxides and related structures, exhibit these charac- teristics without doubt. Since 2004, significant efforts have been devoted to the stereocontrolled synthesis of these molecules with different and interesting strategies. More than 50 works on this field have been published during this period of time. In addition, many of these polyoxygenated cyclohexenoids exhibit diverse and impressive bioactive shapes. This review aims to analyze the recent advances in the enantioselective processes that have been performed for the total syntheses of these target molecules. It includes a wide range of methodologies for the in- troduction of chirality either enzymatic or chemical ones. This summarizes microbial preparation of starting materials, lipase kinetic reso- lutions, use of compounds from the chiral pool, use of chiral auxiliaries and asymmetric catalysis. In a special section, syntheses of scy- phostatin are also included. Keywords: Chemocatalyst, enantioselective, enzymatic methods, epoxyquinoids, scyphostatin, synthesis. INTRODUCTION lium claviforme [7] and exhibited antibiotic and cytotoxic activity. Epoxycyclohexenones are widely distributed in nature. Biolo- (+)-Epiepoformin (2) inhibited the germination of lettuce seeds [8]. gists and pharmacologists are very interested in them due to their This phytotoxin was separated from the culture of an unidentified many and varied biological properties.
    [Show full text]
  • Total Synthesis of the Natural Products (±)-Symbioimine, (+)- Neosymbioimine and Formal Synthesis of Platencin
    Total Synthesis of the Natural Products (±)-Symbioimine, (+)- Neosymbioimine and Formal Synthesis of Platencin. Totalsynthese der Naturstoffe (±)-Symbioimine, (+)- Neosymbioimine und Formale Synthese von Platencin. DISSERTATION der Fakultät für Chemie und Pharmazie der Eberhard-Karls-Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften 2009 vorgelegt von GEORGY N. VARSEEV Tag der mündlichen Prüfung: 19.08.2009 Dekan Prof. Dr. L. Wesemann 1. Berichterstatter: Prof. Dr. M. E. Maier 2. Berichterstatter: Prof. Dr. Th. Ziegler 3. Berichterstatter: Prof. Dr. This doctoral thesis was carried out from September 2004 to Januar 2009 at the Institut für Organische Chemie, Fakultät für Chemie und Pharmazie, Eberhard-Karls-Universität Tübingen, Germany, under the guidance of Professor Dr. Martin E. Maier. Foremost, I am indebted to Prof. Dr. Martin E. Maier, my supervisor, for his support and not only for excellent guidance during this research work but also for his confidence and many good qualities, for example, willingness always to help to solve problems. I personally thank Mr. Graeme Nicholson for HRMS, Mrs. Maria Munari for well organized supply of chemicals and her great help in the laboratory and Mrs. Egia Naiser for helping with office work. I thank all my working group members and friends for valuable discussions and their friendly nature. I would like to specially thank Dr. Anton Khartulyari, Dr. Evgeny Prusov, Dr. Viktor Vintonyak, Vaidotas Navickas, Max Wohland and Pramod Sawant. I thank Prof. Dr. V. G. Nenajdenko, Dr. V. Korotchenko and specially Dr. A. Gavryushin for teaching me chemistry and laboratory skills during my studying in Moscow. Finally, I am thankful to the love of my parents, who included so much energy into my education and cultivation of my good qualities.
    [Show full text]
  • Deantiaromatization As a Driving Force in An
    DEANTIAROMATIZATION AS A DRIVING FORCE IN AN ELECTROCYCLIZATION OF CYCLOPENTADIENONE AND THE TOTAL SYNTHESIS OF 1-EPI - SECO - PSEUDOPTEROXAZOLE ________________________________________________________________________ A Dissertation Presented to The Faculty of the Graduate school University of Missouri-Columbia ________________________________________________________________________ In Partial Fulfillment of The Requirements for the Degree Doctor of Philosophy ________________________________________________________________________ by PINGUAN ZHENG Dr. Michael Harmata, Dissertation Supervisor DECEMBER 2007 The undersigned, appointed by the dean of the graduate school, have examined the dissertation entitled, PART 1 DEANTIAROMATIZATION AS A DRIVING FORCE IN AN ELECTROCYCLIZATION OF CYCLOPENTADIENONE AND PART 2 TOTAL SYNTHESIS OF 1-EPI-SECO-PSEUOPTEROXAZOLE presented by Pinguan Zheng a candidate for the degree of Doctor of Philosophy and hereby certify that in their opinion it is worthy of acceptance. _______________________________________________________ Professor Michael Harmata _______________________________________________________ Professor Kent S. Gates ________________________________________________________ Professor Timothy Glass ________________________________________________________ Professor Peter A. Tipton ________________________________________________________ Professor Renee Jiji To Rong Xu and Ryan Miancheng Zheng ACKNOWLEDGEMENTS First and foremost I thank my advisors Dr. Michael Harmata for his guidance, encouragement,
    [Show full text]
  • Studies Towards the Total Synthesis of DEM30355/A and Related Polyketides
    Studies towards the Total Synthesis of DEM30355/A and Related Polyketides A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy by Abrar Ahmad Bayazeed School of Chemistry March 2016 1 Acknowledgment Acknowledgment In the Name of Allah, the Most Gracious, the Most Merciful First and foremost, I would like to thank Allah for giving me the strength and perseverance to fulfil my goals and ultimately making my success possible. I would like to express my gratitude and appreciation to my supervisor, Dr. Michael Hall, for his constant advice and support throughout my Ph.D. research. I would also like to thank all members of Dr. Michael Hall’s research group, past and present, who have made the research lab such an enjoyable place to work. Additionally, special thanks to my friends, Enas Filimban and Rua Al-Noman for their encouragements and making every day more entertaining. I would like to extend my sincerest thanks and appreciation to my sponsor Umm Al-Qura University for giving me the opportunity to complete my postgraduate studies and also for their generous financial support. I also would like to thank the Saudi Arabian Cultural Bureau in London for their kind supervision, encouragement and support. Finally, I would like to dedicate this work to my family. To my father, Dr. Ahmed Bayazeed, who taught me to always fight for what I believe in. To my mother, Nariman Ghulman, who’s unconditional love and guidance sustained me throughout. To my siblings, for their comfort, humor and inspiration. I am sincerely thankful to my husband, Dr.
    [Show full text]