Full Text (Pdf)

Total Page:16

File Type:pdf, Size:1020Kb

Full Text (Pdf) A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing Evgeny Lazutkin Siegbert Hopfgarten Abebe Geletu Pu Li Group Simulation and Optimal Processes, Institute for Automation and Systems Engineering, Technische Universität Ilmenau, P.O. Box 10 05 65, 98684 Ilmenau, Germany. {evgeny.lazutkin,siegbert.hopfgarten,abebe.geletu,pu.li}@tu-ilmenau.de Abstract shown in Fig. 1. Based on the current process state x(k) obtained through the state observer or measurement, Significant progresses in developing approaches to dy- resp., the optimal control problem is solved in the opti- namic optimization have been made. However, its prac- mizer in each sample time. The resulting optimal control tical implementation poses a difficult task and its real- strategy in the first interval u(k) of the moving horizon time application such as in nonlinear model predictive is then realized through the local control system. There- control (NMPC) remains challenging. A toolchain is de- fore, an essential limitation of applying NMPC is due to veloped in this work to relieve the implementation bur- its long computation time taken to solve the NLP prob- den and, meanwhile, to speed up the computations for lem for each sample time, especially for the control of solving the dynamic optimization problem. To achieve fast systems (Wang and Boyd, 2010). In general, the these targets, symbolic computing is utilized for calcu- computation time should be much less than the sample lating the first and second order sensitivities on the one time of the NMPC scheme (Schäfer et al., 2007). Al- hand and parallel computing is used for separately ac- though powerful methods are available, e.g. multiple- complishing the computations for the individual time in- shooting (Houska et al., 2011; Kirches et al., 2012) tervals on the other hand. Two optimal control problems and collocation on finite elements (Biegler et al., 2002; are solved to demonstrate the efficiency of the developed Zavala et al., 2008; Word et al., 2014) with simultane- toolchain which solves one of the problems with approx- ous characteristics, control parametrization (Balsa-Canto imately 25,000 variables within a reasonable CPU time. et al., 2000; Barz et al., 2012) with sequential character- Keywords: nonlinear optimization, combined multiple istics, and quasi-sequential technique, (Hong et al., 2006; shooting and collocation, symbolic manipulation, paral- Bartl et al., 2011), the computation speed is not swift lel computing, satellite problem, combined cycle power enough for very fast systems such as mechanical, elec- plant trical and mechatronic systems. Therefore, it is highly desired to further enhance the computation efficiency for solving nonlinear dynamic optimization problems. 1 Introduction The combined multiple-shooting with collocation (CMSC) method (Tamimi and Li, 2010) and the modified Over the last decades nonlinear model predictive control multiple-shooting and collocation (MCMSC) method (NMPC) has been increasingly popular for the control of (Lazutkin et al., 2014) are proved to be highly efficient. complex systems (Mayne, 2014). To carry out NMPC, The efficiency of this method is considerably improved the first step is to formulate a nonlinear optimal control in this work with the following targets: problem. By using a discretization scheme over a pre- • to reduce the computation time by using symbolic diction horizon, it is then transformed into a constrained methods for calculating gradients, Jacobians, and nonlinear programming (NLP) problem. Finally, the re- Hessians, alization of NMPC is made by repeatedly solving this problem online with an NLP solver which requires ap- • to further accelerate the computation by using par- propriate function values and gradients. Although many allel computing facilities, especially for real-time theoretical progresses on NMPC have been achieved, its applications. implementation for real-life applications is certainly not To achieve these aims, this work develops a toolchain trivial. Therefore, a toolchain is developed in this work as described in subsequent sections. In section 2 based on open-source software tools to relieve the bur- the problem will be formulated. Section 3 illustrates dens in the implementation of NMPC. the interior-point solution method with symbolic com- A schematic description of implementing NMPC is putations of first- and second-order derivatives. The DOI Proceedings of the 11th International Modelica Conference 311 10.3384/ecp15118311 September 21-23, 2015, Versailles, France A Toolchain for Solving Dynamic Optimization Problems Using Symbolic and Parallel Computing toolchain, its components, functionality, and some code examples are presented in section 4. The efficiency of Optimizer the toolchain is demonstrated in section 5 by applying it Solving optimal to a satellite control and a large-scale dynamic optimiza- u(k) control problem x(k) tion of a combined cycle power plant. Conclusions of the paper are given in section 6. Local State control system observer 2 Problem description The nonlinear optimal control problem (NOCP) reads Process t f min J = M x(t f ),t f + L(x(t),u(t),t)dt u(t) Zt0 Figure 1. Nonlinear model predictive control (NMPC) scheme s. t. f (x˙(t),x(t),u(t),t)= 0 , t0 ≤ t ≤ t f , x(t0)= x0, x(t f ) fixed or free, g(x(t),u(t),t) ≤ 0, (1) Due to the combined character of the approach to be ap- plied the model equations are not directly integrated in xmin ≤ x(t) ≤ xmax, the NLP formulation (2) but solved to obtain the state umin ≤ u(t) ≤ umax, variables x p,i+1 by a collocation scheme. For detailed description of the NOCP and its transformation to an with t ∈ [t ,t ] - time, t ,t - initial, final time, x(t) ∈ 0 f 0 f NLP refer to (Tamimi and Li, 2010, 2009; Lazutkin et al., Rnx - state variable vector, u(t) ∈ Rnu - control vari- 2014). able vector, x0 - initial state vector, x f - final state vec- tor, f ∈ Rnx+nu → Rnx - implicit differential equation, J - performance index with Mayer and Lagrange term M : Rnx+1 → R and L : Rnx+nu → R, resp., belonging 3 Solution method to corresponding function spaces, g - additional equal- 3.1 Solution of the resulting NLP problem ity and/or inequality constraints, xmin,xmax,umin,umax,- componentwise lower and upper bounds for states x(t) For simplicity reasons the NLP problem (2) is rewritten and controls u(t), resp. in the compact form Envisaging the application of the modified combined multiple shooting and collocation (MCMSC) method, a min{J(ω)} transformation of the infinite-dimensional NOCP (1) to a ω finite-dimensional nonlinear programming (NLP) prob- s. t. E(ω)= 0 , (3) lem is needed. Due to the multiple-shooting technique a S(ω) ≤ 0 , division of the whole time horizon [t0,t f ] into N time in- tervals, so called shooting intervals has to be performed. where ω contains all optimization variables, E all equal- The controls are assumed to be constant in each shooting ity, and S all inequality constraints. interval and are parametrized, i.e. the control vector is The NLP (4) can be solved using an interior-point T composed as V =[v0 v1 ... vN−1] , nu = nv. The states optimization solver (e. g. Ipopt (Wächter and Biegler, are also discretized and parametrized at the shooting in- p 2006)). Hence, the barrier function formulation of the terval boundaries, i.e. the vector X =[x p,0 x p,1 ... x p,N] NLP reads is constructed and equality constraints for continuity rea- sons are taken into account. All other restrictions are nS correspondingly discretized. min J(ω) − µ ∑ ln(z j) ω,z This leads to the NLP notation ( j=1 ) s. t. E(ω)= 0, (4) N−1 ti+1 S(ω)+ z = 0, min M (x p,N)+ ∑ L(x(t),vi)dt X p,V ( i=0 Zti ) with a slack variable z and the corresponding Lagrange s. t. x = x (t ;x ,v ), i = 0,..., N − 1, p,i+1 i+1 p,i i function x p,0 = x0, g¯(X p,V ) ≤ 0, (2) nS L ω,z,λ J ω z λ E T E ω p (ω λ ) = (ω) − µ ∑ ln( j)+(λ ) (ω) x¯min ≤ X ≤ x¯max j=1 u¯ min ≤ V ≤ u¯ max . +(λ S)T (S(ω)+ z) (5) 312 Proceedings of the 11th International Modelica Conference DOI September 21-23, 2015, Versailles, France 10.3384/ecp15118311 Session 4A: Optimization Applications and Methods for a fixed value of the barrier parameter µ. The vector The derivative of the collocation polynomial reads T E S λ λ T , λ T RnE +nS λ = [(λ ) (λ ) ] ∈ contains multipliers asso- nc dx(t) dl j(t) c ciated with the nE + nS equality constraints. The iteration = ∑ x (10) dt dt j scheme of the interior-point algorithm is j=1 b nc t −tk ω l+1 = ω l + αl · ∆ω l, zl+1 = ω l + αl · ∆zl, with l j(t) = ∏ k=1,k6= j t j −tk λ l+1 = λ l + αl · ∆λ l, l = 0,1,... (6) The parametrized states can be put into a vector X p,q E S q The different search directions ∆ω l, ∆zl, ∆λ l , ∆λ l are and the controls into a vector V , where q = 1,2,...,N. obtained applying the Newton method to the KKT opti- The components of the vectors X p,q and V q are included mality conditions of problem (4). Let Z = diag(z) and in the decision variables X p and V , respectively, in the eT =(1,...,1) ∈ RnS . Thus, the following system needs NLP formulation. Furthermore, the vector X c,q repre- to be solved at each iteration step sents all collocation coefficients in the shooting interval q.
Recommended publications
  • Propt Product Sheet
    PROPT - The world’s fastest Optimal Control platform for MATLAB. PROPT - ONE OF A KIND, LIGHTNING FAST SOLUTIONS TO YOUR OPTIMAL CONTROL PROBLEMS! NOW WITH WELL OVER 100 TEST CASES! The PROPT software package is intended to When using PROPT, optimally coded analytical solve dynamic optimization problems. Such first and second order derivatives, including problems are usually described by: problem sparsity patterns are automatically generated, thereby making it the first MATLAB • A state-space model of package to be able to fully utilize a system. This can be NLP (and QP) solvers such as: either a set of ordinary KNITRO, CONOPT, SNOPT and differential equations CPLEX. (ODE) or differential PROPT currently uses Gauss or algebraic equations (PAE). Chebyshev-point collocation • Initial and/or final for solving optimal control conditions (sometimes problems. However, the code is also conditions at other written in a more general way, points). allowing for a DAE rather than an ODE formulation. Parameter • A cost functional, i.e. a estimation problems are also scalar value that depends possible to solve. on the state trajectories and the control function. PROPT has three main functions: • Sometimes, additional equations and variables • Computation of the that, for example, relate constant matrices used for the the initial and final differentiation and integration conditions to each other. of the polynomials used to approximate the solution to the trajectory optimization problem. The goal of PROPT is to make it possible to input such problem • Source transformation to turn descriptions as simply as user-supplied expressions into possible, without having to worry optimized MATLAB code for the about the mathematics of the cost function f and constraint actual solver.
    [Show full text]
  • An Algorithm for Bang–Bang Control of Fixed-Head Hydroplants
    International Journal of Computer Mathematics Vol. 88, No. 9, June 2011, 1949–1959 An algorithm for bang–bang control of fixed-head hydroplants L. Bayón*, J.M. Grau, M.M. Ruiz and P.M. Suárez Department of Mathematics, University of Oviedo, Oviedo, Spain (Received 31 August 2009; revised version received 10 March 2010; second revision received 1 June 2010; accepted 12 June 2010) This paper deals with the optimal control (OC) problem that arise when a hydraulic system with fixed-head hydroplants is considered. In the frame of a deregulated electricity market, the resulting Hamiltonian for such OC problems is linear in the control variable and results in an optimal singular/bang–bang control policy. To avoid difficulties associated with the computation of optimal singular/bang–bang controls, an efficient and simple optimization algorithm is proposed. The computational technique is illustrated on one example. Keywords: optimal control; singular/bang–bang problems; hydroplants 2000 AMS Subject Classification: 49J30 1. Introduction The computation of optimal singular/bang–bang controls is of particular interest to researchers because of the difficulty in obtaining the optimal solution. Several engineering control problems, Downloaded By: [Bayón, L.] At: 08:38 25 May 2011 such as the chemical reactor start-up or hydrothermal optimization problems, are known to have optimal singular/bang–bang controls. This paper deals with the optimal control (OC) problem that arises when addressing the new short-term problems that are faced by a generation company in a deregulated electricity market. Our model of the spot market explicitly represents the price of electricity as a known exogenous variable and we consider a system with fixed-head hydroplants.
    [Show full text]
  • Basic Implementation of Multiple-Interval Pseudospectral Methods to Solve Optimal Control Problems
    Basic Implementation of Multiple-Interval Pseudospectral Methods to Solve Optimal Control Problems Technical Report UIUC-ESDL-2015-01 Daniel R. Herber∗ Engineering System Design Lab University of Illinois at Urbana-Champaign June 4, 2015 Abstract A short discussion of optimal control methods is presented including in- direct, direct shooting, and direct transcription methods. Next the basics of multiple-interval pseudospectral methods are given independent of the nu- merical scheme to highlight the fundamentals. The two numerical schemes discussed are the Legendre pseudospectral method with LGL nodes and the Chebyshev pseudospectral method with CGL nodes. A brief comparison be- tween time-marching direct transcription methods and pseudospectral direct transcription is presented. The canonical Bryson-Denham state-constrained double integrator optimal control problem is used as a test optimal control problem. The results from the case study demonstrate the effect of user's choice in mesh parameters and little difference between the two numerical pseudospectral schemes. ∗Ph.D pre-candidate in Systems and Entrepreneurial Engineering, Department of In- dustrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, [email protected] c 2015 Daniel R. Herber 1 Contents 1 Optimal Control and Direct Transcription 3 2 Basics of Pseudospectral Methods 4 2.1 Foundation . 4 2.2 Multiple Intervals . 7 2.3 Legendre Pseudospectral Method with LGL Nodes . 9 2.4 Chebyshev Pseudospectral Method with CGL Nodes . 10 2.5 Brief Comparison to Time-Marching Direct Transcription Methods 11 3 Numeric Case Study 14 3.1 Test Problem Description . 14 3.2 Implementation and Analysis Details . 14 3.3 Summary of Case Study Results .
    [Show full text]
  • Nature-Inspired Metaheuristic Algorithms for Finding Efficient
    Nature-Inspired Metaheuristic Algorithms for Finding Efficient Experimental Designs Weng Kee Wong Department of Biostatistics Fielding School of Public Health October 19, 2012 DAE 2012 Department of Statistics University of Georgia October 17-20th 2012 Weng Kee Wong (Department of Biostatistics [email protected] School of Public Health ) October19,2012 1/50 Two Upcoming Statistics Conferences at UCLA Western Northern American Region (WNAR 2013) June 16-19 2013 http://www.wnar.org Weng Kee Wong (Dept. of Biostatistics [email protected] of Public Health ) October19,2012 2/50 Two Upcoming Statistics Conferences at UCLA Western Northern American Region (WNAR 2013) June 16-19 2013 http://www.wnar.org The 2013 Spring Research Conference (SRC) on Statistics in Industry and Technology June 20-22 2013 http://www.stat.ucla.edu/ hqxu/src2013 Weng Kee Wong (Dept. of Biostatistics [email protected] of Public Health ) October19,2012 2/50 Two Upcoming Statistics Conferences at UCLA Western Northern American Region (WNAR 2013) June 16-19 2013 http://www.wnar.org The 2013 Spring Research Conference (SRC) on Statistics in Industry and Technology June 20-22 2013 http://www.stat.ucla.edu/ hqxu/src2013 Beverly Hills, Brentwood, Bel Air, Westwood, Wilshire Corridor Weng Kee Wong (Dept. of Biostatistics [email protected] of Public Health ) October19,2012 2/50 Two Upcoming Statistics Conferences at UCLA Western Northern American Region (WNAR 2013) June 16-19 2013 http://www.wnar.org The 2013 Spring Research Conference (SRC) on Statistics in Industry and Technology June 20-22 2013 http://www.stat.ucla.edu/ hqxu/src2013 Beverly Hills, Brentwood, Bel Air, Westwood, Wilshire Corridor Close to the Pacific Ocean Weng Kee Wong (Dept.
    [Show full text]
  • OPTIMAL CONTROL of NONHOLONOMIC MECHANICAL SYSTEMS By
    OPTIMAL CONTROL OF NONHOLONOMIC MECHANICAL SYSTEMS by Stuart Marcus Rogers A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics Department of Mathematical and Statistical Sciences University of Alberta ⃝c Stuart Marcus Rogers, 2017 Abstract This thesis investigates the optimal control of two nonholonomic mechanical systems, Suslov's problem and the rolling ball. Suslov's problem is a nonholonomic variation of the classical rotating free rigid body problem, in which the body angular velocity Ω(t) must always be orthogonal to a prescribed, time-varying body frame vector ξ(t), i.e. hΩ(t); ξ(t)i = 0. The motion of the rigid body in Suslov's problem is actuated via ξ(t), while the motion of the rolling ball is actuated via internal point masses that move along rails fixed within the ball. First, by applying Lagrange-d'Alembert's principle with Euler-Poincar´e'smethod, the uncontrolled equations of motion are derived. Then, by applying Pontryagin's minimum principle, the controlled equations of motion are derived, a solution of which obeys the uncontrolled equations of motion, satisfies prescribed initial and final conditions, and minimizes a prescribed performance index. Finally, the controlled equations of motion are solved numerically by a continuation method, starting from an initial solution obtained analytically (in the case of Suslov's problem) or via a direct method (in the case of the rolling ball). ii Preface This thesis contains material that has appeared in a pair of papers, one on Suslov's problem and the other on rolling ball robots, co-authored with my supervisor, Vakhtang Putkaradze.
    [Show full text]
  • Real-Time Trajectory Planning to Enable Safe and Performant Automated Vehicles Operating in Unknown Dynamic Environments
    Real-time Trajectory Planning to Enable Safe and Performant Automated Vehicles Operating in Unknown Dynamic Environments by Huckleberry Febbo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) at The University of Michigan 2019 Doctoral Committee: Associate Research Scientist Tulga Ersal, Co-Chair Professor Jeffrey L. Stein, Co-Chair Professor Brent Gillespie Professor Ilya Kolmanovsky Huckleberry Febbo [email protected] ORCID iD: 0000-0002-0268-3672 c Huckleberry Febbo 2019 All Rights Reserved For my mother and father ii ACKNOWLEDGEMENTS I want to thank my advisors, Prof. Jeffrey L. Stein and Dr. Tulga Ersal for their strong guidance during my graduate studies. Each of you has played pivotal and complementary roles in my life that have greatly enhanced my ability to communicate. I want to thank Prof. Peter Ifju for telling me to go to graduate school. Your confidence in me has pushed me farther than I knew I could go. I want to thank Prof. Elizabeth Hildinger for improving my ability to write well and providing me with the potential to assert myself on paper. I want to thank my friends, family, classmates, and colleges for their continual support. In particular, I would like to thank John Guittar and Srdjan Cvjeticanin for providing me feedback on my articulation of research questions and ideas. I will always look back upon the 2018 Summer that we spent together in the Rackham Reading Room with fondness. Rackham . oh Rackham . I want to thank Virgil Febbo for helping me through my last month in Michigan.
    [Show full text]
  • Mad Product Sheet
    MAD - MATLAB Automatic Differential package. MATLAB Automatic Differentiation (MAD) is a professionally maintained and developed automatic differentiation tool for MATLAB. Many new features are added continuously since the development and additions are made in close cooperation with the user base. Automatic differentiation is generally defined as (after Andreas Griewank, Evaluating Derivatives - Principles and Techniques of Algorithmic Differentiation, SIAM 2000): “Algorithmic, or automatic, differentiation (AD) is concerned with the accurate and efficient evaluation of derivatives for functions defined by computer programs. No truncation errors are incurred, and the resulting numerical derivative values can be used for all scientific computations that are based on linear, quadratic, or even higher order approximations to nonlinear scalar or vector functions.” MAD is a MATLAB library of functions and utilities for the automatic differentiation of MATLAB functions and statements. MAD utilizes an optimized class library “derivvec”, for the linear combination of derivative vectors. Key Features MAD Example A variety of trigonometric functions. >> x = fmad(3,1); FFT functions available (FFT, IFFT). >> y = x^2 + x^3; >> getderivs(y) interp1 and interp2 optimized for differentiation. ans = 33 Delivers floating point precision derivatives (better robustness). A new MATLAB class fmad which overloads the builtin MATLAB arithmetic and some intrinsic functions. More than 100 built-in MATLAB operators have been implemented. The classes allow for the use of MATLAB’s sparse matrix representation to exploit sparsity in the derivative calculation at runtime. Normally faster or equally fast as numerical differentiation. Complete integration with all TOMLAB solvers. Possible to use as plug-in for modeling class tomSym and optimal control package PROPT.
    [Show full text]
  • CME 338 Large-Scale Numerical Optimization Notes 2
    Stanford University, ICME CME 338 Large-Scale Numerical Optimization Instructor: Michael Saunders Spring 2019 Notes 2: Overview of Optimization Software 1 Optimization problems We study optimization problems involving linear and nonlinear constraints: NP minimize φ(x) n x2R 0 x 1 subject to ` ≤ @ Ax A ≤ u; c(x) where φ(x) is a linear or nonlinear objective function, A is a sparse matrix, c(x) is a vector of nonlinear constraint functions ci(x), and ` and u are vectors of lower and upper bounds. We assume the functions φ(x) and ci(x) are smooth: they are continuous and have continuous first derivatives (gradients). Sometimes gradients are not available (or too expensive) and we use finite difference approximations. Sometimes we need second derivatives. We study algorithms that find a local optimum for problem NP. Some examples follow. If there are many local optima, the starting point is important. x LP Linear Programming min cTx subject to ` ≤ ≤ u Ax MINOS, SNOPT, SQOPT LSSOL, QPOPT, NPSOL (dense) CPLEX, Gurobi, LOQO, HOPDM, MOSEK, XPRESS CLP, lp solve, SoPlex (open source solvers [7, 34, 57]) x QP Quadratic Programming min cTx + 1 xTHx subject to ` ≤ ≤ u 2 Ax MINOS, SQOPT, SNOPT, QPBLUR LSSOL (H = BTB, least squares), QPOPT (H indefinite) CLP, CPLEX, Gurobi, LANCELOT, LOQO, MOSEK BC Bound Constraints min φ(x) subject to ` ≤ x ≤ u MINOS, SNOPT LANCELOT, L-BFGS-B x LC Linear Constraints min φ(x) subject to ` ≤ ≤ u Ax MINOS, SNOPT, NPSOL 0 x 1 NC Nonlinear Constraints min φ(x) subject to ` ≤ @ Ax A ≤ u MINOS, SNOPT, NPSOL c(x) CONOPT, LANCELOT Filter, KNITRO, LOQO (second derivatives) IPOPT (open source solver [30]) Algorithms for finding local optima are used to construct algorithms for more complex optimization problems: stochastic, nonsmooth, global, mixed integer.
    [Show full text]
  • Tomlab Product Sheet
    TOMLAB® - For fast and robust large- scale optimization in MATLAB® The TOMLAB Optimization Environment is a powerful optimization and modeling package for solving applied optimization problems in MATLAB. TOMLAB provides a wide range of features, tools and services for your solution process: • A uniform approach to solving optimization problem. • A modeling class, tomSym, for lightning fast source transformation. • Automatic gateway routines for format mapping to different solver types. • Over 100 different algorithms for linear, discrete, global and nonlinear optimization. • A large number of fully integrated Fortran and C solvers. • Full integration with the MAD toolbox for automatic differentiation. • 6 different methods for numerical differentiation. • Unique features, like costly global black-box optimization and semi-definite programming with bilinear inequalities. • Demo licenses with no solver limitations. • Call compatibility with MathWorks’ Optimization Toolbox. • Very extensive example problem sets, more than 700 models. • Advanced support by our team of developers in Sweden and the USA. • TOMLAB is available for all MATLAB R2007b+ users. • Continuous solver upgrades and customized implementations. • Embedded solvers and stand-alone applications. • Easy installation for all supported platforms, Windows (32/64-bit) and Linux/OS X 64-bit For more information, see http://tomopt.com or e-mail [email protected]. Modeling Environment: http://tomsym.com. Dedicated Optimal Control Page: http://tomdyn.com. Tomlab Optimization Inc. Tomlab
    [Show full text]
  • TACO — a Toolkit for AMPL Control Optimization
    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 TACO — A Toolkit for AMPL Control Optimization Christian Kirches and Sven Leyffer Mathematics and Computer Science Division Preprint ANL/MCS-P1948-0911 November 22, 2011 The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no FP7-ICT-2009-4 248940. The first author acknowledges a travel grant by Heidelberg Graduate Academy, funded by the German Excellence Initiative. We thank Hans Georg Bock, Johannes P. Schlöder, and Sebastian Sager for permission to use the optimal control software package MUSCOD-II and the mixed-integer optimal control algorithm MS-MINTOC. This work was also supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357, and by the Directorate for Computer and Information Science and Engineering of the National Science Foundation under award NSF-CCF-0830035. Contents 1 Introduction...................................................................1 1.1 The AMPL Modeling Language.....................................................3 1.2 Benefits of AMPL Extensions......................................................3 1.3 Related Efforts..............................................................3 1.4 Contributions and Structure........................................................3 2 AMPL Extensions for Optimal Control.....................................................4
    [Show full text]
  • Optimal Control of Isometric Muscle Dynamics
    12 J. Math.Fund.Sci. Vol. 47, No. 1, 2015, 12-30 Optimal Control of Isometric Muscle Dynamics Robert Rockenfeller &Thomas Götz Mathematical Institute, University Koblenz-Landau, Campus Koblenz Universitätsstr. 1, 56070 Koblenz, Germany Email: [email protected] Abstract. We use an indirect optimal control approach to calculate the optimal neural stimulation needed to obtain measured isometric muscle forces. The neural stimulation of the nerve system is hereby considered to be a control function (input) of the system ’muscle’ that solely determines the muscle force (output). We use a well-established muscle model and experimental data of isometric contractions. The model consists of coupled activation and contraction dynamics described by ordinary differential equations. To validate our results, we perform a comparison with commercial optimal control software. Keywords: biomechanics; inverse dynamics; muscle model; optimal control, stimulation. 1 Introduction0B Mathematical models for everyday phenomena often ask for a control or input such that a system reacts in an optimal or at least in a desired way. Whether finding the optimal rotation of a stick for cooking potatoes on the open fire such that the potato has a desired temperature, see [1], or computing the optimal neural stimulation of a muscle such that the force output is as close as possible to experimentally measured data. Typical examples for biomechanical optimal control problems occur in the calculation of goal directed movements, see [2- 4] and in robotics [5]. Concerning huge musculoskeletal systems, the load sharing problem of muscle force distribution has to be solved using optimal control [6, 7]. The most common application for solving the load sharing problem is the inverse dynamics of multi-body systems (MBS) as in [8,9].
    [Show full text]
  • PROPT - Matlab Optimal Control Software
    PROPT - Matlab Optimal Control Software - ONE OF A KIND, LIGHTNING FAST SOLUTIONS TO YOUR OPTIMAL CONTROL PROBLEMS! Per E. Rutquist1 and Marcus M. Edvall2 April 26, 2010 1Tomlab Optimization AB, V¨aster˚asTechnology Park, Trefasgatan 4, SE-721 30 V¨aster˚as,Sweden. 2Tomlab Optimization Inc., 1260 SE Bishop Blvd Ste E, Pullman, WA, USA. 1 Contents Contents 2 1 PROPT Guide Overview 22 1.1 Installation................................................. 22 1.2 Foreword to the software.......................................... 22 1.3 Initial remarks............................................... 22 2 Introduction to PROPT 24 2.1 Overview of PROPT syntax........................................ 24 2.2 Vector representation........................................... 25 2.3 Global optimality............................................. 25 3 Modeling optimal control problems 27 3.1 A simple example.............................................. 27 3.2 Code generation.............................................. 28 3.3 Modeling.................................................. 29 3.3.1 Modeling notes........................................... 31 3.4 Independent variables, scalars and constants............................... 33 3.5 State and control variables......................................... 33 3.6 Boundary, path, event and integral constraints............................. 34 4 Multi-phase optimal control 34 5 Scaling of optimal control problems 34 6 Setting solver and options 35 7 Solving optimal control problems 36 7.1 Standard functions
    [Show full text]