Porcupine Newsletter Number 33, Spring, 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomic Study of the Pagurus Forbesii "Complex" (Crustacea
Taxonomic study of the Pagurus forbesii "complex" (Crustacea: Decapoda: Paguridae). Description of Pagurus pseudosculptimanus sp. nov. from Alborán Sea (Southern Spain, Western Mediterranean Sea). GARCÍA MUÑOZ J.E.1, CUESTA J.A.2 & GARCÍA RASO J.E.1* 1 Dept. Biología Animal, Fac. Ciencias, Univ. Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain. 2 Inst. Ciencias Marinas de Andalucía (CSIC), Av. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. * Corresponding author - e-mail address: [email protected] ABSTRACT The study of hermit crabs from Alboran Sea has allowed recognition of two different morphological forms under what had been understood as Pagurus forbesii. Based on morphological observations with various species of Pagurus, and molecular studies, a new species is defined and described as P. pseudosculptimanus. An overview on species of Pagurus from the eastern Atlantic and Mediterranean Sea is provided. Key words: Pagurus, new species, Mediterranean, eastern Atlantic. 1 Introduction More than 170 species from around the world are currently assigned to the genus Pagurus Fabricius, 1775 (Lemaitre and Cruz Castaño 2004; Mantelatto et al. 2009; McLaughlin 2003, McLaughlin et al. 2010). This genus is complex because of there is high morphological variability and similarity among some species, and has been divided in groups (e.g. Lemaitre and Cruz Castaño 2004 for eastern Pacific species; Ingle, 1985, for European species) with difficulty (Ayón-Parente and Hendrickx 2012). This difficulty has lead to taxonomic problems, although molecular techniques have been recently used to elucidate some species (Mantelatto et al. 2009; Da Silva et al. 2011). Thirteen species are present in eastern Atlantic (European and the adjacent African waters) (Ingle 1993; Udekem d'Acoz 1999; Froglia, 2010, MarBEL Data System - Türkay 2012, García Raso et al., in press) but only nine of these (the first ones mentioned below) have been cited in the Mediterranean Sea, all of them are present in the study area (Alboran Sea, southern Spain). -
The Ascidians of Tossa De Mar (NE Spain) II.- Biological Cycles of the Colonial Species
Cah. Biol. Mar. (1988),29: 407-418 Roscoff The ascidians of Tossa de Mar (NE Spain) II.- Biological cycles of the colonial species x. Turon Dep!. of Animal Biology (Vertebrates). Fac. of Biology. Univ. of Barcclona. Avgda. Diagonal, 645. 08028 Barcelona. Spain. Abstract : The ascidians from a locality on the Spanish NE coast were sampled from November 1984 until January 1986, with the aim of studying their biological cycles. Only the results conceming the co lonial species will be presented here. The samplings were performed twice a month, and the relative abundance, reproductivc statc and presence of resistance forms of the compound ascidian species were evaluated. Many species feature seasonal variations in abundance and even disappear from the samples in the unfavourable season. The reproductive periods are always restricted to a certain part of the year and they are strongly correlated with the biogeographical distribution of the species. The tempe rature ap pears as the main factor controlling ascidian reproduction. Notes are made on the significance of the resistance forms in the families Polyclinidae and Didemnidae. Résumé: Les ascidics présentes dans les fonds rocheux d'une localité de la côte NE espagnole ont été étudiées depuis novembrc 1984 jusqu'à janvier 1986, dans Ic but de préciser leurs cycles biologiques. Dans ce travail, seuls les résultats correspondant à des espèces coloniales seront présentés. L'abondance relative, les périodes de reproduction sexuée et la présence de formes de résistance ont été évaluées deux fois par mois pendant l'étude. Beaucoup d'espèces montrcnt des variations saisonnières d'abondance, et quelques-unes même dis paraissent pendant la saison défavorable. -
Deep Maps Cork Literature Review
Deep Maps Cork: Coastal Marine Influences on the Communities of South West Cork. Literature Review. Seán MacGabhann 2016 Table of Contents Chapter Section Page Glossary of terms 1 Introduction 3 1) Fisheries and Aquaculture 4 1.i - Fisheries 4 1.ii - Aquaculture 8 2) Pollution 12 2.i - Emerging Contaminants and Toxins 12 2.ii - Marine Litter 15 2.iii - Resuspension of Sediments 16 3) Climate Change 18 3.i - Temperature and Sea Level Change 18 3.ii - Weather and Coastal Erosion 19 3.iii - Ocean Acidification 20 3.iv - Invasive Species 21 4) Biodiversity and Conservation 23 4.i - Food Webs and Ecosystem Levels 23 4.ii - Protected Areas 25 4.ii.1 - SPAs 25 4.ii.2 - SACs 25 4.ii.3 - MPAs/ Marine Reserves 26 4.iii - Scientific Research 27 4.iv - Ecotourism 28 4.v - Awareness and Costs 29 5) Policy and Legislation 30 5.i - The OSPAR Convention 30 5.ii - The Common Fisheries Policy 31 5.iii - The Birds Directive 32 5.iv - The Habitats Directive 33 5.v - The Water Frameworks Directive 34 5.vi - The Marine Strategy Frameworks Directive 34 i 5.vii - The Nitrates Directive 35 5.viii - The Irish National Biodiversity Action Plan 36 5.ix - The National Parks and Wildlife Service 37 Conclusions 38 References 40 Web References 48 ii Glossary of Terms Term Definition Accretion Accumulation of sand or small rocks Acidification The downscale driving of pH towards 1 Anoxic Abnormally low levels of oxygen Anthropogenic Human influenced/ driven Aquaculture Human driven breeding/cultivation of aquatic organisms for commercial purposes Baleen whales Whales that have plates of bone, known as baleen, in the mouth for straining plankton from the water Ballast Material placed in the hull of the ship to aid with stability. -
Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims. -
The Mediterranean Decapod and Stomatopod Crustacea in A
ANNALES DU MUSEUM D'HISTOIRE NATURELLE DE NICE Tome V, 1977, pp. 37-88. THE MEDITERRANEAN DECAPOD AND STOMATOPOD CRUSTACEA IN A. RISSO'S PUBLISHED WORKS AND MANUSCRIPTS by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands CONTENTS Risso's 1841 and 1844 guides, which contain a simple unannotated list of Crustacea found near Nice. 1. Introduction 37 Most of Risso's descriptions are quite satisfactory 2. The importance and quality of Risso's carcino- and several species were figured by him. This caused logical work 38 that most of his names were immediately accepted by 3. List of Decapod and Stomatopod species in Risso's his contemporaries and a great number of them is dealt publications and manuscripts 40 with in handbooks like H. Milne Edwards (1834-1840) Penaeidea 40 "Histoire naturelle des Crustaces", and Heller's (1863) Stenopodidea 46 "Die Crustaceen des siidlichen Europa". This made that Caridea 46 Risso's names at present are widely accepted, and that Macrura Reptantia 55 his works are fundamental for a study of Mediterranean Anomura 58 Brachyura 62 Decapods. Stomatopoda 76 Although most of Risso's descriptions are readily 4. New genera proposed by Risso (published and recognizable, there is a number that have caused later unpublished) 76 authors much difficulty. In these cases the descriptions 5. List of Risso's manuscripts dealing with Decapod were not sufficiently complete or partly erroneous, and Stomatopod Crustacea 77 the names given by Risso were either interpreted in 6. Literature 7S different ways and so caused confusion, or were entirely ignored. It is a very fortunate circumstance that many of 1. -
Aliens in Egyptian Waters. a Checklist of Ascidians of the Suez Canal and the Adjacent Mediterranean Waters
Egyptian Journal of Aquatic Research (2016) xxx, xxx–xxx HOSTED BY National Institute of Oceanography and Fisheries Egyptian Journal of Aquatic Research http://ees.elsevier.com/ejar www.sciencedirect.com FULL LENGTH ARTICLE Aliens in Egyptian waters. A checklist of ascidians of the Suez Canal and the adjacent Mediterranean waters Y. Halim a, M. Abdel Messeih b,* a Oceanography Department, Faculty of Science, Alexandria, Egypt b National Institute of Oceanography and Fisheries, Alexandria, Egypt Received 3 April 2016; revised 21 August 2016; accepted 22 August 2016 KEYWORDS Abstract Checklists of the alien ascidian fauna of Egyptian waters are provided covering the Suez Ascidians; Canal, the adjacent Mediterranean waters and the Gulf of Suez. Enrichment in ascidian species of Mediterranean Sea; the Suez Canal seems to have been on the increase since 1927. The distinctly uneven distribution Erythrean non-indigenous pattern in the Canal appears to be directly related to the ship traffic system. species; Earlier reports on alien ascidian species in the Mediterranean are compared and discussed. Of 65 Suez Canal; species recorded from the Mediterranean waters of Egypt in all, four are Erythrean migrants and Polyclinum constellatum four potentially so. Polyclinum constellatum Savigny, 1816 is a new record for the Mediterranean Sea. Ó 2016 National Institute of Oceanography and Fisheries. Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Introduction 2005 and 2014 to deal with this issue and with other related problems. Ascidians are receiving more and more attention because of Based on an analysis of the literature and on the on-line the invasive ability of some species and the severe damage World Register of Marine Species (www.marinespecies.org/), caused to aquaculture (reviewed in a special issue of Aquatic Shenkar and Swalla (2011) assembled 2815 described ascidian Invasions, January 2009: http://aquatic invasions.net/2009/in- species. -
Development and Application of a Quantitative Real-Time PCR Assay for the Globally Invasive Tunicate Styela Clava
Management of Biological Invasions (2014) Volume 5, Issue 2: 133–142 doi: http://dx.doi.org/10.3391/mbi.2014.5.2.06 Open Access © 2014 The Author(s). Journal compilation © 2014 REABIC Research Article Development and application of a quantitative real-time PCR assay for the globally invasive tunicate Styela clava Joanne E. Gillum1, Laura Jimenez1, Daniel J. White1,2, Sharyn J. Goldstien3 and Neil J. Gemmell1* 1Allan Wilson Centre for Molecular Ecology and Evolution, Dept. of Anatomy, University of Otago, PO Box 913, Dunedin 9054, New Zealand 2Biodiversity and Conservation, Landcare Research New Zealand, Auckland 1072, New Zealand 3School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand E-mail: [email protected] (JEG), [email protected] (LJ), WhiteD@[email protected] (DJW), [email protected] (SJG), [email protected] (NJG) *Corresponding author Received: 1 October 2013 / Accepted: 29 April 2014 / Published online: 6 June 2014 Handling editor: Richard Piola Abstract Styela clava Herdman, 1881, is a solitary ascidian native to the Northwest Pacific, which has spread globally over the past 90 years, reaching pest levels and causing concern to the aquaculture industry in some regions. It has a relatively short-lived larval stage, spending only limited time in the water column before settling on a desirable substrate. Early detection of this species is an important step in both the prevention of its spread and of successful eradication. Here we report the development of a qPCR based assay, targeted to a region of the mitochondrial cytochrome oxidase I gene, using TaqMan® MGB, for the early identification of S. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Nudibranquios De La Costa Vasca: El Pequeño Cantábrico Multicolor
Nudibranquios de la Costa Vasca: el pequeño Cantábrico multicolor Recopilación de Nudibranquios fotografiados en Donostia-San Sebastián Luis Mª Naya Garmendia Título: Nudibranquios de la Costa Vasca: el pequeño Cantábrico multicolor © Texto y Fotografías: Luis Mª Naya. Las fotografías del Thecacera pennigera fueron reali- zadas por Michel Ranero y Jesús Carlos Preciado. Editado por el Aquarium de Donostia-San Sebastián Carlos Blasco de Imaz Plaza, 1 20003 Donostia-San Sebastián Tfno.: 943 440099 www.aquariumss.com 2016 Maquetación: Imanol Tapia ISBN: 978-84-942751-04 Dep. Legal: SS-????????? Imprime: Michelena 4 Índice Prólogo, Vicente Zaragüeta ...................................................................... 9 Introducción ................................................................................................... 11 Nudibranquios y otras especies marinas ............................................... 15 ¿Cómo es un nudibranquio? ..................................................................... 18 Una pequeña Introducción Sistemática a los Opistobranquios, Jesús Troncoso ........................................................................................... 25 OPISTOBRANQUIOS .................................................................................... 29 Aplysia fasciata (Poiret, 1789) .............................................................. 30 Aplysia parvula (Morch, 1863) ............................................................. 32 Aplysia punctata (Cuvier, 1803) .......................................................... -
Marine Biology
Marine Biology Spatial and temporal dynamics of ascidian invasions in the continental United States and Alaska. --Manuscript Draft-- Manuscript Number: MABI-D-16-00297 Full Title: Spatial and temporal dynamics of ascidian invasions in the continental United States and Alaska. Article Type: S.I. : Invasive Species Keywords: ascidians, biofouling, biogeography, marine invasions, nonindigenous, non-native species, North America Corresponding Author: Christina Simkanin, Phd Smithsonian Environmental Research Center Edgewater, MD UNITED STATES Corresponding Author Secondary Information: Corresponding Author's Institution: Smithsonian Environmental Research Center Corresponding Author's Secondary Institution: First Author: Christina Simkanin, Phd First Author Secondary Information: Order of Authors: Christina Simkanin, Phd Paul W. Fofonoff Kristen Larson Gretchen Lambert Jennifer Dijkstra Gregory M. Ruiz Order of Authors Secondary Information: Funding Information: California Department of Fish and Wildlife Dr. Gregory M. Ruiz National Sea Grant Program Dr. Gregory M. Ruiz Prince William Sound Regional Citizens' Dr. Gregory M. Ruiz Advisory Council Smithsonian Institution Dr. Gregory M. Ruiz United States Coast Guard Dr. Gregory M. Ruiz United States Department of Defense Dr. Gregory M. Ruiz Legacy Program Abstract: SSpecies introductions have increased dramatically in number, rate, and magnitude of impact in recent decades. In marine systems, invertebrates are the largest and most diverse component of coastal invasions throughout the world. Ascidians are conspicuous and well-studied members of this group, however, much of what is known about their invasion history is limited to particular species or locations. Here, we provide a large-scale assessment of invasions, using an extensive literature review and standardized field surveys, to characterize the invasion dynamics of non-native ascidians in the continental United States and Alaska. -
Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al. -
The IWT National Survey of the Common Lizard (Lacerta Vivipara) in Ireland 2007
The IWT National Survey of the Common Lizard (Lacerta vivipara) in Ireland 2007 This project was sponsored by the National Parks and Wildlife Service Table of Contents 1.0 Common Lizards – a Description 3 2.0 Introduction to the 2007 Survey 4 2.1 How “common” is the common lizard in Ireland? 4 2.2 History of common lizard surveys in Ireland 4 2.3 National Common Lizard Survey 2007 5 3.0 Methodology 6 4.0 Results 7 4.1 Lizard sightings by county 7 4.2 Time of year of lizard sightings 8 4.3 Habitat type of the common lizard 11 4.4 Weather conditions at time of lizard sighting 12 4.5 Time of day of lizard sighting 13 4.6 Lizard behaviour at time of sighting 14 4.7 How did respondents hear about the National Lizard Survey 2007? 14 5.0 Discussion 15 6.0 Acknowledgements 16 7.0 References 17 8.0 Appendices 18 1 List of Tables Table 1 Lizard Sightings by County 9 Table 2 Time of Year of Lizard Sightings 10 Table 3 Habitat types of the Common Lizard 12 Table 4 Weather conditions at Time of Lizard Sighting 13 Table 5 Time of Day of Lizard Sighting 13 Some of the many photographs submitted to IWT during 2007 2 1.0 Common Lizard, Lacerta vivipara Jacquin – A Description The Common Lizard, Lacerta vivipara is Ireland’s only native reptile species. The slow-worm, Anguis fragilis, is found in the Burren in small numbers. However it is believed to have been deliberately introduced in the 1970’s (McGuire and Marnell, 2000).