Drug-Resistant Malaria a Generation of Progress in Jeopardy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some Occupational Diseases in Culture Fisheries Management and Practices Part One: Malaria and River Blindness (Onchocerciasis)
International Journal of Fishes and Aquatic Sciences 1(1): 47-63, 2012 ISSN: 2049-8411; e-ISSN: 2049-842X © Maxwell Scientific Organization, 2012 Submitted: May 01, 2012 Accepted: June 01, 2012 Published: July 25, 2012 Some Occupational Diseases in Culture Fisheries Management and Practices Part One: Malaria and River Blindness (Onchocerciasis) B.R. Ukoroije and J.F.N. Abowei Department of Biological Sciences, Faculty of Science, Niger Delta University, Wilberforce Island, Nigeria Abstract: Malaria and Onchocerciasis are some occupational diseases in culture fisheries management and practices discussed to enlighten fish culturist the health implications of the profession. The pond environment forms the breeding grounds the female anopheles mosquito and silmulium fly the vectors of malaria and onchocerciasis, respectively. Malaria is a borne infectious disease of humans and other animals caused by eukaryotic protists of the genus Plasmodium. The disease results from the multiplication of Plasmodium parasites within red blood cells, causing symptoms that typically include fever and headache, in severe cases progressing to coma or death. It is widespread in tropical and subtropical regions, including much of Sub-Saharan Africa, Asia and the Americas. Five species of Plasmodium can infect and be transmitted by humans. Severe disease is largely caused by Plasmodium falciparum; while the disease caused by Plasmodium vivax, Plasmodium ovale and Plasmodium malariae is generally a milder disease that is rarely fatal. Plasmodium knowlesi is a zoonosis that causes malaria in macaques but can also infect humans. Onchocerciasis is the world's second-leading infectious cause of blindness. It is not the nematode, but its endosymbiont, Wolbachia pipientis, that causes the severe inflammatory response that leaves many blind. -
Malaria No More: Expectations for Eradication
30 NOVEMBER 2012 No. 5 AFRICAN FUTURES BRIEF Knowledge empowers Africa! Le savoir émancipe l’Afrique! www.issafrica.org | www.ifs.du.edu MALARIA NO MORE: EXPECTATIONS FOR ERADICATION Jonathan D. Moyer and Graham Emde SUMMARY continue to impact upon its spread.2 This policy brief explores the possible impact should Africa eliminate malarial infection by The reason why Africa has the largest number of malaria 2025. Between 2015 and 2050, when compar- cases is that the most eff ective transmitter of malaria, ing the International Futures Base Case with a the mosquito species Anopheles gambiae, is only found in Malaria Eradication scenario (explained below), Africa, and it has developed resistance to some insecti- the continent could experience the following cides.3 In addition, the dominant form of malaria in Africa benefi ts: is the most dangerous species, Plasmodium falciparum,4 and it has developed resistance to some antimalarial Eliminate 12 million deaths from malaria, drugs.5 with the greatest absolute reduction in Ni- geria and the Democratic Republic of the Malaria disproportionately impacts small children and Congo (DRC) infants, with children under fi ve accounting for 90 per Add more than 50 million years of cent of malaria-induced deaths.6 Young children are the healthy life biggest at-risk group because their immune systems are Increase overall economic output – by not strong enough to resist the disease. Infections in nearly US$ 430 billion largely due to in- adults, on the other hand, do not usually result in death creases in production since adults living in malaria-endemic regions develop im- Increase per capita income for Africans by munity through repeated exposure to the disease. -
2. Measures to Control the Spread of Mosquito-Borne
Costeas-Geitonas School Model United Nations 2016 Committee: Environment Sub-Commission 1 Issue: Measures to control the spread of mosquito-borne diseases in Africa and Latin America Student Officer: Anna Kokla Position: Deputy President INTRODUCTION The issue of controlling the spread of mosquito-borne diseases is of major significance, since these illnesses influence the whole world negatively and, more intensely, the regions of Africa and Latin America. Although scientists, regional or international organizations and governments have made various attempts to bring an end to this problem, the effects of the diseases, such as illness or even death, still cause more and more suffering due to the international spread of the diseases. Therefore, the necessity of their elimination has become even greater throughout the last decades. Mosquitoes are organisms that are responsible for a lot of human diseases and can cause more suffering than any other organism. They are bloodsucking insects that ingest disease-inducing micro-organisms during a blood meal from an infected host, which might be an animal or human, and later inject them into a new host during their next blood meal. Per the American Mosquito Control Association (AMCA), “over one million people worldwide die from mosquito-borne diseases every year.”1 Apart from the terrible impact these diseases can have on humans, mosquito-borne diseases can affect dogs and horses, among other animals, too. In the World Health Organization’s (WHO) report in 1996, it is stated that ”30 new diseases -
(Pdf) Download
The Cutting Edge of HIV Prevention www.businessfightsaids.org www.businessfightstb.org SPRING 2007 www.businessfightsmalaria.org+ BLACK AMERICA’S STATES OF DENIAL CHILD MARRIAGE AND VOWS OF VIOLENCE MEDIA’S MASSIVE IMPIMPACTACT ON AIDS NET EFFECT MOSQUITOES, MALARIA, AND MOBILIZATION LAURA BUSH TALKS MALARIA About GBC The Global Business Coalition on HIV/AIDS, Tuberculosis and Malaria (GBC) is lead- ing the business fight against HIV/AIDS, tuberculosis and malaria. The official focal editorial director point of the private sector delegation to the Global Fund to Fight AIDS, Tuberculosis RICHARD HOLBROOKE and Malaria, GBC is headquartered in New York with offices in Paris, Johannesburg, Beijing, Geneva, Nairobi, Moscow, and Kiev. editor-in-chief More than 220 global companies are members of GBC, representing a combined JOHN TEDSTROM workforce of more than 11 million employees in over 200 countries. GBC is led by Chairman Sir Mark Moody-Stuart (Chairman, Anglo American); Vice Chairmen Bertrand Collomb (Chairman, Lafarge) and Cyril Ramaphosa (Chairman, Shanduka executive editor Group); President and CEO Richard Holbrooke; and Executive Director John MEGAN QUITKIN Tedstrom. GBC’s goal is to increase the range and quality of private sector programs to address creative director AIDS, tuberculosis and malaria—both in the workplace and broader community. CHRISTOPHER KOKINOS GBC identifies new opportunities for business action and helps companies develop programs that address the three diseases. GBC also encourages and facilitates partner- ships between business and governments, the international community and the non- editorial assistant governmental sector. CAITLIN FISHER What Business Can Do In advocating for greater business action on AIDS, tuberculosis and malaria, GBC contributors believes that business and business leaders can respond in four main ways: SANCIA DALLEY TAVISH DONAHUE • Create comprehensive workplace policies and programs addressing prevention, CELINA GORRE testing, treatment and care for employees and immediate communities. -
Vector Control: a Cornerstone in the Malaria Elimination Campaign
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW 10.1111/j.1469-0691.2011.03664.x Vector control: a cornerstone in the malaria elimination campaign K. Karunamoorthi1,2 1) Unit of Medical Entomology & Vector Control, Department of Environmental Health Science, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia and 2) Research & Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India Abstract Over many decades, malaria elimination has been considered to be one of the most ambitious goals of the international community. Vector control is a cornerstone in malaria control, owing to the lack of reliable vaccines, the emergence of drug resistance, and unaffordable potent antimalarials. In the recent past, a few countries have achieved malaria elimination by employing existing front-line vector control interventions and active case management. However, many challenges lie ahead on the long road to meaningful accom- plishment, and the following issues must therefore be adequately addressed in malaria-prone settings in order to achieve our target of 100% worldwide malaria elimination and eventual eradication: (i) consistent administration of integrated vector management; (ii) identifi- cation of innovative user and environment-friendly alternative technologies and delivery systems; (iii) exploration and development of novel and powerful contextual community-based interventions; and (iv) improvement of the efficiency and efficacy of existing interven- tions and their combinations, such as vector control, diagnosis, treatment, vaccines, biological control of vectors, environmental man- agement, and surveillance. I strongly believe that we are moving in the right direction, along with partnership-wide support, towards the enviable milestone of malaria elimination by employing vector control as a potential tool. -
The History and Ethics of Malaria Eradication and Control Campaigns in Tropical Africa
Malaria Redux: The History and Ethics of Malaria Eradication and Control Campaigns in Tropical Africa Center for Historical Research Ohio State University Spring 2012 Seminars: Epidemiology in World History Prof. J.L.A. Webb, Jr. Department of History Colby College DRAFT: NOT FOR CITATION 2 During the 1950s, colonial malariologists, in conjunction with experts from the World Health Organization (WHO), set up malaria eradication pilot projects across tropical Africa. They deployed new synthetic insecticides such as DLD, HCH, and DDT, and new antimalarials, such as chloroquine and pyrimethamine, in an effort to establish protocols for eradication. These efforts ‘protected’ some fourteen million Africans. Yet by the early 1960s, the experts concluded that malaria eradication was not feasible, and the pilot projects were disbanded. The projects had achieved extremely low levels of infection for years at a time, but the experts had to accept with regret that their interventions were unable to reduce malaria transmission to zero. The projects had high recurrent costs, and it was understood that they were financially unsustainable. The pilot projects were allowed to lapse. The malaria eradication pilot projects had reduced the rates of infection to levels so low that the ‘protected’ populations lost their acquired immunities to malaria during the years of the projects. In the immediate aftermath of the projects, the Africans were subject to severe malaria, which sometimes afflicted entire communities in epidemic form, until they regained their immunities. How Should We Understand the Ethics of the Early Eradication Efforts? The ethics of malaria control in the 1950s and 1960s seemed self-evident to the interventionists. -
CRISPR-Based Innovative Genetic Tools for Control of Anopheles Gambiae Mosquitoes
CRISPR-based innovative genetic tools for control of Anopheles gambiae mosquitoes The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Smidler, Andrea. 2019. CRISPR-based innovative genetic tools for control of Anopheles gambiae mosquitoes. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029729 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA CRISPR-based innovative genetic tools for control of Anopheles gambiae mosquitoes A dissertation presented by Andrea L. Smidler to The Committee on Higher Degrees in Biological Sciences in Public Health in partial fulfillment of the requirements for the degree of Doctor of Philosophy In the subject of Biological Sciences in Public Health Harvard University Cambridge, Massachusetts April 2019 i © 2019 – Andrea Smidler All rights reserved ii Dissertation Advisor: Dr. Flaminia Catteruccia, Dr. George Church Andrea Smidler CRISPR-based innovative genetic tools for control of Anopheles gambiae mosquitoes ABSTRACT Malaria and other mosquito-borne diseases pose an immense burden on mankind. Since the turn of the century, control campaigns have relied on the use of insecticide-impregnated bed nets and indoor residual sprays to stop Anopheles mosquitoes from transmitting the malaria parasite. Although these are our best strategies to control the spread of disease, wild mosquito populations are developing resistance to insecticides at an alarming rate, making disease control increasingly challenging. -
Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: a Phase 2A Controlled Human Malaria Parasite Infection and Immunogenicity Study Jason A
The Journal of Infectious Diseases MAJOR ARTICLE Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: A Phase 2a Controlled Human Malaria Parasite Infection and Immunogenicity Study Jason A. Regules,1,3,6 Susan B. Cicatelli,4 Jason W. Bennett,1,3,6 Kristopher M. Paolino,4 Patrick S. Twomey,2,3 James E. Moon,1,3 April K. Kathcart,1,3 Kevin D. Hauns,1,3 Jack L. Komisar,1,3 Aziz N. Qabar,1,3 Silas A. Davidson,5 Sheetij Dutta,1,3 Matthew E. Griffith,6 Charles D. Magee,6 Mariusz Wojnarski,2,3 Jeffrey R. Livezey,2,3 Adrian T. Kress,2,3 Paige E. Waterman,4 Erik Jongert,9 Ulrike Wille-Reece,7 Wayne Volkmuth,8 Daniel Emerling,8 William H. Robinson,8 Marc Lievens,9 Danielle Morelle,9 Cynthia K. Lee,7 Bebi Yassin-Rajkumar,7 Richard Weltzin,7 Joe Cohen,9 Robert M. Paris,3 Norman C. Waters,1,3 Ashley J. Birkett,9 David C. Kaslow,9 W. Ripley Ballou,9 Christian F. Ockenhouse,7 and Johan Vekemans9 1Malaria Vaccine Branch, 2Experimental Therapeutics Branch, 3Military Malaria Research Program, 4Clinical Trials Center, Translational Medicine Branch, 5Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, and 6Uniformed Services University of the Health Sciences, Bethesda, Maryland; 7PATH Malaria Vaccine Initiative, Seattle, Washington; 8Atreca, Redwood City, California; and 9GSK Vaccines, Rixensart, Belgium Background. Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria Downloaded from parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. -
Staying the Course?
FOR MORE INFORMATION: Staying the course? PATH Malaria Vaccine Initiative 455 Massachusetts Avenue NW MALARIA RESEARCH AND DEVELOPMENT Suite 1000 Washington, DC 20001 USA IN A TIME OF ECONOMIC UNCERTAINTY Phone: 202.822.0033 Fax: 202.457.1466 Email: [email protected] IC UNCERTAINTY IC M E OF ECONO OF E M ENT IN A TI A IN ENT M MALARIA RESEARCH AND DEVELOP AND RESEARCH MALARIA E? E? S STAYING THE THE COUR STAYING Staying the course? MALARIA RESEARCH AND DEVELOPMENT IN A TIME OF ECONOMIC UNCERTAINTY Copyright © 2011, Program for Appropriate Technology in Health (PATH). All rights reserved. The material in this document may be freely used for educational or noncommercial purposes, provided that the material is accompanied by an acknowledgment line. Photos: Anna Wang, MMV (cover, page 5, and page 43, bottom) and IVCC (page 32 and page 43, top). Illustration on page 11 by Lamont W. Harvey. Suggested citation: PATH. Staying the Course? Malaria Research and Development in a Time of Economic Uncertainty. Seattle: PATH; 2011. ISBN 978-0-9829522-0-7 ii Acknowledgements We extend our collective gratitude to the many people who gave their time and expertise during the course of this project. The staff at Policy Cures served as authors of the report, including Mary Moran, Javier Guzman, Lisette Abela-Oversteegen, Brenda Omune and Nick Chapman. The final report could not have been prepared without valuable input from the staff of the PATH Malaria Vaccine Initiative (MVI), in particular Theresa Raphael and Sally Ethelston. Information critical to the compilation of this report was obtained from the following organisations and individuals: MVI—Christian Loucq, Katya Spielberg and Ashley Birkett; Medicines for Malaria Venture—Julia Engelking, Matthew Doherty, Andrea Lucard, Jaya Banerji, Claude Oeuvray and Peter Potter-Lesage; Innovative Vector Control Consortium—Tom McLean and Robert Sloss; Foundation for Innovative New Diagnostics—Lakshmi Sundaram, Iveth Gonzalez, David Bell and Mark Perkins. -
A Brief Historical Overview of the Antimalarials Chloroquine And
Iowa State University Capstones, Theses and Creative Components Dissertations Spring 2021 A brief historical overview of the antimalarials chloroquine and artemisinin: An investigation into their mechanisms of action and discussion on the predicament of antimalarial drug resistance Ekaterina Ellyce San Pedro Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Chemicals and Drugs Commons Recommended Citation San Pedro, Ekaterina Ellyce, "A brief historical overview of the antimalarials chloroquine and artemisinin: An investigation into their mechanisms of action and discussion on the predicament of antimalarial drug resistance" (2021). Creative Components. 800. https://lib.dr.iastate.edu/creativecomponents/800 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. San Pedro 1 A Brief Historical Overview of the Antimalarials Chloroquine and Artemisinin: An Investigation into their Mechanisms of Action and Discussion on The Predicament of Antimalarial drug resistance By Ellyce San Pedro Abstract: Malaria is a problem that has affected humanity for millenia. As a result, two important antimalarial drugs, chloroquine and artemisinin, have been developed to combat Malaria. However, problems with antimalarial resistance have emerged. The following review discusses the history of Malaria and the synthesis of chloroquine and artemisinin. It discusses both drugs’ mechanisms of action and Plasmodium modes of resistance. It also further discusses the widespread predicament of antimalarial drug resistance, which is being combated by artemisinin-based combination therapy. -
The President's Malaria Initiative Fourth Annual Report To
The President’s Malaria Initiative Sustaining Momentum Against Malaria: Saving Lives in Africa Fourth Annual Report April 2010 The President’s Malaria Initiative Sustaining Momentum Against Malaria: Saving Lives in Africa Fourth Annual Report April 2010 Cover photo A child carries the long-lasting insecticide-treated net her family received during a net distribution campaign in her village in Ghana. To reduce the intolerable burden of malaria, the President’s Malaria Initiative targets those most vulnerable to the infection – children under the age of five and pregnant women. Credit Lisa Kramer/PMI ii Sustaining Momentum Against Malaria: Saving Lives in Africa www.pmi.gov TABLE OF CONTENTS Abbreviations and Acronyms . .v Executive Summary . .2 Chapter 1: Prevention – Insecticide-Treated Mosquito Nets . .11 Chapter 2: Prevention – Indoor Residual Spraying . .17 Chapter 3: Prevention – Malaria in Pregnancy . .23 Chapter 4: Case Management – Diagnosis and Treatment . .29 Chapter 5: Health Systems, Integration, and Country Capacity . .35 Chapter 6: Partnerships . .41 Chapter 7: Outcomes and Impact . .47 Chapter 8: U.S. Government Malaria Research . .53 Appendix 1: PMI Funding FY 2006–FY 2010 . .59 Appendix 2: PMI Activity Summary . .60 Appendix 3: PMI Country-Level Targets . .69 Acknowledgments . .70 Sustaining Momentum Against Malaria: Saving Lives in Africa www.pmi.gov iii iv Sustaining Momentum Against Malaria: Saving Lives in Africa www.pmi.gov ABBREVIATIONS AND ACRONYMS ACT Artemisinin-based combination therapy AL Artemether-lumefantrine -
A Comprehensive Review of Malaria with an Emphasis on Plasmodium Resistance
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Mississippi A COMPREHENSIVE REVIEW OF MALARIA WITH AN EMPHASIS ON PLASMODIUM RESISTANCE Lindsay Thomas A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the Sally McDonnell Barksdale Honors College. Oxford May 2014 Approved by: Advisor: Dr. Michael Warren Reader: Dr. Matthew Strum Reader: Dr. Donna West-Strum ii © 2014 Lindsay O’Neal Thomas ALL RIGHTS RESERVED iii ABSTRACT Malaria is a disease that is caused by the Plasmodium genus. It is endemic in tropical areas. There are multiple drugs used for prophylaxis and treatment. However, the parasites have developed resistance towards most antimalarial pharmaceuticals. The pharmaceutical industry is generating new antimalarial pharmaceuticals, but the rate of new Plasmodium resistance is much faster. iv TABLE OF CONTENTS List of Figures…………………………………………………………...v List of Abbreviations…………………………………………………....vi Introductions…………………………………………………………….1 Chapter I: Background…………………………………………………..4 Chapter II: Life cycle of Malaria ……………………………………......7 Chapter III: The Disease………………………………………………..11 Chapter IV: Blood Schizonticides……………………………………....15 Chapter V: Tissue Schizonticides……………………………………....25 Chapter VI: Hypnozoitocides…………………………………………...31 Chapter VII: Artemisinin……………………………………………….34 Chapter VIII: Future Resistance………………………………………...36 Conclusion………………………………………………………………38 Bibliography…………………………………………………………….40 v LIST OF FIGURES FIGURE 1: