Deepwater Niger Delta Fold-And-Thrust Belt Modeled As a Critical-Taper Wedge: the Influence of a Weak Detachment on Styles of Fault-Related Folds

Total Page:16

File Type:pdf, Size:1020Kb

Deepwater Niger Delta Fold-And-Thrust Belt Modeled As a Critical-Taper Wedge: the Influence of a Weak Detachment on Styles of Fault-Related Folds Deepwater Niger Delta fold-and-thrust belt modeled as a critical-taper wedge: The influence of a weak detachment on styles of fault-related folds Frank Bilotti1, Chris Guzofski1, John H. Shaw2 1 Chevron 2Harvard University GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Niger delta “outer” fold-and-thrust belt very low taper Odd fault-related folds “Ductile” thickening Forethrusts and backthrusts in close proximity GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Outline • The nature of the toe of the Niger Delta • Basics of critical-taper wedge theory • The Niger Delta outer fold-and-thrust belt is at critical taper • Model parameters and results (high basal fluid pressure) • Applicability in 3D & subsequent work • Implications of high basal fluid pressure for contractional fault-related folds GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Niger Delta Bathymetry Slope fold-and-thrust belt deepwater fold-and-thrust belt GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Fold-and-thrust belts of the Niger Delta GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Regional Geologic Setting Inner Fold and Outer Fold and Thrust belt 1 i Thrust belt Detachment fold belt Extensional Growth Faults t 3250 Lobia-1 0 k m a 0 k m . l m p 4 m . numerouscr estal crestal growthfaults growth faults numerous growthfaults ? ( 3 ma ? mudd apir (?) ? 5 m P n i e i y R it u x c : e n d her s d 5 l 1 0 5 m l l i 2 5 mud diapr (?) 2 m N m s t i 5 k m velocty sag(?) 5 k m e 2 m a .5 ma s u i basal detachment a .0 i 5 a as e veoct y ag(?) velocty sag(?) . a 1 . a After Shaw et al., 2001 i 21 10 km 10 km 5 5 SW NE 0 10 Km SW NE Quaternary Pliocene Continental Alluvial Abada Fm. (Benin Fm.) Late OFTB deformation Middle Miocene k IFTB deformation Early Early l c . Oligocene t e ? Marine Shales Agbada Fm. (Akata Fm.) . Deltaic Facies i Eocene Paleocene K. After Lawrence et al., 2002 GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Niger Delta toe Inflection in bathymetry Seismic data courtesy of Veritas DGC Ltd. frontal thrust Basal detachment basement GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Critical taper wedge mechanics Convergent margins erosion buttress Sediment input subduction Internally deforming wedge Whose shape is dictated by its internal Robinson, 2003 Passive margins strength and basal detachment strength Sediment input Gravitationally driven Chapple (1978) – plastic wedge Davis, et al (1983) – Coulomb wedge Dahlen, et al. (1984) – Cohesive Coulomb wedge theory GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Critical taper wedge equation (Dahlen, 1990) λ and λb - Hubbert-Rubey (1959) pore fluid ratio ρ – bulk density of the wedge µ and µb– coefficients of friction S0 – Cohesive strength GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Critical taper wedge equation Basal strength Wedge taper Wedge strength (Dahlen, 1990) λ and λb - Hubbert-Rubey (1959) pore fluid ratio ρ – bulk density of the wedge µ and µb– coefficients of friction S0 – Cohesive strength GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Niger Delta Bathymetry/Basement Bathymetry (upper free surface) Basement (as shape proxy for basal detachment) GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Measured wedge taper (after Davis, et al., 1983) GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Low-taper wedges Nankai trough Barbados accretionary wedge (Fitts and Brown, 1999) GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Is the toe of the Niger Delta at Critical Taper? 1. Negative slope of α and β plot 2. Propagation of the fold-and-thrust belt GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Wedge model parameters GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Model basal fluid pressure GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Model bathymetry GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Pseudo 3d modeling 0 100 km Mechanical parameters: ρ from Velocity Model Boundary regional Vp model 10 km Viewing direction VE- 1:3 1.4 2.5 km/s GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Model basal detachment geometry: prediction Use the bathymetry (α) to solve for the detachment geometry (β) Model Prediction Observation GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Model based mechanical parameters: λb Using the surface bathymetry and basement dips, we can invert for mechanical parameters GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Predicted λb for interpreted transects GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Coupled Fluid-mechanical models GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Ings and Beaumont, 2010 Structural implications of low taper & high basal fluid pressures • Regional – Deformation continues very far offshore – Large zones of little compressive deformation – No preference between fore and back-thrusts • Prospect-scale – Weak Akata shales result in detachment folds and shear fault-bend folds GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Undeformed zone GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Thrust vergence and wedge taper GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop INSIGHTS FROM ANALOG MODELING [COSTA & VENDEVILLE, 2002] Brittle sand cover over weak, viscous décollement (silicone polymer) 10 cm Costa and Vendeville [2002] • Bivergent directed thrust and fold anticlines separated by broad synclines • Coeval to nearly coeval activation of contractional structures • General structural thickening of the décollement unit at deep thrusts locations Brittle sand cover over strong, frictional décollement (glass microbeads) 10 cm Costa and Vendeville [2002] • Deformation mainly accommodated by slip along break–forward propagation mode • Closely space thrust ramps and folded hanging–walls • Continuous individual thrust–fault planes (up to the depth of detachment) GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Detachment fold Growth by limb-rotation Weaker rocks between deltaic section and basal detachment GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Toe-thrust geometry GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Shear fault-bend folding simple-shear fault-bend fold Classic fault-bend folding Suppe et al., 2004 pure-shear fault-bend fold GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Possible sources of elevated basal fluid pressure • Undercompaction • Horizontal compaction • Hydrocarbon maturation (e.g. Frost 1996, Cobbold, ) GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Shale Diapirism? Corredor, et al., 2005 With better seismic data, we see fewer “diapirs” - steeply dipping anisotropic beds - top of overpressured zones tend to be transparent in seismic data - large dip contrasts (angular unconformities) are not imaged well GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop What about the inner fold-and-thrust belt? A A’ Inner fold-and-thrust belt • Much more complicated deformation • older, deeper, polyphase • Larger, more variable wedge taper • Much more robust petroleum system A’ A GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop Conclusions • Basal detachment at the toe of the Niger Delta is very weak • Probably due to elevated pore pressure λb ≈ 0.91 compared to λ=0.59 measured in deltaic section • Hypothesis is robust in 3D and in more sophisticated modeling • Low taper that results from weak detachment facilitates distal thrusting, zones with little or no deformation, and back-thrusting • Weakness of Akata formation results in detachment folds and shear fault-bend folds • Subregional variations in physical properties have strong implications for the petroleum system and prospectivity GeoPrisms Rift Initiation and Evolution Scientific Planning Workshop .
Recommended publications
  • Tectonic Imbrication and Foredeep Development in the Penokean
    Tectonic Imbrication and Foredeep Development in the Penokean Orogen, East-Central Minnesota An Interpretation Based on Regional Geophysics and the Results of Test-Drilling The Penokean Orogeny in Minnesota and Upper Michigan A Comparison of Structural Geology U.S. GEOLOGICAL SURVEY BULLETIN 1904-C, D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S.
    [Show full text]
  • Strike and Dip Refer to the Orientation Or Attitude of a Geologic Feature. The
    Name__________________________________ 89.325 – Geology for Engineers Faults, Folds, Outcrop Patterns and Geologic Maps I. Properties of Earth Materials When rocks are subjected to differential stress the resulting build-up in strain can cause deformation. Depending on the material properties the result can either be elastic deformation which can ultimately lead to the breaking of the rock material (faults) or ductile deformation which can lead to the development of folds. In this exercise we will look at the various types of deformation and how geologists use geologic maps to understand this deformation. II. Strike and Dip Strike and dip refer to the orientation or attitude of a geologic feature. The strike line of a bed, fault, or other planar feature, is a line representing the intersection of that feature with a horizontal plane. On a geologic map, this is represented with a short straight line segment oriented parallel to the strike line. Strike (or strike angle) can be given as either a quadrant compass bearing of the strike line (N25°E for example) or in terms of east or west of true north or south, a single three digit number representing the azimuth, where the lower number is usually given (where the example of N25°E would simply be 025), or the azimuth number followed by the degree sign (example of N25°E would be 025°). The dip gives the steepest angle of descent of a tilted bed or feature relative to a horizontal plane, and is given by the number (0°-90°) as well as a letter (N, S, E, W) with rough direction in which the bed is dipping.
    [Show full text]
  • Development of the Rocky Mountain Foreland Basin: Combined Structural
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2007 DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA Emily Geraghty Ward The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Ward, Emily Geraghty, "DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA" (2007). Graduate Student Theses, Dissertations, & Professional Papers. 1234. https://scholarworks.umt.edu/etd/1234 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA By Emily M. Geraghty Ward B.A., Whitman College, Walla Walla, WA, 1999 M.S., Washington State University, Pullman, WA, 2002 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology The University of Montana Missoula, MT Spring 2007 Approved by: Dr. David A. Strobel, Dean Graduate School James W. Sears, Chair Department of Geosciences Julia A. Baldwin Department of Geosciences Marc S. Hendrix Department of Geosciences Steven D.
    [Show full text]
  • Drainage on Evolving Fold-Thrust Belts: a Study of Transverse Canyons in the Apennines W
    Basin Research (1999) 11, 267–284 Drainage on evolving fold-thrust belts: a study of transverse canyons in the Apennines W. Alvarez Department of Geology and Geophysics, University of California, Berkeley, USA, and Osservatorio Geologico di Coldigioco, 62020 Frontale di Apiro (MC), Italy ABSTRACT Anticlinal ridges of the actively deforming Umbria–Marche Apennines fold-thrust belt are transected by deep gorges, accommodating a drainage pattern which almost completely ignores the presence of pronounced anticlinal mountains. Because the region was below sea level until the folds began to form, simple antecedence cannot explain these transverse canyons. In addition, the fold belt is too young for there to have been a flat-lying cover from which the rivers could have been superposed. In 1978, Mazzanti & Trevisan proposed an explanation for these gorges which deserves wider recognition. They suggested that the Apennine fold ridges emerged from the sea in sequence, with the erosional debris from each ridge piling up against the next incipient ridge to emerge, gradually extending the coastal plain seaward. The new coastal plain adjacent to each incipient anticline provided a flat surface on which a newly elongated river could cross the fold, positioning it to cut a gorge as the fold grew. Their mechanism is thus a combination of antecedence and superposition in which folds, overlying sedimentary cover and downstream elongations of the rivers all form at the same time. A study of Apennine drainage, using the sequence of older-to-younger transected Apennine folds as a proxy for the historical evolution of drainage cutting through a single fold, shows that transverse drainage forms when sedimentation dominates at the advancing coastline.
    [Show full text]
  • Accommodation of Penetrative Strain During Deformation Above a Ductile Décollement
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2016 Accommodation of penetrative strain during deformation above a ductile décollement Bailey A. Lathrop Caroline M. Burberry Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Accommodation of penetrative strain during deformation above a ductile décollement Bailey A. Lathrop* and Caroline M. Burberry* DEPARTMENT OF EARTH AND ATMOSPHERIC SCIENCES, UNIVERSITY OF NEBRASKA-LINCOLN, 214 BESSEY HALL, LINCOLN, NEBRASKA 68588, USA ABSTRACT The accommodation of shortening by penetrative strain is widely considered as an important process during contraction, but the distribu- tion and magnitude of penetrative strain in a contractional system with a ductile décollement are not well understood. Penetrative strain constitutes the proportion of the total shortening across an orogen that is not accommodated by the development of macroscale structures, such as folds and thrusts. In order to create a framework for understanding penetrative strain in a brittle system above a ductile décollement, eight analog models, each with the same initial configuration, were shortened to different amounts in a deformation apparatus. Models consisted of a silicon polymer base layer overlain by three fine-grained sand layers. A grid was imprinted on the surface to track penetra- tive strain during shortening.
    [Show full text]
  • PLANE DIP and STRIKE, LINEATION PLUNGE and TREND, STRUCTURAL MEASURMENT CONVENTIONS, the BRUNTON COMPASS, FIELD BOOK, and NJGS FMS
    PLANE DIP and STRIKE, LINEATION PLUNGE and TREND, STRUCTURAL MEASURMENT CONVENTIONS, THE BRUNTON COMPASS, FIELD BOOK, and NJGS FMS The word azimuth stems from an Arabic word meaning "direction“, and means an angular measurement in a spherical coordinate system. In structural geology, we primarily deal with land navigation and directional readings on two-dimensional maps of the Earth surface, and azimuth commonly refers to incremental measures in a circular (0- 360 °) and horizontal reference frame relative to land surface. Sources: Lisle, R. J., 2004, Geological Structures and Maps, A Practical Guide, Third edition http://www.geo.utexas.edu/courses/420k/PDF_files/Brunton_Compass_09.pdf http://en.wikipedia.org/wiki/Azimuth http://en.wikipedia.org/wiki/Brunton_compass FLASH DRIVE/Rider/PDFs/Holcombe_conv_and_meas.pdf http://www.state.nj.us/dep/njgs/geodata/fmsdoc/fmsuser.htm Brunton Pocket Transit Rider Structural Geology 310 2012 GCHERMAN 1 PlanePlane DipDip andand LinearLinear PlungePlunge horizontal dddooo Dip = dddooo Bedding and other geological layers and planes that are not horizontal are said to dip. The dip is the slope of a geological surface. There are two aspects to the dip of a plane: (a) the direction of dip , which is the compass direction towards which the plane slopes; and (b) the angle of dip , which is the angle that the plane makes with a horizontal plane (Fig. 2.3). The direction of dip can be visualized as the direction in which water would flow if poured onto the plane. The angle of dip is an angle between 0 ° (for horizontal planes) and 90 ° (for vertical planes). To record the dip of a plane all that is needed are two numbers; the angle of dip followed by the direction (or azimuth) of dip, e.g.
    [Show full text]
  • Deformation of Rocks
    DeformationDeformation ofof RocksRocks Rock Deformation Large scale deformation of the Earth’s crust = Plate Tectonics Smaller scale deformation = structural geology 1 Deformation of rocks Folds and faults are geologic structures Structural geology is the study of the deformation of rocks and the effects of this movement Small-Scale Folds 2 Small-Scale Faults Deformation – Stress vs. Strain Changes in volume or shape of a rock body = strain 3 Stress The force that acts on a rock unit to change its shape and/or its volume Causes strain or deformation Types of directed Stress include Compression Tension Shear Compression Action of coincident oppositely directed forces acting towards each other 4 Tension Action of coincident oppositely directed forces acting away from each other Shear Action of coincident oppositely directed forces acting parallel to each other across a surface Right Lateral Movement Left Lateral Movement 5 Differential stress Strength • Ability of an object to resist deformation •Compressive •Capacity of a material to withstand axially directed pushing forces – when the limit of compressive strength is reached, materials are crushed •Tensile •Measures the force required to pull something such as rope, wire, or a rock to the point where it breaks 6 Strain Any change in original shape or size of an object in response to stress acting on the object Kinds of deformation Elastic vs Plastic Brittle vs Ductile 7 Elastic Deformation Temporary change in shape or size that is recovered when the deforming force is removed
    [Show full text]
  • Joints, Folds, and Faults
    Structural Geology Rocks in the Crust Are Bent, Stretched, and Broken … …by directed stresses that cause Deformation. Types of Differential Stress Tensional, Compressive, and Shear Strain is the change in shape and or volume of a rock caused by Stress. Joints, Folds, and Faults Strain occurs in 3 stages: elastic deformation, ductile deformation, brittle deformation 1 Type of Strain Dependent on … • Temperature • Confining Pressure • Rate of Strain • Presence of Water • Composition of the Rock Dip-Slip and Strike-Slip Faults Are the Most Common Types of Faults. Major Fault Types 2 Fault Block Horst and Graben BASIN AND Crustal Extension Formed the RANGE PROVINCE Basin and Range Province. • Decompression melting and high heat developed above a subducted rift zone. • Former margin of Farallon and Pacific plates. • Thickening, uplift ,and tensional stress caused normal faults. • Horst and Graben structures developed. Fold Terminology 3 Open Anticline – convex upward arch with older rocks in the center of the fold (symmetrical) Isoclinal Asymmetrical Overturned Recumbent Evolution Simple Folds of a fold into a reverse fault An eroded anticline will have older beds in the middle An eroded syncline will have younger beds in middle Outcrop patterns 4 • The Strike of a body of rock is a line representing the intersection of A layer of tilted that feature with the plane of the horizon (always measured perpendicular to the Dip). rock can be • Dip is the angle below the horizontal of a geologic feature. represented with a plane. o 30 The orientation of that plane in space is defined with Strike-and- Dip notation. Maps are two- Geologic Map Showing Topography, Lithology, and dimensional Age of Rock Units in “Map View”.
    [Show full text]
  • Growth and Erosion of Fold-And-Thrust Belts with an Application to the Aconcagua Fold-And-Thrust Belt, Argentina G
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B01410, doi:10.1029/2002JB002282, 2004 Growth and erosion of fold-and-thrust belts with an application to the Aconcagua fold-and-thrust belt, Argentina G. E. Hilley1 and M. R. Strecker Institut fu¨r Geowissenschaften, Universita¨t Potsdam, Potsdam, Germany V. A. Ramos Department de Geologia, Universidad de Buenos Aires, Buenos Aires, Argentina Received 1 November 2002; revised 26 August 2003; accepted 11 September 2003; published 23 January 2004. [1] The development of topography within and erosional removal of material from an orogen exerts a primary control on its structure. We develop a model that describes the temporal development of a frontally accreting, critically growing Coulomb wedge whose topography is largely limited by bedrock fluvial incision. We present general results for arbitrary initial critical wedge geometries and investigate the temporal development of a critical wedge with no initial topography. Increasing rock erodibility and/or precipitation, decreasing mass flux accreting to the wedge front, increasing wedge sole-out depth, decreasing wedge and basal decollement overpressure, and increasing basal decollement friction lead to narrow wedges. Large power law exponent values cause the wedge geometry to quickly reach a condition in which all material accreted to the front of the wedge is removed by erosion. We apply our model to the Aconcagua fold-and-thrust belt in the central Andes of Argentina where wedge development over time is well constrained. We solve for the erosional coefficient K that is required to recreate the field-constrained wedge growth history, and these values are within the range of independently determined values in analogous rock types.
    [Show full text]
  • Controls on Structural Styles and Decoupling in Stratigraphic Sequences
    Manuscript submitted to Journal of Structural Geoloy 1 Controls on structural styles and decoupling in stratigraphic sequences 2 with double décollements during thin-skinned contractional tectonics: 3 insights from numerical modelling 4 Qingfeng Meng*1, David Hodgetts 5 School of Earth and Environmental Sciences, University of Manchester, M13 9PL, UK 6 Abstract 7 Six series of particle-based numerical experiments were performed to simulate thin-skinned 8 contractional tectonics in stratigraphic sequences with double décollements during horizontal 9 shortening. The models were assigned with varying rock competence, depth and thickness of the 10 upper décollement, which resulted in significantly different styles of deformation and decoupling 11 characteristics above and below the upper décollement. The models composed of the least 12 competent material produced distributed sinusoidal detachment folds, with many shallow 13 structures profoundly decoupled from the deep-seated folds. The models composed of a more 14 competent material are dominated by faulted, diapir-cored box folds, with minor disharmonic folds 15 developed in their limbs. Differently, the results of models composed of the most competent 16 material are characterised by localised piggyback thrusts, fault-bend folds and pop-up structures 17 with tensile fractures developed in fold hinges. Depth of the upper décollements also plays an 18 important role in controlling structural decoupling, i.e. the shallower the upper décollements, the 19 higher the degree of decoupling becomes. Thicker upper décollements can provide sufficient 20 mobile materials to fill fold cores, and contribute to the formation of secondary disharmonic folds, 21 helping enhance structural decoupling. Our modelling results are comparable to the structural 1 *Corresponding author.
    [Show full text]
  • Deformation in the Hinge Region of a Chevron Fold, Valley and Ridge Province, Central Pennsylvania
    JournalofStructuraIGeolog3`ko{ ~,.No 2, pp 157tolt, h, 1986 (~IUI-~',I41/gc~$03(10~0(Ki Printed in Oreal Britain ~{: ]t~s¢~Pcrgam-n Press lJd Deformation in the hinge region of a chevron fold, Valley and Ridge Province, central Pennsylvania DAVID K. NARAHARA* and DAVID V. WILTSCHKO% Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 481(19, U.S A (Received 27 November 1984: accepted in revised form 18 July 1985) Abstract--The hinge region of an asymmetrical chevron fold in sandstone, taken from the Tuscarora Formation of central Pennsylvania. U.S.A., was studied in detail in an attempt to account for the strain that produced the fold shape. The'fold hinge consists of a medium-grained quartz arenite and was deformed predominantly by brittle fracturing and minor amounts of pressure solution and intracrystalline strain. These fractures include: (1) faults, either minor offsets or major limb thrusts, (2) solitary well-healed quartz veins and (3) fibrous quartz veins which are the result of repeated fracturing and healing of grains. The fractures formed during folding as they are observed to cross-cut the authigenic cement. Deformation lamellae and in a few cases, pressure solution, occurred contemporaneously with folding. The fibrous veins appear to have formed as a result of stretching of one limb: the', cross-cut all other structures. Based upon the spatial relationships between the deformation features, we believe that a neutral surface was present during folding, separating zones of compression and extension along the inner and outer arcs, respectively. Using the strain data from the major faults, the fold can be restored back to an interlimb angle of 157°; however, the extension required for such an angle along the outer arc is much more than was actually measured.
    [Show full text]
  • Fluid Systems in Foreland Fold-And-Thrust Belts : on Overview from the Southern Pyrennees A
    Fluid systems in foreland fold-and-thrust belts : on overview from the Southern Pyrennees A. Travé, Pierre Labaume, J. Vergès To cite this version: A. Travé, Pierre Labaume, J. Vergès. Fluid systems in foreland fold-and-thrust belts : on overview from the Southern Pyrennees. O. Lacombe; F. Roure; J. Lavé; J. Vergés. Thrust belts and foreland basins, from fold kinematics to hydrocarbon systems, Springer, pp.93-115, 2007, 10.1007/978-3-540- 69426-7_5. hal-00408001 HAL Id: hal-00408001 https://hal.archives-ouvertes.fr/hal-00408001 Submitted on 6 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Fluid Systems in Foreland Fold-and-Thrust Belts: An Overview from the Southern Pyrenees Travé, A. · Labaume, P. · Vergés, J. Abstract. The analysis of three different regions of the South- The progressive increase of the 87Sr/86Sr ratio through time is Pyrenean fold-and-thrust belt reveals that during the Tertiary due to the progressive uplift, exposure and erosion of the in- compression the hydrological system was compartmental- ternal Pyrenean Axial Zone. ised in time and space.
    [Show full text]