Composition of Potentially Hazardous Asteroid (214869) 2007 PA8: an H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asteroid Family Ages. 2015. Icarus 257, 275-289
Icarus 257 (2015) 275–289 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Asteroid family ages ⇑ Federica Spoto a,c, , Andrea Milani a, Zoran Knezˇevic´ b a Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy b Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia c SpaceDyS srl, Via Mario Giuntini 63, 56023 Navacchio di Cascina, Italy article info abstract Article history: A new family classification, based on a catalog of proper elements with 384,000 numbered asteroids Received 6 December 2014 and on new methods is available. For the 45 dynamical families with >250 members identified in this Revised 27 April 2015 classification, we present an attempt to obtain statistically significant ages: we succeeded in computing Accepted 30 April 2015 ages for 37 collisional families. Available online 14 May 2015 We used a rigorous method, including a least squares fit of the two sides of a V-shape plot in the proper semimajor axis, inverse diameter plane to determine the corresponding slopes, an advanced error model Keywords: for the uncertainties of asteroid diameters, an iterative outlier rejection scheme and quality control. The Asteroids best available Yarkovsky measurement was used to estimate a calibration of the Yarkovsky effect for each Asteroids, dynamics Impact processes family. The results are presented separately for the families originated in fragmentation or cratering events, for the young, compact families and for the truncated, one-sided families. For all the computed ages the corresponding uncertainties are provided, and the results are discussed and compared with the literature. The ages of several families have been estimated for the first time, in other cases the accu- racy has been improved. -
Ice& Stone 2020
Ice & Stone 2020 WEEK 51: DECEMBER 13-19 Presented by The Earthrise Institute # 51 Authored by Alan Hale COMET OF THE WEEK: The Great Comet of 1680 Perihelion: 1680 December 18.49, q = 0.006 AU The Great Comet of 1680 over Rotterdam in The Netherlands, during late December 1680 as painted by the Dutch artist Lieve Verschuier. This particular comet was undoubtedly one of the brightest comets of the 17th Century, but it is also one of the most important comets in history from a scientific perspective, and perhaps even from the perspective of overall human history. While there were certainly plenty of superstitions attached to the comet’s appearance, the scientific investigations made of it were among the beginnings of the era in European history we now call The Enlightenment, and indeed, in a sense the Great Comet of 1680 can perhaps be considered as one of the sparks of that era. The significance began with the comet’s discovery, which was made on the morning of November 14, 1680, by a German astronomer residing in Coburg, Gottfried Kirch – the first comet ever to be discovered by means of a telescope. It was already around 4th magnitude at that time, and located near the star Regulus in the constellation Leo; from that point it traveled eastward and brightened rapidly, being closest to Earth (0.42 AU) on November 30. By that time it was a conspicuous naked-eye object with a tail 20 to 30 degrees long, and it remained visible for another week before disappearing into morning twilight. -
Asteroid Family Identification 613
Bendjoya and Zappalà: Asteroid Family Identification 613 Asteroid Family Identification Ph. Bendjoya University of Nice V. Zappalà Astronomical Observatory of Torino Asteroid families have long been known to exist, although only recently has the availability of new reliable statistical techniques made it possible to identify a number of very “robust” groupings. These results have laid the foundation for modern physical studies of families, thought to be the direct result of energetic collisional events. A short summary of the current state of affairs in the field of family identification is given, including a list of the most reliable families currently known. Some likely future developments are also discussed. 1. INTRODUCTION calibrate new identification methods. According to the origi- nal papers published in the literature, Brouwer (1951) used The term “asteroid families” is historically linked to the a fairly subjective criterion to subdivide the Flora family name of the Japanese researcher Kiyotsugu Hirayama, who delineated by Hirayama. Arnold (1969) assumed that the was the first to use the concept of orbital proper elements to asteroids are dispersed in the proper-element space in a identify groupings of asteroids characterized by nearly iden- Poisson distribution. Lindblad and Southworth (1971) cali- tical orbits (Hirayama, 1918, 1928, 1933). In interpreting brated their method in such a way as to find good agree- these results, Hirayama made the hypothesis that such a ment with Brouwer’s results. Carusi and Massaro (1978) proximity could not be due to chance and proposed a com- adjusted their method in order to again find the classical mon origin for the members of these groupings. -
Asteroid Regolith Weathering: a Large-Scale Observational Investigation
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved. -
1950 Da, 205, 269 1979 Va, 230 1991 Ry16, 183 1992 Kd, 61 1992
Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. Burbine Index More Information 356 Index 1950 DA, 205, 269 single scattering, 142, 143, 144, 145 1979 VA, 230 visual Bond, 7 1991 RY16, 183 visual geometric, 7, 27, 28, 163, 185, 189, 190, 1992 KD, 61 191, 192, 192, 253 1992 QB1, 233, 234 Alexandra, 59 1993 FW, 234 altitude, 49 1994 JR1, 239, 275 Alvarez, Luis, 258 1999 JU3, 61 Alvarez, Walter, 258 1999 RL95, 183 amino acid, 81 1999 RQ36, 61 ammonia, 223, 301 2000 DP107, 274, 304 amoeboid olivine aggregate, 83 2000 GD65, 205 Amor, 251 2001 QR322, 232 Amor group, 251 2003 EH1, 107 Anacostia, 179 2007 PA8, 207 Anand, Viswanathan, 62 2008 TC3, 264, 265 Angelina, 175 2010 JL88, 205 angrite, 87, 101, 110, 126, 168 2010 TK7, 231 Annefrank, 274, 275, 289 2011 QF99, 232 Antarctic Search for Meteorites (ANSMET), 71 2012 DA14, 108 Antarctica, 69–71 2012 VP113, 233, 244 aphelion, 30, 251 2013 TX68, 64 APL, 275, 292 2014 AA, 264, 265 Apohele group, 251 2014 RC, 205 Apollo, 179, 180, 251 Apollo group, 230, 251 absorption band, 135–6, 137–40, 145–50, Apollo mission, 129, 262, 299 163, 184 Apophis, 20, 269, 270 acapulcoite/ lodranite, 87, 90, 103, 110, 168, 285 Aquitania, 179 Achilles, 232 Arecibo Observatory, 206 achondrite, 84, 86, 116, 187 Aristarchus, 29 primitive, 84, 86, 103–4, 287 Asporina, 177 Adamcarolla, 62 asteroid chronology function, 262 Adeona family, 198 Asteroid Zoo, 54 Aeternitas, 177 Astraea, 53 Agnia family, 170, 198 Astronautica, 61 AKARI satellite, 192 Aten, 251 alabandite, 76, 101 Aten group, 251 Alauda family, 198 Atira, 251 albedo, 7, 21, 27, 185–6 Atira group, 251 Bond, 7, 8, 9, 28, 189 atmosphere, 1, 3, 8, 43, 66, 68, 265 geometric, 7 A- type, 163, 165, 167, 169, 170, 177–8, 192 356 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. -
CHONDRITES. R. Roberts1 and M. J. Gaffey2, Space Studies Department, John D
45th Lunar and Planetary Science Conference (2014) 1263.pdf UPDATE ON TESTING THE GEFION DYNAMICAL FAMILY AS A POSSIBLE SOURCE OF THE L- CHONDRITES. R. Roberts1 and M. J. Gaffey2, Space Studies Department, John D. Odegard School of Aerospace Sciences, Box 9008, Uuniversity of North Dakota, Grand Forks, ND 58202. [email protected] [email protected] Introduction: The ordinary chondrites comprise Observations of nearby standard stars were inter- approximately 80% of meteorite falls [1, 2]. Antarctic spersed with the asteroid observations to derive atmos- meteorite finds show that this abundance has been con- pheric extinction corrections. Where available, these sistent for the past million years [3]. Due to their high local standard stars were type G2V. If G2V stars are percentage among falls, identifying probable parent not available in close proximity to the asteroid, well bodies for the ordinary chondrites has been a priority calibrated solar analogs are used along with standard for some time [4]. Fossil L-chondrites have been ob- stars [18,19]. Spectra are taken in low resolu- served in Middle Ordovician sediments in Sweden, tion/asteroid mode, in two channels A and B, and are China, and other locations [5-7]. Chromite isotopes, stored as Flexible Image Transport System (FITS) shock features, and 40Ar-39Ar isochrons from Ordovi- files. IRAF is used for the initial data reduction in cian L-chondrites match those from current L- which read noise and dark current are removed and the chondrites which indicates both a catastrophic breakup background sky is removed by subtracting one channel of the L-chondrite parent body and a short interval from the other; to produce a one deminsional array from the event to Earth impact [5-8]. -
Asteroidal Source of L Chondrite Meteorites ∗ David Nesvorný A, , David Vokrouhlický A,B, Alessandro Morbidelli A,C, William F
ARTICLE IN PRESS YICAR:8854 JID:YICAR AID:8854 /SCO [m5G; v 1.79; Prn:12/02/2009; 11:10] P.1 (1-4) Icarus ••• (••••) •••–••• Contents lists available at ScienceDirect Icarus www.elsevier.com/locate/icarus Note Asteroidal source of L chondrite meteorites ∗ David Nesvorný a, , David Vokrouhlický a,b, Alessandro Morbidelli a,c, William F. Bottke a a Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302, USA b Institute of Astronomy, Charles University, V Holešoviˇckách2,CZ-18000,Prague8,CzechRepublic c Observatoire de la Côte d’Azur, Boulevard de l’Observatoire, B.P. 4229, 06304 Nice Cedex 4, France article info abstract Article history: Establishing connections between meteorites and their parent asteroids is an important goal of planetary science. Received 28 July 2008 Several links have been proposed in the past, including a spectroscopic match between basaltic meteorites and (4) Revised 19 November 2008 Vesta, that are helping scientists understand the formation and evolution of the Solar System bodies. Here we show Accepted 11 December 2008 that the shocked L chondrite meteorites, which represent about two thirds of all L chondrite falls, may be fragments Available online xxxx of a disrupted asteroid with orbital semimajor axis a = 2.8 AU. This breakup left behind thousands of identified 1– 15 km asteroid fragments known as the Gefion family. Fossil L chondrite meteorites and iridium enrichment found Keywords: in an ≈467 Ma old marine limestone quarry in southern Sweden, and perhaps also ∼5 large terrestrial craters Meteorites with corresponding radiometric ages, may be tracing the immediate aftermath of the family-forming collision when Asteroids numerous Gefion fragments evolved into the Earth-crossing orbits by the 5:2 resonance with Jupiter. -
High-Calcium Pyroxene As an Indicator of Igneous Differentiation in Asteroids and Meteorites
Meteoritics & Planetary Science 39, Nr 8, 1343–1357 (2004) Abstract available online at http://meteoritics.org High-calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites Jessica M. SUNSHINE,1* Schelte J. BUS,2 Timothy J. MCCOY,3 Thomas H. BURBINE,4 Catherine M. CORRIGAN,3 and Richard P. BINZEL5 1Advanced Technology Applications Division, Science Applications International Corporation, Chantilly, Virginia 20151, USA 2University of Hawaii, Institute for Astronomy, Hilo, Hawaii 96720, USA 3Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560–0119, USA 4Laboratory for Extraterrestrial Physics, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA 5Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachussets 02139, USA *Corresponding author. E-mail: [email protected] (Received 9 March 2004; revision accepted 21 April 2004) Abstract–Our analyses of high quality spectra of several S-type asteroids (17 Thetis, 847 Agnia, 808 Merxia, and members of the Agnia and Merxia families) reveal that they include both low- and high- calcium pyroxene with minor amounts of olivine (<20%). In addition, we find that these asteroids have ratios of high-calcium pyroxene to total pyroxene of >~0.4. High-calcium pyroxene is a spectrally detectable and petrologically important indicator of igneous history and may prove critical in future studies aimed at understanding the history of asteroidal bodies. The silicate mineralogy inferred for Thetis and the Merxia and Agnia family members requires that these asteroids experienced igneous differentiation, producing broadly basaltic surface lithologies. Together with 4 Vesta (and its smaller “Vestoid” family members) and the main-belt asteroid 1489 Magnya, these new asteroids provide strong evidence for igneous differentiation of at least five asteroid parent bodies. -
A Study of Asteroid Pole-Latitude Distribution Based on an Extended
Astronomy & Astrophysics manuscript no. aa˙2009 c ESO 2018 August 22, 2018 A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method 1 1 1 2 3 4 5 6 7 J. Hanuˇs ∗, J. Durechˇ , M. Broˇz , B. D. Warner , F. Pilcher , R. Stephens , J. Oey , L. Bernasconi , S. Casulli , R. Behrend8, D. Polishook9, T. Henych10, M. Lehk´y11, F. Yoshida12, and T. Ito12 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 4 Goat Mountain Astronomical Research Station, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA 5 Kingsgrove, NSW, Australia 6 Observatoire des Engarouines, 84570 Mallemort-du-Comtat, France 7 Via M. Rosa, 1, 00012 Colleverde di Guidonia, Rome, Italy 8 Geneva Observatory, CH-1290 Sauverny, Switzerland 9 Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel 10 Astronomical Institute, Academy of Sciences of the Czech Republic, Friova 1, CZ-25165 Ondejov, Czech Republic 11 Severni 765, CZ-50003 Hradec Kralove, Czech republic 12 National Astronomical Observatory, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan Received 17-02-2011 / Accepted 13-04-2011 ABSTRACT Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination. -
(2000) Forging Asteroid-Meteorite Relationships Through Reflectance
Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta. -
Taxonomic Classification of Asteroids Based on MOVIS Near-Infrared Colors
A&A 617, A12 (2018) https://doi.org/10.1051/0004-6361/201833023 Astronomy & © ESO 2018 Astrophysics Taxonomic classification of asteroids based on MOVIS near-infrared colors? M. Popescu1,2,3, J. Licandro1,2, J. M. Carvano4, R. Stoicescu3, J. de León1,2, D. Morate1,2, I. L. Boaca˘3, and C. P. Cristescu5 1 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Tenerife, Spain 2 Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain e-mail: [email protected] 3 Astronomical Institute of the Romanian Academy, 5 Cu¸titulde Argint, 040557 Bucharest, Romania 4 Observatório Nacional, rua Gal. José Cristino 77, São Cristóvão, 20921-400 Rio de Janeiro, Brazil 5 Department of Physics, University Politehnica of Bucharest, Bucure¸sti 060042, Romania Received 14 March 2018 / Accepted 14 June 2018 ABSTRACT Context. The MOVIS catalog contains the largest set of near-infrared (NIR) colors for solar system objects. These data were obtained from the observations performed by VISTA-VHS survey using the Y, J, H, and Ks filters. The taxonomic classification of objects in this catalog allows us to obtain large-scale distributions for the asteroidal population, to study faint objects, and to select targets for detailed spectral investigations. Aims. We aim to provide a taxonomic classification for asteroids observed by VISTA-VHS survey. We derive a method for assigning a compositional type to an object based on its (Y − J), (J − Ks), and (H − Ks) colors. Methods. We present a taxonomic classification for 18 265 asteroids from the MOVIS catalog, using a probabilistic method and the k-nearest neighbors algorithm. -
An Introduction to Celestial Mechanics Richard Fitzpatrick Index More Information
Cambridge University Press 978-1-107-02381-9 - An Introduction to Celestial Mechanics Richard Fitzpatrick Index More information Index acceleration, 4 conservation centrifugal, 73, 79, 84 of angular momentum, 10, 39, 41 action at a distance, 7 of energy, 7, 39 age of Aquarius, 127 of generalized momentum, 102 Airy, G.B., 198 of momentum, 9 angular momentum, 9 coordinate aphelion, 43 Cartesian, 3 apsidal angle, 65 cylindrical, 223 apsis, 65 generalized, 97 asphericity parameter, 130 ignorable, 102 asteroid plane polar, 39 Ceres, 33 spherical, 224 Eos, 190 transformation (rotational), 221 Eunomia, 190 cyclonic rotation, 78 Gefion, 190 Koronis, 190 d’Alembert, J.-B., 127, 198 Nysa, 190 Damoiseau, M.-C.-T., 198 secular evolution of orbital elements, 187 day Themis, 190 sidereal, 74 Tisserand parameter, 150 De Pontecoulant,´ P.G., 198 Trojan, 166, 171 degree of freedom, 97 Vesta, 190 Delaunay, C.E., 198 astronomical unit, 51 disturbing function, 173, 234 axis of rotation due to planetary oblateness, 192 principal, 108 of two-planet solar system, 247 periodic term, 256 Bessel function, 229 secular term, 256 Bradley, J., 127 dynamical system Brahe, T., 197 bounded, 13 Brown, E.W., 198 conservative, 98 isolated, 8 Cassini, G.D. nonisolated, 10 laws (of lunar rotation), 138 unbounded, 13 celestial equator, 126 center of mass, 8 Earth Chandler, S.C. forced nutation of axis of rotation, 118 wobble (of Earth), 115 forced precession of axis of rotation, 118 chaos, 138 free precession of axis of rotation, 114 circular restricted three-body problem, 147