Entering the Twilight Zone (Adapted from the 2002 Gulf of Mexico Expedition)

Total Page:16

File Type:pdf, Size:1020Kb

Entering the Twilight Zone (Adapted from the 2002 Gulf of Mexico Expedition) Thunder Bay Sinkholes 2008 Entering the Twilight Zone (adapted from the 2002 Gulf of Mexico Expedition) FOCUS TEACHIN G TI M E Deep water habitats Two 45-minute class periods, plus time for indi- vidual group research GRADE LEVE L 5-6 (Life Science) SEATIN G ARRAN G E M ENT Groups of four students FOCUS QUESTION What organisms are typical of deep water habi- MAXI M U M NU M BER O F STUDENTS tats, and how do they interact? 32 LEARNIN G OBJECTIVES KEY WORDS Students will be able to describe major features Cold seeps of cold seep communities, and list at least five Methane hydrate ice organisms typical of these communities. Chemosynthesis Brine pool Students will be able to infer probable trophic Trophic level relationships within and between major deep-sea Pelagic zone habitats. Epipelagic zone Mesopelagic zone Students will be able to describe the process of Bathypelagic zone chemosynthesis in general terms, and will be able Hadopelagic zone to contrast chemosynthesis and photosynthesis. Benthic zone Intertidal zone Students will be able to describe major deep-sea Subtidal zone habitats and list at least three organisms typical Bathyal zone of each habitat. Abyssal zone Hadal zone MATERIA L S Hydrothermal vent 5 x 7 index cards Drawing materials BAC kg ROUND IN F OR M ATION Corkboard, flip chart, or large poster board In June, 2001, the Ocean Explorer Thunder Bay ECHO Expedition was searching for shipwrecks AUDIOVISUA L MATERIA L S in the deep waters of the Thunder Bay National None Marine Sanctuary and Underwater Preserve in Lake Huron. But the explorers discovered more 1 Thunder Bay Sinkholes 2008 - Grades 5-6 (Life Science) Focus: Deep water habitats oceanexplorer.noaa.gov than shipwrecks: dozens of underwater sinkholes Minnesota and New York. Over thousands of in the limestone bedrock, some of which were years, sand, minerals, and sediments accumu- several hundred meters across and 20 meters lated on the seafloor, and were gradually com- deep. The following year, an expedition to sur- pressed to form sandstone, limestone and shale. vey the sinkholes found that some of them were About 1.8 million years ago, the Great Ice Age releasing fluids that produced a visible cloudy of the Pleistocene epoch began and continued layer above the lake bottom, and the lake floor until about 10,000 years ago. During this time, near some of the sinkholes was covered by con- four major periods of glaciation occurred, sepa- spicuous green, purple, white, and brown mats. rated by three interglacial periods. As the final glacial period came to a close, retreating glaciers Preliminary studies of the mats have found that along the U.S.-Canadian border revealed five where water is shallow (≤ 1.0 m) the mats are huge lakes that we now know as the Laurentian composed of green algae. In deeper (about 18 Great Lakes. In the Great Lakes region, aquifers m) waters, mats are formed by filamentous purple are found in deposits of sand and gravel left by cyanobacteria. Mats near the deepest (93 m) glaciers, as well as in porous bedrocks (limestone sinkholes are white or brown, but their composi- and sandstone) that were formed much earlier tion is presently unknown. The appearance of in geologic time. Five major aquifers are recog- mats near the deepest sinkholes is very similar to nized in this region: one near the land or lake mats observed in the vicinity of cold seeps and floor surface (the surficial aquifer) and the others hydrothermal vents in the deep ocean, which are in deeper bedrock named for the geologic time often formed by chemosynthetic bacteria. These periods when they were formed (the Cambrian- bacteria are able to obtain energy from inorganic Ordovician, Silurian-Devonian, Mississippian, and chemicals, and are a food source for a variety Pennsylvanian aquifers). The bedrock that forms of other organisms that inhabit cold seep and the Silurian-Devonian aquifer is primarily lime- vent communities. Biological communities whose stone and mineral formations from evaporating primary energy source comes from chemosyn- seawater. Both fresh and saline water are found thesis are distinctly different from more familiar in the Silurian-Devonian aquifer. biological communities in shallow water and on land where photosynthetic organisms convert the Sinkholes are common features where limestone energy of sunlight to food that can be used by is abundant, because limestone rocks are soluble other species. Hydrothermal vent and cold seep in acid. Atmospheric carbon dioxide often dis- communities are home to many species of organ- solves in rainwater to form a weak acid (carbonic isms that have not been found anywhere else on acid). Rainwater flowing over land surfaces may Earth, and the existence of chemosynthetic com- also pick up organic acids produced by decay- munities in the deep ocean is one of the major ing leaves and other once-living material. The scientific discoveries of the last 100 years. resulting weak acid can slowly dissolve limestone rocks to form caves, springs, and sinkholes. Scientists hypothesize that the source of the Sinkholes on land are known recharge areas for fluids venting from the Lake Huron sinkholes is the Silurian-Devonian aquifer (areas where water the Silurian-Devonian aquifer beneath the lake’s flows into the aquifer). But very little is known sediments. Aquifers are rocks and sediments that about the chemistry, geology, and biology of contain large amounts of water. Between 350 submerged sinkholes that may serve as vents for and 430 million years ago, during the Paleozoic groundwater in the aquifer. Water samples col- era, shallow seas covered what is now the border lected near these sinkholes is very different from between Canada and the United States between the surrounding lake, with much higher concen- 2 Thunder Bay Sinkholes 2008 - Grades 5-6 (Life Science) Focus: Deep water habitats trations of sulfate, phosphorus, and particulate communities they may support; but since their organic matter, as well as ten times more bacteria appearance is very similar to mats found in compared to nearby lake water. These observa- some deep ocean habitats, these habitats may tions suggest that submerged sinkholes may be provide clues for explorations of the Thunder biogeochemical “hot spots” inhabited by unusual Bay sinkholes. and possibly unknown life forms. At the same time, water flow through submerged sinkholes Lead a discussion of the major categories depends upon recharge from land. This means that of ocean habitats, and introduce deep-sea sinkhole ecosystems are likely to be very sensitive chemosynthetic communities (hydrothermal vents to changes in rainfall patterns that may accom- and cold seeps). pany climate change, as well as human alterations of these landscapes surrounding recharge areas. Ocean habitats are usually categorized into These factors make understanding sensitive sink- zones: hole ecosystems an urgent necessity. I. Pelagic zones are found in the water column above the bottom. Organisms that inhabit Because little is presently known about these sys- pelagic zones are divided into plankton that tems, information from chemosynthetic communi- drift with the ocean currents and nekton that ties in the deep ocean may provide a useful start- can swim and control their motion in the ing point for exploration of sinkhole ecosystems. water (at least to some extent). This activity focuses on major ocean habitats, A. The epipelagic zone includes surface organisms typically found in these habitats, and waters where light is adequate for pho- the interactions that take place within and among tosynthesis (about 200 m, maximum). these habitats. Phytoplankton are the dominant primary producers in this zone. LEARNIN G PROCEDURE B. The mesopelagic zone (about 200 m - 1. To prepare for this lesson, visit http://www.bio.psu. 1,000 m) is the twilight zone. Because edu/cold_seeps for a virtual tour of a cold seep there is not enough light for photosyn- community, http://www.bio.psu.edu/hotvents for a thesis, much less energy is available to virtual tour of a hydrothermal vent community, support animal life. Bacteria and detritus and introductory essays for the Thunder Bay (pieces of dead plants and animals that Sinkholes Expedition at http://oceanexplorer.noaa.gov/ slowly settle to the bottom) are the pri- explorations/08thunderbay/welcome.html. You may also mary sources of food for animals like want to watch video clips linked from http://www. jellyfishes that are confined to this zone. glerl.noaa.gov/res/Task_rpts/2006/eosruberg06-1.html. Other animals, including squids, fishes, and shrimps can move up and down 2. Briefly introduce the Thunder Bay Sinkholes through the water column, and have a Expedition, highlighting the discovery of flu- wider range of food available to them. ids emerging from sinkholes on the lake floor, C. The bathypelagic zone (sometimes divid- and the variety of mats found in the vicinity of ed further into an additional abyssope- these sinkholes. Be sure students understand lagic zone) has no light at all. Deep-sea the concept of an aquifer, and that the mats organisms are dependent upon produc- are likely to be living organisms (algae and/or tion in other zones. The base of bathy- bacteria) that can serve as food for many other pelagic food webs may be primary pro- organisms. Point out that very little is known duction in shallower water (obtained by about the mats in Lake Huron or the biological feeding on detritus or on other animals 3 Thunder Bay Sinkholes 2008 - Grades 5-6 (Life Science) Focus: Deep water habitats oceanexplorer.noaa.gov feeding in shallower water) or chemosyn- and oil seep out of sediments. These areas, thetic communities like hydrothermal vents known as cold seeps, are commonly found or cold-seeps. along continental margins, and (like hydrother- D.
Recommended publications
  • Methane Cold Seeps As Biological Oases in the High‐
    LIMNOLOGY and Limnol. Oceanogr. 00, 2017, 00–00 VC 2017 The Authors Limnology and Oceanography published by Wiley Periodicals, Inc. OCEANOGRAPHY on behalf of Association for the Sciences of Limnology and Oceanography doi: 10.1002/lno.10732 Methane cold seeps as biological oases in the high-Arctic deep sea Emmelie K. L. A˚ strom€ ,1* Michael L. Carroll,1,2 William G. Ambrose, Jr.,1,2,3,4 Arunima Sen,1 Anna Silyakova,1 JoLynn Carroll1,2 1CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway 2Akvaplan-niva, FRAM – High North Research Centre for Climate and the Environment, Tromsø, Norway 3Division of Polar Programs, National Science Foundation, Arlington, Virginia 4Department of Biology, Bates College, Lewiston, Maine Abstract Cold seeps can support unique faunal communities via chemosynthetic interactions fueled by seabed emissions of hydrocarbons. Additionally, cold seeps can enhance habitat complexity at the deep seafloor through the accretion of methane derived authigenic carbonates (MDAC). We examined infaunal and mega- faunal community structure at high-Arctic cold seeps through analyses of benthic samples and seafloor pho- tographs from pockmarks exhibiting highly elevated methane concentrations in sediments and the water column at Vestnesa Ridge (VR), Svalbard (798 N). Infaunal biomass and abundance were five times higher, species richness was 2.5 times higher and diversity was 1.5 times higher at methane-rich Vestnesa compared to a nearby control region. Seabed photos reveal different faunal associations inside, at the edge, and outside Vestnesa pockmarks. Brittle stars were the most common megafauna occurring on the soft bottom plains out- side pockmarks.
    [Show full text]
  • Bathyal Zones of the Mediterranean Continental Slope: an Attempt
    Publ: Espec. but. Esp. Oceanogr. 23. 1997: 23-33 P UBUCACIONES ESPECIALES L"lSTlTUTO ESP.I\NOL DE O CEANOGRAFIA ISSN; 021-1-7378 . ISBN: 81 ~19 1 -O 299-5 Ib Ministerio de Agriculrura, Pesca yAlimentacion , L997 Bathyal zones of the Mediterranean continental slope: An attempt c. C. Emig Centre d'Ocean ologie de Marseille (UMR-CNRS 6540) , Station Mari ne d 'Endoum e, Rue de la Batterie-des-Lions. 13007 Marseille, France. Received Febru ary 1996. A ccepted August 1 99 6. ABSTRACT On the con tine ntal slop e, th e bathyal can be divided into two zones, the upper bathya l and the middle bath yal, at the shelf break, which represents th e boun dary betwe en the coastal shelf environment an d the deep realm , located at about 100-110 m dep th. T he upper bathyal, previ­ ously considered a transitional zone, is characterised by distin ct physical, geological an d biol ogi­ cal features. Its bath ymen-ic extension is directly related to slope physiography, and its lower boun dary ge ne rally corresponds to the mud line. T his belt is governe d by specific abiotic factors with stee p physical grad ients (e.g., hydro dynam ics, salin ity, oxygen , temperat ure , sedirnen ts}. Major change in tbe benthic fauna is associated with major ch ange in these abiotic factors. The three main biocoeno ses are dominated by suspen sion-feed ing species, which are exclusive to th e Mediterran ean upper bathyal. Dep ending on water parameters, the limit between th e phytal and aphyta l systems gene ra lly occurs with in th e upper bathyal.
    [Show full text]
  • 8.4 the Significance of Ocean Deoxygenation for Continental Margin Mesopelagic Communities J
    8.4 The significance of ocean deoxygenation for continental margin mesopelagic communities J. Anthony Koslow 8.4 The significance of ocean deoxygenation for continental margin mesopelagic communities J. Anthony Koslow Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia and Scripps Institution of Oceanography, University of California, SD, La Jolla, CA 92093 USA. Email: [email protected] Summary • Global climate models predict global warming will lead to declines in midwater oxygen concentrations, with greatest impact in regions of oxygen minimum zones (OMZ) along continental margins. Time series from these regions indicate that there have been significant changes in oxygen concentration, with evidence of both decadal variability and a secular declining trend in recent decades. The areal extent and volume of hypoxic and suboxic waters have increased substantially in recent decades with significant shoaling of hypoxic boundary layers along continental margins. • The mesopelagic communities in OMZ regions are unique, with the fauna noted for their adaptations to hypoxic and suboxic environments. However, mesopelagic faunas differ considerably, such that deoxygenation and warming could lead to the increased dominance of subtropical and tropical faunas most highly adapted to OMZ conditions. • Denitrifying bacteria within the suboxic zones of the ocean’s OMZs account for about a third of the ocean’s loss of fixed nitrogen. Denitrification in the eastern tropical Pacific has varied by about a factor of 4 over the past 50 years, about half due to variation in the volume of suboxic waters in the Pacific. Continued long- term deoxygenation could lead to decreased nutrient content and hence decreased ocean productivity and decreased ocean uptake of carbon dioxide (CO2).
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
    G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats.
    [Show full text]
  • Marine Nature Conservation in the Pelagic Environment: a Case for Pelagic Marine Protected Areas?
    Marine nature conservation in the pelagic environment: a case for pelagic Marine Protected Areas? Susan Gubbay September 2006 Contents Contents......................................................................................................................................... 1 Executive summary....................................................................................................................... 2 1 Introduction........................................................................................................................... 4 2 The pelagic environment....................................................................................................... 4 2.1 An overview...................................................................................................................... 4 2.2 Characteristics of the pelagic environment ....................................................................... 5 2.3 Spatial and temporal structure in the pelagic environment ............................................... 6 2.4 Marine life....................................................................................................................... 10 3 Biodiversity conservation in the pelagic environment........................................................ 12 3.1 Environmental concerns.................................................................................................. 12 3.2 Legislation, policy and management tools...................................................................... 15
    [Show full text]
  • Respiration in the Mesopelagic and Bathypelagic Zones of the Oceans
    CHAPTER 10 Respiration in the mesopelagic and bathypelagic zones of the oceans Javier Arístegui1, Susana Agustí2, Jack J. Middelburg3, and Carlos M. Duarte2 1 Facultad de Ciencias del Mar, Universidad de las Palmas de Gran Canaria, Spain 2 IMEDEA (CSIC–UIB), Spain 3 Netherlands Institute of Ecology, The Netherlands Outline In this chapter the mechanisms of transport and remineralization of organic matter in the dark water-column and sediments of the oceans are reviewed. We compare the different approaches to estimate respiration rates, and discuss the discrepancies obtained by the different methodologies. Finally, a respiratory carbon budget is produced for the dark ocean, which includes vertical and lateral fluxes of organic matter. In spite of the uncertainties inherent in the different approaches to estimate carbon fluxes and oxygen consumption in the dark ocean, estimates vary only by a factor of 1.5. Overall, direct measurements of respiration, as well as − indirect approaches, converge to suggest a total dark ocean respiration of 1.5–1.7 Pmol C a 1. Carbon mass − balances in the dark ocean suggest that the dark ocean receives 1.5–1.6 Pmol C a 1, similar to the estimated respiration, of which >70% is in the form of sinking particles. Almost all the organic matter (∼92%) is remineralized in the water column, the burial in sediments accounts for <1%. Mesopelagic (150–1000 m) − − respiration accounts for ∼70% of dark ocean respiration, with average integrated rates of 3–4 mol C m 2 a 1, − − 6–8 times greater than in the bathypelagic zone (∼0.5 mol C m 2 a 1).
    [Show full text]
  • MARINE ENVIRONMENTS Teaching Module for Grades 6-12
    MARINE ENVIRONMENTS Teaching Module for Grades 6-12 Dear Educator, We are pleased to present you with the first in a series of teaching and learning modules developed by the DEEPEND (Deep-Pelagic Nekton Dynamics) consortium and their consultants. DEEPEND is a research network focusing primarily on the pelagic zone of the Gulf of Mexico, therefore the majority of the lessons will be based around this topic. Whenever possible, the lessons will focus specifically on events of the Gulf of Mexico or work from the DEEPEND scientists. All modules in this series aim to engage students in grades 6 through 12 in STEM disciplines, while promoting student learning of the marine environment. We hope these lessons enable teachers to address student misconceptions and apprehensions regarding the unique organisms and properties of marine ecosystems. We intend for these modules to be a guide for teaching. Teachers are welcome to use the lessons in any order they wish, use just portions of lessons, and may modify the lessons as they wish. Furthermore, educators may share these lessons with other school districts and teachers; however, please do not receive monetary gain for lessons in any of the modules. Moreover, please provide credit to photographers and authors whenever possible. This first module focuses on the marine environment in general including biological, chemical, and physical properties of the water column. We have provided a variety of activities and extensions within this module such that lessons can easily be adapted for various grade and proficiency levels. Given that education reform strives to incorporate authentic science experiences, many of these lessons encourage exploration and experimentation to encourage students to think and act like a scientist.
    [Show full text]
  • The C-Floor and Zones
    The C-Floor and zones Table of Contents ` ❖ The ocean zones ❖ Sunlight zone and twilight zone ❖ Midnight and Abyssal zone ❖ The hadal zone ❖ The c-floor ❖ The c-floor definitions ❖ The c-floor definitions pt.2 ❖ Cites ❖ The end The ocean zones 200 meters deep 1,000 Meters deep 4,000 Meters deep 6,000 Meters deep 10,944 meters deep Sunlight zone Twilight zone ❖ The sunlight zone is 200 meters from the ocean's ❖ The twilight zone is about 1,000 meters surface deep from the ❖ Animals that live here ocean's surface sharks, sea turtles, ❖ Animals that live jellyfish and seals here are gray ❖ Photosynthesis normally whales, greenland occurs in this part of the Shark and clams ocean ❖ The twilight get only a faint amount of sunlight DID YOU KNOW Did you know That no plants live That the sunlight zone in the twilight zone could be called as the because of the euphotic and means well lit amount of sunlight in greek Midnight zone Abyssal zone ❖ The midnight zone is ❖ The abyssal zone is 4,000 meters from 6,000 meters from the the ocean's surface ocean’s surface ❖ Animals that live in ❖ Animals that live in the the midnight zone Abyssal zone are fangtooth fish, pacific are, vampire squid, viperfish and giant snipe eel and spider crabs anglerfish ❖ Supports only ❖ Animals eat only the DID YOU KNOW invertebrates and DID YOU KNOW leftovers that come That only 1 percent of light fishes That most all the way from the travels through animals are sunlight zone to the the midnight zone either small or midnight zone bioluminescent The Hadal Zone (Trench ● The Hadal Zone is 10,944 meters under the ocean ● Snails, worms, and sea cucumbers live in the hadal zone ● It is pitch black in the Hadal Zone The C-Floor The C-Floor Definitions ❖ The Continental Shelf - The flat part where people can walk.
    [Show full text]
  • Lake Ecology
    Fundamentals of Limnology Oxygen, Temperature and Lake Stratification Prereqs: Students should have reviewed the importance of Oxygen and Carbon Dioxide in Aquatic Systems Students should have reviewed the video tape on the calibration and use of a YSI oxygen meter. Students should have a basic knowledge of pH and how to use a pH meter. Safety: This module includes field work in boats on Raystown Lake. On average, there is a death due to drowning on Raystown Lake every two years due to careless boating activities. You will very strongly decrease the risk of accident when you obey the following rules: 1. All participants in this field exercise will wear Coast Guard certified PFDs. (No exceptions for teachers or staff). 2. There is no "horseplay" allowed on boats. This includes throwing objects, splashing others, rocking boats, erratic operation of boats or unnecessary navigational detours. 3. Obey all boating regulations, especially, no wake zone markers 4. No swimming from boats 5. Keep all hands and sampling equipment inside of boats while the boats are moving. 6. Whenever possible, hold sampling equipment inside of the boats rather than over the water. We have no desire to donate sampling gear to the bottom of the lake. 7. The program director has final say as to what is and is not appropriate safety behavior. Failure to comply with the safety guidelines and the program director's requests will result in expulsion from the program and loss of Field Station privileges. I. Introduction to Aquatic Environments Water covers 75% of the Earth's surface. We divide that water into three types based on the salinity, the concentration of dissolved salts in the water.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Microbial Community and Geochemical Analyses of Trans-Trench Sediments for Understanding the Roles of Hadal Environments
    The ISME Journal (2020) 14:740–756 https://doi.org/10.1038/s41396-019-0564-z ARTICLE Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments 1 2 3,4,9 2 2,10 2 Satoshi Hiraoka ● Miho Hirai ● Yohei Matsui ● Akiko Makabe ● Hiroaki Minegishi ● Miwako Tsuda ● 3 5 5,6 7 8 2 Juliarni ● Eugenio Rastelli ● Roberto Danovaro ● Cinzia Corinaldesi ● Tomo Kitahashi ● Eiji Tasumi ● 2 2 2 1 Manabu Nishizawa ● Ken Takai ● Hidetaka Nomaki ● Takuro Nunoura Received: 9 August 2019 / Revised: 20 November 2019 / Accepted: 28 November 2019 / Published online: 11 December 2019 © The Author(s) 2019. This article is published with open access Abstract Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and fi 1234567890();,: 1234567890();,: Mariana Trenches. Tag-sequencing analyses showed speci c distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean.
    [Show full text]